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Abstract | The frequency of left-handedness in humans is ~10% worldwide and slightly 

higher in males than females. Twin and family studies estimate the heritability of human 

handedness at around 25%. The low but substantial frequency of left-handedness has been 

suggested to imply negative frequency-dependent selection, e.g. owing to a “surprise” 

advantage of left-handers in combat against opponents more used to fighting right-handers. 

Because such game-theoretic hypotheses involve social interaction, here, we perform an 

analysis of the evolution of handedness based on kin-selection, which is understood to play a 

major role in the evolution of social behaviour generally. We show that: (1) relatedness 

modulates the balance of right-handedness versus left-handedness, according to whether left-

handedness is marginally selfish versus marginally altruistic; (2) sex differences in 

relatedness to social partners may drive sex differences in handedness; (3) differential 

relatedness of parents and offspring may generate parent-offspring conflict and sexual 

conflict leading to the evolution of maternal and paternal genetic effects in relation to 

handedness; and (4) differential relatedness of maternal-origin versus paternal-origin genes 

may generate intragenomic conflict leading to the evolution of parent-of-origin-specific gene 

effects—such as “genomic imprinting”—and associated maladaptation. 

 

Summary | We investigate how social interaction between kin affects the balance between 

right-handers and left-handers in humans. 
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1 | Introduction 

 

Most humans show a preference for—or a difference in proficiency of—one hand over the 

other for a range of tasks (McManus, 2019; Papadatou-Pastou et al., 2020). The frequency of 

left-handedness in humans is estimated at 10.6%, fairly stably across regions and populations, 

and is somewhat higher in males (11.6%) than in females (9.5%) (Papadatou-Pastou et al., 

2020). Twin studies (Medland et al., 2009) and family studies (Jordan, 1911; Ramaley, 1913; 

Lien et al., 2015) show that handedness is heritable, with additive genetic effects appearing to 

explain around 25% of the variance (Medland et al., 2009). Genome-wide association studies 

(GWAS) have identified 41 loci influencing handedness and explaining around 6% of the 

heritability (Cuellar-Partida et al., 2021). A recent whole exome sequencing (WES) study in 

the UK Biobank has suggested an association between mutations in the TUBB4B gene and 

left-handedness and estimated that the heritability of left-handedness due to rare coding 

variants to be 0.91% (Schijven et al., 2023). Left-handedness has been linked to some 

psychiatric disorders, such as autism spectrum disorders (ASD) (Markou et al., 2017), 

schizophrenia (Hirnstein & Hugdahl, 2014) and dyslexia (Abbondanza et al., 2023), and there 

is an overlap among genes underlying these conditions, brain asymmetries and handedness 

(Papadatou-Pastou et al., 2020). 

 

Although many taxa exhibit some form of lateralization (Rogers, 1980; Ocklenburg & 

Güntürkün, 2012), of which handedness is just one form, these typically involve roughly 

equal numbers of left-sided and right-sided individuals, and so the strong population bias 

towards right-handers is peculiarly human (Frayer et al., 2012; Caspar et al., 2022). 
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Language processing is also a typically human skill and is highly lateralised presenting a left 

hemisphere dominance in most individuals. However, right hemisphere dominance for 

language can be observed more frequently in left-handers (Knecht et al., 2000; Mazoyer et 

al., 2014). Similarly, atypical lateralization for other functions is more likely to be observed 

in left-handers than right-handers (McManus, 2022). Understanding how the low but 

substantial frequency of left-handedness is maintained may therefore serve to illuminate the 

role of hemispheric specialisation underpinning skills that might have driven human 

evolution. 

