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ON THE AUTOMORPHISM GROUP OF A FINITE 
p-GROUP WITH A SMALL CENTRAL QUOTIENT 

RICHARD M. DAVITT 

In recent years there has been considerable interest in the conjecture 
tha t \G\ divides |Aut G\ for all finite non-cyclic ^-groups G of order 
greater than p2. In particular, the conjecture has been established for a 
considerable number of (not necessarily dist inct) classes of finite ^-groups 
([6], [7], [8], [9], [15], [16]); additionally, results have been obtained, 
often using homological methods, which permit reductions in any a t t empt 
to establish the overall conjecture ([5], [10], [13], [15]). In the former case, 
the ^-groups G have generally been regular ^-groups (see, for example, 
[6]) and the prime p = 2 has either been excluded (see, for example, 
[8]) or t reated as a special case (as in [9]). I t is the purpose of this paper 
to establish the conjecture for the class of all ^-groups G where 
\G\ Z(G)\ ^ pA with no restrictions on the prime p. 

Most of the notat ional conventions and terminology used in the paper 
are s tandard (see, for example, [14]). For the sake of convenience, G will 
always be assumed to be a finite p-group where p is a prime, G = G\ ^ 
G2 ^ . . . ^ G j ^ . . . will denote the lower central series of G and the 
a rgument G will be omit ted in any notat ion where no ambigui ty is 
possible. Special purpose notat ion will be introduced as needed. 

There are certain results which we often need and shall use throughout 
the paper wi thout further reference. Their s ta tements and proofs may be 
found in [4] and [14]. First , 

|Hom(0 AU © Bj)\ = IlijlHomA^Bjl 

where At and Bi are abelian ^-groups. Secondly, Hom(C(pa)} C{p^)) is 
isomorphic to C(pm[n(a'^) where C(n) is the cyclic group of order n. 
Thirdly, it is assumed tha t the definitions of a regular p-group, a meta-
cyclic group and a metabelian group and the basic properties of such 
groups are known. We will not need all of the s tandard commuta to r 
identities for the var ie ty of metabelian groups. T h e three identities 
which we will use the most are: 

(1) [xn,y] 

(2) [x,yn] 

(3) [c», x] 
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= n [x, y y (i - i)*] 
n m\ 

= El [x,iyVi} , and 

= [c, x]m, 

https://doi.org/10.4153/CJM-1980-088-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-088-3


FINITE P-GROUPS 1169 

where x and y are elements of a metabelian group G, c is in G2, m and n 
are positive integers, (") denotes the usual binomial coefficient with the 
convention tha t ("•) = 0 when n < i, and the commuta tor notat ion is 
s tandard left-normed. 

We now state our theorem. 

T H E O R E M . / / G is a finite non-cyclic p-group of order greater than p2 such 
that \G: Z\ S P\ then \G\ divides |Aut G\. 

We may assume tha t the nilpotency class of G is greater than 2 [9] 
and hence tha t pz ^ \G: Z\ ^ p*. This same assumption in combination 
with the reduction obtained in [5] and [13] also allows us to assume tha t 
Z < $(G) and consequently tha t G is purely non-abelian. From this we 
know tha t \AC(G)\ = |Hom(G, Z)\ [15], where AC(G) is the p-group of 
central automorphisms of G. Finally, we may assume tha t G is not 
^-abelian [6] and tha t \Z\ > p [10]. Throughout the rest of the paper G 
will be taken to be a ^-group which satisfies the hypotheses of the 
theorem and the assumptions noted in this paragraph. 

1. Generals-groups. 

LEMMA 1. If G is a regular p-group, then the theorem is true. 