 

The relative stability—with slight variations—of the ~10% incidence of left-handedness in 

human populations through time (Coren & Porac, 1977, Frayer et al., 2012; but see McManus 

& Bryden, 1992, McManus, 2009, McManus et al., 2010) and across regions (Papadatou-

Pastou et al., 2020) has given rise to the suggestion that left-handedness is maintained by 

negative frequency-dependent selection, and this has motivated the development of a number 

of evolutionary game-theoretic hypotheses to explain the phenomenon (Raymond et al., 

1996; Ghirlanda et al., 2009; Abrams & Panaggio, 2012; Schaafsma et al., 2012; Faurie & 

Raymond, 2013). As an illustrative example, the “combat hypothesis” suggests that left-

handers suffer a basic disadvantage (Schaafsma et al., 2012; Zickert et al., 2018; Papadatou-

Pastou et al., 2020)—e.g. perhaps owing to disruption of typical brain lateralisation—such 

that natural selection has resulted in them being in the minority, yet also enjoy a 

compensating advantage when they are sufficiently rare, owing to the element of surprise in 

combat and similar competitive interactions (Gibbons, 1993; Raymond  et al., 1996; Faurie & 

Raymond, 2013). That is, the rarity advantage explains why left-handedness is present, and 

the basic disadvantage explains why its frequency is not at 50%. Indirect evidence in support 

of the combat hypothesis includes higher incidence of left-handers among elite athletes in 
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interactive sports, e.g. tennis, fencing and baseball (Wood & Aggleton, 1989; Goldstein & 

Young, 1996; Raymond  et al., 1996; Loffing, 2017), although the link between left-

handedness and reproductive success remains obscure (Groothuis et al., 2013). 

 

These game-theoretic hypotheses centre upon social interaction, whereby an individual’s 

phenotype has an impact upon the fitness of others (the individual’s “social partners”). Kin 

selection—the part of natural selection that arises when individuals socially interact with their 

genetic relatives—plays a major role in the evolution of social interactions across the tree of 

life (Hamilton, 1964; Frank, 1998; West et al., 2007a). In addition to influencing the overall 

incidence of traits within and across populations (Sachs et al., 2004; West et al., 2007a), kin 

selection can explain differences in trait levels between different individuals—such as sex 

differences (West et al., 2007a; Leedale et al., 2018)—and also modulate evolutionary 

conflicts of “interest” within families and even within individual genomes—resulting in the 

evolution of parental genetic effects (Wolf et al., 1998; Richardson et al., 2004; Kuijper & 

Johnstone, 2016) and parent-of-origin effects e.g. genomic imprinting (Haig, 2002; Wilkins 

& Úbeda, 2011). Yet theoretical analyses of the evolution of human handedness have so far 

failed to consider the possible modulating role of kin selection. 

 

Here we undertake a theoretical investigation of how kin selection may shape the biology of 

human handedness. First, we show that, at evolutionary equilibrium, left-handedness may be 

classified either as a “selfish” or an “altruistic” trait, depending on its fitness consequences 

for the individual and for the individual’s social partners, and that the direction of the 

modulating effect of genetic relatedness depends on which of these two situations applies. 

Second, we explore how demographic processes such as dispersal modulate the population 

level of left-handedness at evolutionary equilibrium, via their impact on the degree of genetic 
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relatedness between social partners. Third, we investigate the consequences of sex-biased 

dispersal, and associated sex differences in an individual’s relatedness to social partners, for 

the evolution of sex differences in left-handedness. Fourth, we determine the consequences of 

extending genetic control of handedness to the individual’s parents, resulting in parent-

offspring conflict and sexual conflict and the evolution of parental genetic effects in relation 

to human handedness. Fifth, we descend to the level of individual genes and investigate the 

scope for intragenomic conflict between maternal-origin versus paternal-origin genes and the 

resulting evolution of parent-of-origin effects—including genomic imprinting—in relation to 

human handedness. 

 

We conduct our theoretical investigation by means of a qualitative exploration of the logic of 

kin selection as it applies to left-handedness, and we complement this conceptual approach 

with an explicitly mathematical illustrative analysis presented in the Supplementary Material. 

For the purpose of illustration and concreteness, in each case we derive predictions for 

“within-group combat” and “between-group combat” game-theoretic scenarios, but our 

analysis applies to any scenario in which an individual’s handedness has an impact upon their 

own reproductive success and that of their genetic relatives. We allow for handedness to be a 

highly polygenic trait and, although for ease of conceptualization we will refer to handedness 

in a binary way, our analysis readily accommodates a spectrum of handedness. Indeed, in 

contrast to previous studies which have focused on the consequences of these different 

genetic architectures (McManus & Bryden, 1992; McManus et al., 2013; McManus, 2022), 

our focus is on how natural selection shapes the handedness phenotype. More generally, 

rather than giving post hoc explanations for existing observations, our major aim is to provide 

a priori, testable, comparative predictions to motivate new empirical research avenues and to 
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develop a theoretical framework within which the results of future analyses can be 

conceptualised. 

 

2 | Results 

 

(a) Kin selection and human handedness 

 

Natural selection adapts individuals as if for the purpose of passing on their alleles to future 

generations (Hamilton, 1964; Grafen, 2006; West & Gardner, 2013). There are two basic 

routes through which individuals can accomplish this: first, by promoting their own 

reproductive success (direct fitness); and, second, by promoting the reproductive success of 

their genetic relatives, who tend to share alleles in common (indirect fitness) (Hamilton, 

1964). The part of natural selection that is driven by the impact of individuals on their genetic 

relatives defines “kin selection” (Frank, 1998). According to Hamilton’s (1964) rule, a 

behaviour that incurs a fitness cost c for the actor can nevertheless be “favoured” by natural 

selection if it provides a sufficiently large fitness benefit b to a sufficiently closely related 

recipient, where the kin-selection coefficient of relatedness r describes the statistical 

association between their genetical traits (i.e. r = 1/2 for full siblings, r = 1/4 for half-siblings, 

r = 1/8 for first cousins, and so on, in a simple outbred population setting; Frank 1998). 

Specifically, the behaviour is favoured if -c + r b > 0. More generally, we can define four 

types of social behaviour, according to the sign of the fitness effects: traits incurring a cost 

for the actor and yielding a benefit for the recipient (c > 0 and b > 0) are “altruistic”; traits 

yielding a benefit for the actor and incurring a cost for the recipient (c < 0 and b < 0) are 

“selfish”; traits yielding a benefit for both parties (c < 0 and b > 0) are “mutually beneficial”; 
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and traits incurring a cost for both parties (c > 0 and b < 0) are “spiteful” (Hamilton, 1964; 

West et al., 2007b). 

 

At evolutionary equilibrium, where natural selection favours neither an increase nor a 

decrease in the trait (b r - c = 0), then so long as relatedness is positive (r > 0) the trait must 

either be marginally altruistic (c > 0 and b > 0) or marginally selfish (c < 0 and b < 0) 

(Hitchcock et al., 2019). Accordingly, if natural selection acts in a negative frequency-

dependent way in relation to human handedness—as suggested by the game-theoretic models 

(Ghirlanda & Vallortigara, 2004; Ghirlanda et al., 2009; Abrams & Panaggio, 2012)—such 

that it favours an increase in the incidence of left-handedness when this has dropped below a 

threshold level and favours a decrease in left-handedness when it has exceeded the threshold, 

then evolutionary equilibrium is attained when the incidence of left-handedness is at the 

threshold, and at this point left-handedness is either marginally altruistic or marginally 

selfish. If left-handedness is marginally altruistic then a higher degree of genetic relatedness 

between actor and recipient is expected to be associated with a higher incidence of left-

handedness at the evolutionary equilibrium, whereas if left-handedness is marginally selfish 

then a higher degree of genetic relatedness is expected to be associated with a lower 

incidence of left-handedness. 
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Figure 1 | Comparative predictions as to how dispersal affects relatedness between 

social partners and hence the evolutionarily favoured incidence of left-handedness, 

depending on the type of social interactions: within-group (selfish) or between-group 

(altruistic) combat. Lower dispersal leads to higher relatedness, hence low dispersal 

favours a lower incidence of left-handedness when it is selfish and a higher incidence of 

left-handedness when it is altruistic. Sex-biased dispersal creates asymmetry in 

relatedness and hence favours a sex difference in left-handedness. 