Let G be a regular p-group. Since regular 2-groups are abelian, p ^ 2. 
Also since G is not ^-abelian, there are elements a and b in G with 
[a, b]p 7e e. I t follows from regularity tha t [ap, b] and [a, bp] are not e. 
Thus ap and bp are not in Z(G) . Indeed, (ap) Z/Z and (bp) Z/Z have trivial 
intersection since otherwise avy G (b) for some y in Z and consequently 
[apy, b] = [ap, b] = e. If we let H = (a, b) Z/Z, it is clear t ha t \H\ = pA 

and we have tha t H = G/Z. Fur thermore, the above work shows t ha t 
\Vi(H)\ = p2 and tha t \H\VX(H)\ = p2. Thus H = G/Z is metacyclic 
[14, K . I I I , S.11.4] and the lemma follows by [8]. 

Since the nilpotency class of G (cl(G)) is necessarily either 3 or 4, 
Lemma 1 establishes tha t the theorem is true for all primes p, p ^ 5, and 
tha t we need only concern ourselves with the classes of irregular 2-groups 
and irregular 3-groups to complete the proof of the theorem. We note 
tha t a finite 2-group is irregular if, and only if, it is non-abelian and tha t 
a finite 3-group is irregular if, and only if, for some 2-generator subgroup 
K of G, Kz ÇË i^i(K2) [2, Theorem 4]. Thus it is clear tha t there do exist 
2- and 3-groups G which are not covered by Lemma 1. 

Even if G is an irregular p-group, it is still true tha t G is metabelian, 
a fact which we establish in 

LEMMA 2. G is metabelian. 

From our previous assumptions it follows tha t G possesses the following 
chain of subgroups: Z < G2Z ^ $(G) < G. But now either |G2Z: Z\ = p 
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and the result follows immediately or |G2Z: Z\ = p2 and G2Z = 3>. If 
G2Z/Z is cyclic, the result again follows immediately; so we assume 
that G2Z/Z = (aZ) © (bZ) for a and 6 in G. If cl(G) = 3, we can choose 
a and b to be in G2 so that [a, b] is in G4 = E [14, K.III, H.2.11, b] and if 
cl(G) = 4, we can choose a to be in G2 and b to be in G3 so that [a, b] is 
in G5 = E. Since G2Z = (a, b, Z), G2Z is abelian and consequently G is 
seen to be metabelian. 

Before turning our attention to the remaining cases of p = 3 and/? = 2, 
respectively, it remains appropriate to do additional work in the general 
setting primarily to avoid repetition of analogous arguments later in the 
paper and to establish additional convenient notation. In the latter vein 
let d(G) be the minimal number of generators of G, let the exponent of 
G (exp G) be pm, where m ^ 2 since G is not ^-abelian, and let H = G/Z. 
Also let R be the ^-subgroup of Aut G defined by R = Inn G AC(G). It 
should also be noted that the restriction Z < $(G) implies that we are 
dealing with either 2 or 3 generator groups. To see this, observe that 
$(77) = <S>{G)/Z and conclude that \H: $(H)\ = \G: $(G)| is p2 or p\ 
From the preceding work we can also see that d(G) = d(H). Finally, we 
note that 

|i?| = \AC(G)\\G:Z2\ = |Hom(G/G2 ,Z) | |G:Z2 | 

as in [8] and that whenever \R\ ^ |G|, the theorem follows. 
The last items in this section are a sequence of simple but useful 

lemmas. 

LEMMA 3. / / exp H2 = p, then 'V\(G2) ^ Z and exp G3 = p. 

This lemma follows from (3) and the fact that H2 = (G/Z) 2 = G2Z/Z. 

LEMMA 4. If exp H ^ p2, then exp G2 ^ p2. 

We note that cl(G) ^ 4. So for elements x and y in G, 

e= [xv\ y] = [x, 3>]p"[x, y, x]^2 /[#, ;y, x, x]^3 / 

by (1). Clearly, g = [x, 3/f2 if p > 3. If £ = 3, then exp Hz ^ 3 and 
again [x, y]p2 = e. Finally, if p = 2, it is true that exp H2 S 2 ([11], 
p. 39) so that wre still obtain [x, y]p2 = e. Since in all cases G2 is abelian, 
generated by elements of order less than or equal to p2, exp G2 ^ p2. 