 

Taking the combat hypothesis as a purely illustrative example, if we imagine that combat 

occurs mainly within human groups—i.e. between individuals who are members of the same 

community and are somewhat genetically related to each other—then the indirect-fitness 

consequences of enjoying a surprise advantage in combat owing to left-handedness are 

expected to be negative (because the opponent, who loses out, is a genetic relative). Hence, at 

equilibrium, this indirect-fitness cost is expected to be exactly balanced by a direct-fitness 
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benefit (owing to improved success in combat outweighing the basic disadvantage of left -

handedness). In this scenario, left-handedness is a marginally selfish trait, and kin selection 

disfavours left-handedness, such that a higher level of relatedness is expected to be associated 

with a lower incidence of left-handedness (Figure 1 and S3a). Alternatively, if combat mainly 

occurs between non-relatives in an intergroup-warfare context in which success in combat is 

associated with a positive indirect-fitness effect owing to the benefits that accrue to the 

individual’s genetically related groupmates, then at equilibrium this is expected to be exactly 

balanced by a direct-fitness cost (owing to the basic disadvantage of left-handedness failing 

to outweigh the improved success in combat). In this alternative scenario, left-handedness is a 

marginally altruistic trait, and kin selection favours left-handedness, such that a higher level 

of relatedness is expected to be associated with a higher incidence of left-handedness (Figure 

1 and S3a). 

 

Genetic relatedness will usually depend on the ecology and demography of the population, 

and so the above kin-selection logic also yields predictions as to how population processes 

relate to the evolutionarily favoured incidence of left-handedness. As a concrete example, we 

consider the rate of dispersal. If individuals have a higher tendency to disperse away from 

their place of origin and pursue reproductive opportunities within other groups, then this is 

expected to result in lower relatedness among groupmates. Accordingly, if left-handedness is 

marginally selfish—as, for example, in the within-group combat scenario—then as the rate of 

dispersal increases, the degree of relatedness decreases, and hence the evolutionarily 

favoured level of left-handedness is expected to increase (Figure 1 and S3a). And, in contrast, 

if left-handedness is marginally altruistic—as, for example, in the between-group combat 

scenario—then as the rate of dispersal increases, the degree of relatedness decreases, and 

hence the level of left-handedness is expected to decrease (Figure 1 and S3a). These 
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predictions relate to contemporary and/or historical between-population comparisons and 

also, potentially, to the dynamics of handedness within a single population across 

evolutionary timescales in responses to demographic change (see Discussion). 

 

(b) Sex differences in human handedness 

 

Above, we have shown that the average genetic relatedness between social partners—and the 

population processes that modulate this—is expected to influence the evolutionarily favoured 

incidence of left-handedness at a population level. Similarly, inter-individual differences in 

relatedness to one’s social partners—and the population processes responsible for such 

variation—are expected to drive differences in levels of left-handedness among different 

subdivisions of the population. In particular, sex-specific demographic processes—such as 

sex-biased dispersal—may result in a sex difference in the relatedness of social partners, 

which may therefore favour a sex difference in the incidence of left-handedness. For 

example, all else being equal, female-biased dispersal is expected to result in relatedness 

between social partners being lower for woman than for men. Hence, all else being equal, a 

higher level of left-handedness would be favoured among women than among men if left-

handedness is marginally selfish (such as in the within-group combat scenario) and a higher 

level of left-handedness would be favoured among men than among women if left-

handedness is marginally altruistic (such as in the between-group combat scenario). The 

opposite pattern is expected under male-biased dispersal (Figure 1 and S3b). 

 

In addition to differences in relatedness, the sexes might also differ with respect to the fitness 

consequences—that is, the benefits and costs—associated with left-handedness. Such fitness 

differences would also be expected to modulate sex differences in the incidence of left-
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handedness. For example, if the frequency-dependent advantage of left-handedness when rare 

applies more strongly to men than to women—as would be expected in the combat scenarios 

if men engage in combat more frequently than do women and/or if men have more to gain 

from winning in combat in terms of enhanced reproductive success (Micheletti et al., 

2018)—then, all else being equal, the incidence of left-handedness is expected to be higher 

among men than among women. Note that we need not expect each sex’s observed level of 

left-handedness to correspond exactly to its adaptive optimum; to the extent that the same 

genes underpin left-handedness in both sexes, sexual antagonism might keep both sexes from 

attaining their respective optima (Grafen, 2006). More generally, these sex-difference results 

concern adaptive evolution, and are based upon considerations of female versus male fitness 

optima. Accordingly, they neglect non-adaptive sex differences arising, for example, from a 

greater vulnerability of males to developmental perturbation away from a default phenotype, 

which has been reported in disorders including ASD (Antaki et al., 2022). Such non-adaptive 

mechanisms could offer alternative explanations for the higher incidence of left-handedness 

among males (see Discussion). 

 

(c) Parental genetic effects in human handedness 

 

Above, we have shown how the evolutionarily favoured level of left-handedness may be 

modulated by the evolutionary value that individuals place upon the reproductive success of 

social partners relative to their own reproductive success. This assumes that an individual’s 

own genotype controls the handedness phenotype. If, instead, the handedness phenotypes 

were controlled by the parental genotype—i.e. a “parental genetic effect”; (Trivers, 1972; 

Trivers, 1974; Wilson, 1980)—then we might expect the evolutionarily favoured incidence of 

left-handedness to reflect the relatedness valuations made by the individual’s parents. More 
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generally, if an individual’s predisposition to left-handedness is modulated in part by the 

individual’s own genotype and also in part by the genotypes of the individual’s parents then 

we might expect an evolutionary “conflict of interests”—and associated evolutionary arms 

race—between parent and offspring (Trivers, 1974), and between the parents themselves 

(Trivers, 1972), as each party is favoured to move the handedness phenotype closer to their 

own fitness optimum. 

 

If an individual’s handedness phenotype represents a trade-off between the individual’s own 

reproductive success and the reproductive success of the individual’s groupmates, then in 

general terms we expect the individual’s parents to favour a balance that is relatively biased 

towards the groupmates’ reproductive interests and the individual to favour a balance that is 

relatively biased towards their own reproductive interests, so long as there is relatedness 

among groupmates (see Supplementary Material §§S1.7 and S2.5 for details). This owes to 

individuals being genetically identical to themselves and only somewhat genetically related 

to their offspring. Accordingly, if left-handedness is a marginally selfish trait (as in the 

illustrative within-group combat scenario) then we expect parents to favour a lower 

predisposition for left-handedness in their offspring than their offspring would themselves 

favour. And if left-handedness is a marginally altruistic trait (as in the illustrative between-

group combat scenario) then we expect parents to favour a higher predisposition for left-

handedness in their offspring than their offspring would themselves favour (Figure 1 and 

S3c). 

 

Moreover, although both parents are equally related to their offspring they may be 

differentially related to their offspring’s social partners, so that mothers and fathers may 

favour different dispositions for left-handedness among their offspring. For example, under 

https://doi.org/10.1017/ehs.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.24


 14 

female-biased dispersal, mothers are expected to be less related to their offspring’s social 

partners than are fathers, and hence more inclined to their offspring having a disposition for 

left-handedness if this is a marginally selfish trait (as in the illustrative within-group combat 

scenario) and less inclined to their offspring having a disposition for left-handedness if this is 

a marginally altruistic trait (as in the illustrative between-group combat scenario). The 

opposite set of outcomes is expected under male-biased dispersal (Figure S5). Accordingly, 

considerations of patterns of relatedness and concomitant kin selection yields predictions as 

to parental genetic effects—including maternal genetic effects and paternal genetic effects—

working at cross purposes with the individual’s own genome, as well as with each other, in 

relation to the individual’s handedness phenotype. 