LEMMA 5. If exp G2 = p and $(G) is regular, then exp G/G2 ^ exp Z. 

If exp G2 = p, then clearly exp G/G2 ^ £m_1. Since Z is a subgroup of 
the regular group<£>(G) = ^ i G 2 , 

exp Z :g max {expT^i, exp G2J = £m _ 1 

and the lemma follows. 
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A similar argument yields 

LEMMA 6. i /exp G2 = p2 and <£(G) is regular, then exp G/G2 ^ expZ/p. 

Finally, for future reference we list two additional lemmas. 

LEMMA 7 [14, Aufgabe 2a) and b), S.259]. / / A is an abelian normal 
subgroup of G with cyclic factor group G/A = (xA ), then the map a —> 
[a, x] is an epimorphism from A to Go and consequently \A \ = \G2\ \A C\ Z\. 

LEMMA 8 [17, 3.2.10]. If H is a group containing a non-identity element 
w and a generating subset S such that some power of each element in S equals 
w, .then there is no group G such that G/Z = H. 

2. G is an irregular 3-group. We may assume that H is not metacylic 
[8]. Consequently, exp H ^ 9, exp G2 S 9 (Lemma 4) and exp G/G2 ^ 
3m~2. Clearly \H2\ ^ 9. But if we suppose that H2 is cyclic of order 9, 
then H would be regular [2, Theorem 4] and d(H) = 2. Letting H = 
(x, y), the regularity of H implies that H2 = ([x, y]) and consequently 
t h a t ^ i ( f f ) = (x\ y*) has order 9. But then \H\YX{H)\ = 32 and H 
would be metacyclic contradicting the assumption just made. Thus 
exp H2 = 3 and by Lemma 3,^i(G2) ^ Z(G) and exp G3 = 3. Further
more, since |<ï>(G): Z\ ^ 9, $(G) is regular. 

a. \H\ = 33. 
Since H is neither metacyclic nor abelian, precisely one of the well-

known groups H of order 33 remains under consideration. For this group 
it is true that d(H) = 2, cl(H) = 2 and exp H = 3. Let G = (a, b). 
Since cl(G) = 3, and exp G3 = 3, using (1) we conclude that 

e = [a\ b] = [a, bf[a, b, a]3[a, b, a, a] = [a, b]\ 

Since G2 = ([a, b], G3) [12, Theorem 2.81], we see that exp G2 = 3. 
Thus exp G/G2 ^ exp Z (Lemma 5) and consequently, \R\ ^ \Z\ -3-32 = 
|G|. 

b. \H\ = 34. 
Suppose first that d(G) = 3. If |G: Z2\ = 33, then since exp G/G2 ^ 

exp Z/3 (Lemma 6), 

\R\ ^ |12!(Z)|2-3-33 ^ 34-|Z| = \G\ if m = 2 and 

\R\ ^ 12m_2(Z)| |121(Z)|-3-33 è |G| if m > 2, 

given that exp Z rg 3 m _ 1 in the latter case. If \G: Z2\ = 9, wTe turn our 
attention to H which is regular. Indeed, since \H2\ = 3, H is 3-abelian. 
If exp H = 3, G = (a, b, c) where 

o(aZ) = o(bZ) = o(cZ) = 3 and 

G2 = ([a, 6], [a, c], [b, c], G3) [3, Lemma 1.1]. 
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Using (1) and the fact t ha t cl(G) = 3, it follows tha t exp G2 = 3. T h u s 
e x p G / G 2 ^ e x p Z ( L e m m a 5 ) a n d | i ? | ^ | Z | - 3 - 3 - 3 2 = |G|. I f e x p # = 9, 
let H = (x,y,w) where o(x) = 9 and ^V\{H) = (x3). Because H is 
3-abelian, we may assume, wi thout loss of generali ty, t ha t o(y) = 
o(w) = 9 so t ha t H has a generating subset 5 such t ha t some power of 
each element in 5 equals x3. By Lemma 8 there is no group G such tha t 
G/Z ~ H and we conclude tha t the theorem holds when d(G) = 3. 