 

(d) Parent-of-origin effects in human handedness 

 

Above, we have shown that sex-specific demography—such as sex-biased dispersal—may 

generate differences in the relatedness valuations made by mothers and fathers regarding the 

reproductive success of their offspring versus their offspring’s social partners, resulting in the 

evolution of parental genetic effects in relation to handedness. Similarly, this relatedness 

asymmetry can also extend into the offspring’s own genome and ignite an evolutionary 

conflict of interests between the individual’s own maternal-origin versus paternal-origin 

genes. Such intragenomic conflict in relation to other social traits has been suggested to drive 

the evolution of parent-of-origin specific genetic effects, including genomic imprinting (Haig, 

2002; Gardner & Úbeda, 2017)—and induce vulnerability to a number of associated 

developmental disorders, e.g. Silver-Russell syndrome (SRS) and Beckwith-Wiedemann 

syndrome (BWS) (Crespi, 2011; Wilkins & Úbeda, 2011). 
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For example, if left-handedness is marginally selfish (such as in the within-group combat 

scenario) then under female-biased dispersal the relatedness between social partners through 

maternal-origin genes—all else being equal—will be lower than the relatedness through 

paternal-origin genes, and hence maternal-origin genes are expected to favour a higher level 

of left-handedness than are paternal-origin genes (Figure 2 and S4). Under male-biased 
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Figure 2 | Sex differences, parental genetic effects and parent-of-origin effects. Sex 

biased expression of genes can lead to a sex difference in incidence of left-handedness. 

Expression of parents’ genes can lead to parental genetic effects in relation to left-

handedness. Parent-of-origin-specific gene expression can lead to parent-of-origin 

effects in relation to left-handedness. 

 

dispersal relatedness will be higher through maternal-origin genes than through paternal-

origin genes, and hence maternal-origin genes are expected to favour a lower level of left- 

handedness than are paternal-origin genes (Figure 2 and S4). Conversely, when left-

handedness is marginally altruistic (such as in the between-group combat scenario) then 

under female-biased dispersal maternal-origin genes are expected to favour a lower level of 

left-handedness than are paternal-origin genes, whereas under male-biased dispersal 

maternal-origin genes are expected to favour a higher level of left-handedness than are 

paternal-origin genes (Figure 2 and S4). 
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According to the kinship theory of genomic imprinting (Haig, 2002), this form of 

intragenomic conflict will typically lead to one of the copies of the gene being silenced. 

Specifically, according to the “loudest voice prevails” principle (Haig, 2002), the two copies 

of the gene at the affected locus are favoured to adjust their level of expression in opposite 

directions, such that the one favouring a higher level of left-handedness will act to increase 

the level of left-handedness while the one favouring a lower level of left-handedness will act 

to decrease the level of left-handedness, until the gene being favoured to decrease its 

expression falls silent. At a locus for which an increase in gene expression results in an 

increase in the level of left-handedness—a “left-handedness promoter” locus—it is the gene 

that favours a higher level of left-handedness that is expected to remain expressed while the 

gene that favours a lower level of left-handedness is silenced. And at a locus for which an 

increase in gene expression results in a decrease in the level of left-handedness—a “left-

handedness inhibitor” locus—it is the gene that favours a lower level of left-handedness that 

is expected to remain expressed while the gene that favours a higher level of left-handedness 

is silenced. Accordingly, the function of the gene product determines the direction of imprint. 

 

For example, if left-handedness is marginally selfish (e.g. within-group combat), then under 

female-biased dispersal we expect left-handedness promoters to be maternally expressed and 

paternally silenced and left-handedness inhibitors to be maternally silenced and paternally 
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Figure 3 | Predictions as to how dispersal pattern and gene function modulate the 

pattern of genomic imprinting. See Supplementary Material Figure S7 for additional 

predictions concerning the phenotypic consequences of gene deletions, gene 

duplications, epimutations and uniparental disomies.  