Suppose then t ha t d(G) = 2 and let G = (a, b). Also let \G: Z2\ = V. 
If exp G/G2 ^ exp Z or if Z is not cyclic, then it readily follows tha t 
\R\ è |G|. T h u s we assume tha t Z is cyclic, exp G/G2 < exp Z and 
exp G2 = 9 (Lemma 5). Since G2 = ([a, b], G3), ^ i ( G 2 ) ^ Z and 
exp G3 = 3, ([a, b]3) is the unique subgroup of Z of order 3 and |G2| = 
3-|G3 | . If cl(G) = 3, it would follow tha t |G2| = 9 or t ha t G2 is cyclic of 
order 9, an impossibility since G is irregular. If cl(G) = 4, then 

|G2| = 3 - | G 3 Z : Z | i G 3 n Z | = 27 

and |G2 P\ Z\ = 3. If m = 2 it would be the case tha t exp G/G2 = 3 
while exp Z = 9. This is impossible, for on the one hand, 

\G\ = |G/G2 | |G2 | = 35 

while on the other, 

\G\ = \G/Z\\Z\ = 36. 

If m > 2, then given x in G of order 3m
1 x9 is in Z and hence x3m"2 is in 

ZC\G2 implying tha t exp G/G2 ^ 3 m " 2 . But Z g ^ X G 2 which has 
exponent 3 m _ 1 which leaves the subcase exp G/G2 = 3 m ~ 2 and Z cyclic 
of order 3 m _ 1 for our consideration. If G/G2 is abelian of type ( 3 m _ 2 , 3) , 
we again get a contradiction, namely, \G\ = (G/G2 | |G2 | = 3 m + 2 which 
does not coincide with \G\ = \G/Z\\Z\ = 3 m + 3 . But if G/G2 is abelian of 
type (3 W - 2 , 3s) with 5 è 2, we obtain \R\ ^ 3 3 - 3 w " 2 - 3 2 = \G\ once 
again. Let t ing |G: Z2 | = 9, wTe obtain a group H = G / Z which is regular 
and indeed 3-abelian since \^i(H)\ rg 3. T h e assumption tha t exp H = 3 
yields the immediate contradict ion tha t Z(H) = H2 = {\x, y]) is cyclic 
of order 9. On the other hand if \J^i(H)\ = 3, we can use the arguments 
of the preceding paragraph to apply Lemma 8 thereby discovering tha t 
there is no group G such tha t G/Z = H in this last subcase too. T h u s the 
proof of the theorem is complete for the prime p = 3. 

3. G i s a n irregular 2 -group . In dealing with the generally excep
tional prime 2, it is convenient to use information obtained from the 
Hall-Senior tables [11]. For example, a quick check of these tables 
establishes t ha t the theorem is indeed true for all 2-groups G where 
|G| ^ 64. 

a. \H\ = 23. 
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The two non-abelian 2-groups H of order 8 are both 2-generator 
metacyclic groups containing as they do elements of order 4. Thus we 
may assume that G = (a, b) where o(aZ) = 4, o(bZ) = 2 and (aZ) is a 
normal subgroup of G/Z of index 2. If we let A = (a, Z), 

\A\ = \G2\\Z\ = 4-|Z| (Lemma 7). 

Thus \G2\ = 4 and \G/G2\ = 2>\Z\. If exp G/G2 è exp Z, then \R\ ^ 
|Z|-2-22 = \G\, while if exp G/G2 < exp Z, it follows that |i?| ^ 
\G/G2\-2

2 = |G|. 

b. | # | = 24. 
Defining relations and other information for the nine isomorphism 

classes of non-abelian groups H of order 16 are listed in the Hall-Senior 
tables on pages 39 and 45. These are the groups labeled 6 through 14 on 
these two pages. 

It is convenient to list the defining relations and other facts about 
these groups in terms of generators x, y (and w where needed). When 
considering these groups as H = G/Z, the identifications x = aZ, 
y — bZ, and w = cZ will be used. 

Group 6: H = (x, y, w), x4 = e, y2 = w2 = e, [x, y] = x2, H2 = (x2), 
Z(H) = (x2) 0 (w). 

Group 7: H = (x, y, w), x4 = y4 = e, w2 = e, [x, y] = x2 = y2, H2 = 
(x2),Z(H) = (x2) 0 (w). 

Group 8: H = (x, y, w), x2 = y2 = e, w4 = e, [x, y] = w2, H2 = (w2), 
Z(H) = (w). 

Group 9: H = (x, y), x2 = e, y4 = e, [x, y]2 = e, H2 = ([x, y]), Z(H) = 
([x,y])@ (y2). 

Group 10: H = (x, y), x4 = y4 = e, [x, y] = x2, H2 = (x2), Z(H) = 
(x2) 0 (y2). 

Group 11: H = (x, y), x2 = e, y* = e, [x, y] = y4, H2 = (y4), Z{H) = 

<yJ>. 
Group 12: H = (x, y), xs = e, y2 = e, [x, y]^1 — x2, H-, = {[x, y] = 

Zt(H),Z(H) = <[x,j>]2> = Ht. 
Group 13: H = (x, y), x* = e, y2 = e, [x, y] = x2, H2 = ([x, y] = 

Z2(H),Z(H) = {[x,y]2) = H*. 
Group 14: H = (x, y), xs = e, y4 — e, [x, y]~l = x2, [x, y]2 = y2, H2 = 

<[x, y\) = Zt(H), Z(H) = <[x, y}2) = Ht. 

LEMMA 9. Groups 7, 8, 10, 11, 13 and 14 are groups H for which there is 
no group G such that G/Z ~ H. 

This lemma follows an application of G. A. Miller's result (Lemma 8) 
to an appropriate generating set S for each of these groups. For example, 
in Group 7, if we let w — xw, then w2 = x2 and S = (x, y, w). Thus 
x2 £ (x) Pi (y) C\ (w) and the lemma holds for Group 7 by Lemma 8. 
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The application of Lemma 8 to the other five groups listed is equally 
routine and is omitted. 

To complete the proof of the theorem, we consider the three cases 
involving Groups 6, 9 and 12. 

Case (i). Let H be the group labeled "6" . 
Using the list we see that exp G% = 2, i^ \{G2) ^ Z (Lemma 3), 

|G:Z2 | = 4, cl(G) = 3, |G2Z: Z| = 2 and consequently that $(G) is 
abelian. By Lemmas 4, 5 and 6, it follows that exp G2 ^ 4, exp G/G> ^ 
exp Z/2 and exp G/G2 è exp Z when exp G2 = 2. If Z is not cyclic or if 
exp G/G2 ^ exp Z, then | j \ | ^ |G| by the familiar arguments of this 
paper. Thus we assume that Z is cyclic, exp G/G2 < exp Z, and exp G2 = 
4. According to our notation, G = (a, b, c) where o(cZ) = 2 and c is in 
Z2 so that [a, c] and [b, c] are elements of 0X(Z) by (2). Since G2 = 
([a, è], fa, c], [a, c], G3), it necessarily follows that [a, b] is an element of 
order 4 in G2. Indeed it is clear that ^i(Z) = ([a, b]2) so that G2 = 
([a, &]) is cyclic of order 4. Consequently, \R\ ^ 4 - |G/G2| = |G| and the 
theorem holds in this case. 

Case (ii). Let H be the group labeled u 9 " . 
Using the list we see that exp G3 = 2, ^ i ( G 2 ) ^ Z, |G: Z2| = 4, 

cl(G) = 3, |G2Z: Z\ = 2 and $(G) - ([a, b], b\ Z). Now $(G) is abelian 
since [a, b] £ G2 and b2 £ Z2 [14, 2.11c, S.265] and it follows by Lemmas 4 
and 6 that exp G2 ^ 4 and exp G/G2 ^ exp Z/2. Now G2 = ([a, /;], 
[a, 6, a], [a, 6, &]) [3, Lemma 1.1] where only [a, 6] could possibly have 
order as large as 4. Since o(aZ) = 2, g = [a2, b] — [a, b]2[a, b, a] so that 
[a, b, a] G ([a, &]2) which means that |G2| ^ 8. If Z is not cyclic, then 
\R\ ^ 4-|Z|-4 = \G\ when exp G/G2 ^ exp Z and \R\ ^ 4-|G/G2 |-2 ^ 
|G| when exp G/G2 = exp Z/2. Thus we assume that Z is cyclic. Since 
G2 = {[a, 6], [a, 6, b]), it is now true that |G2| = 4. 

If we assume that o([a, 6]) = 4 , it then follows that [a, b, b] = c. To 
see this, suppose [a, &, ft] ^ £. Then [a, &, b] = [a, fr]2, the unique element 
of order 2 in G2. But then by (2), 

[a, 62] = [a, b]2[a, b, b] = [a, b]2[a, b]2 = e 

and b2 is in Z which is a contradiction. If we now let B = ([a, b], b, Z), B 
is an abelian normal subgroup of G of index 2. Thus on the one hand, 
\B\ = 8- |Z| while on the other hand, by Lemma 7, | £ | = \G2\\B H Z| = 
4- |Z|. This final contradiction shows that o([a, 6]) = 2 and consequently 
that expG2 = 2 and [a, b, a] = e. 

Because \Z\ > 2 and Z ^ 1^iG2, an abelian group of exponent 2m_1, 
we see that m > 2. If g is an element of G of maximal order 2W, g4 is in Z 
and hence g2m~l is in Z C\ G2, the unique subgroup of Z of order 2. Thus 
exp G/G2 = 2m~\ Similarly, exp Z = \Z\ ^ 2W~2. If |Z| = 2m~l then 
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\R\ = \G/G2\ -4 = \G\. Thus we assume that Z is cyclic of order 2m~2 and 
consequently that Z fg 7^\Gi. Let Z — (vwA) where v £ G2 and w Ç G. 
Then 

a2 = vifw4i = vi(w2)2i 

since a2 is in Z. If we let â = a(w2)~j, then we have that â4 = g. But 
G = (â, b) since (w2)~J is in $(G) and we see that, without loss of 
generality, we may assume that G = (a, b) where 2 ^ o(a) ^ 4. If 
y4 = ([a, 6], a, Z), then .4 is a normal abelian subgroup of G such that 
G/A = (&̂ 4 ) is cyclic of order 4. It follows that the mapping <j>\G —* G 
defined by bkc —> (ba)kc, where 0 ^ fe < 4 and c is in A is an automor
phism of G under which A is elementwise fixed and such that o($) =o(a) 
[8, Lemma 3]. Since <t>(b) = ba where a is not in G2Z, 0 is a non-trivial 
2-power automorphism which is not in R. Hence, if S = (R, 0), then 

|5| *2-\R\ = 2 - ( | Z | . 2 ) - 4 = \G\ 

and the theorem holds in this case. 

Case (iii). Let H be the group labeled "12". 
Using the list we see that G = (a, b) where o(aZ) = 8 and that 

\G: Z2\ = 8. Thus A = (a, Z) is a normal abelian subgroup of index 2. 
Since \A\ = 8-|Z| = |L72!|Z| by Lemma 7, we have that IG2I = 8. Con
sequently, \R\ ^ 8-|Z|-2 = \G\ when expG/G2 è exp Z and \R\ ^ 
8- \G/G2\ = \G\ when exp G/G2 < exp Z. Thus the theorem holds in this 
last case when p = 2. 

The proof of the entire theorem is now complete. 

COROLLARY. If G is a finite non-cyclic p-group where pz 5* \G\ ^ p6, 
/Am |G| divides |Aut G|. 
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