 

expressed, and under male-biased dispersal left-handedness promoters are expected to be 

maternally silenced and paternally expressed and left-handedness inhibitors to be maternally 

expressed and paternally silenced. However if left-handedness is marginally altruistic (e.g. 

between-group combat), then under female-biased dispersal we expect left-handedness 

promoters to be maternally silenced and paternally expressed and left-handedness inhibitors 

to be maternally expressed and paternally silenced; and under male-biased dispersal left-

handedness promoters are expected to be maternally expressed and paternally silenced and 

left-handedness inhibitors to be maternally silenced and paternally expressed (Figure 3).  

 

3 | Discussion 

 

Although game theoretic attempts to explain the evolutionary maintenance of a substantial 

minority of left-handed individuals in human population fundamentally hinge upon social 
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interaction, and although kin selection is a fundamental driver of social evolution, the 

possible role for kin selection in modulating the evolution of human handedness has 

previously been neglected. We have shown how patterns of genetic relatedness—and the 

demographic processes underpinning these—are expected to shape patterns of human 

handedness. Specifically, our kin-selection analyses show that: (1) relatedness between social 

partners—modulated by population processes such as dispersal—is expected to influence the 

population level of left-handedness in a direction that depends upon whether left-handedness 

is marginally selfish (as in our illustrative within-group combat scenario) versus marginally 

altruistic (as in our illustrative between-group combat scenario); (2) sex-specific 

demography—such as sex-biased dispersal—can result in differences in sex differences in 

relatedness to one’s social partners, which may go some way to explaining sex differences in 

incidence of left-handedness; (3) differences in relatedness valuations made by different 

family members can ignite conflicts of interest between parents and offspring and between an 

individual’s mother and father over their handedness phenotype, driving the evolution of 

parental genetic effects; and (4) such relatedness differences may even ignite evolutionary 

conflicts of interest within the individual’s own genome, with maternal-origin and paternal-

origin genes favouring different handedness phenotype, which is expected to drive the 

evolution of parent-of-origin effects—such as “genomic imprinting”—in relation to 

handedness. By pitching our analysis in a qualitative way we achieve a considerable degree 

of generality, with our comparative predictions applying across a diversity of genetic 

architectures. Although factors such as the number of loci underpinning the left-handedness 

phenotype and the size of human groups will clearly make a quantitative impact on 

evolutionary outcomes the basic logic of kin selection applies as generally as the concept of 

natural selection itself (Gardner et al., 2011). 
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Our analyses have shown that the degree of genetic relatedness between social partners is 

expected to modulate the evolutionary equilibrium frequency of left-handedness in the 

population, with higher relatedness being associated with a lower level of left-handedness 

when left-handedness tends to benefit the individual at the expense of social partners 

(selfishness) and a higher level of left-handedness when left-handedness tends to benefit 

social partners at the expense of the individual (altruism). The degree of relatedness is itself 

expected to depend on ecological and demographic parameters such as rate of dispersal, with 

higher dispersal of individuals tending to reduce the extent of genetic relatedness between 

social partners. At a comparative level, variation in ecological and demographic parameters 

between different human populations could potentially explain between-population 

differences in incidence of left-handedness. Variation in ecological and demographic 

parameters within a single human population over time might also explain temporal 

differences in the incidence of left-handers, but only insofar as the variation in ecology and 

demography occurs over a relatively long timescale and the evolutionary fine-tuning of 

handedness occurs over a relatively short timescale—i.e. so that there is time for adaptation 

to current conditions to occur before those conditions change. Our analysis offers little 

quantitative guidance as to the relevant timescales, but the population bias towards right-

handedness does appear to have already been in place when hominin lineages diverged from 

the great apes around seven million years ago (Uomini & Ruck, 2018; Papadatou-Pastou et 

al., 2020). 

 

Our analysis also shows that sex-specific selection can give rise to sex differences in 

handedness. We have shown how sex-specific demographies—such as sex-biased dispersal— 

may lead to sex differences in relatedness between social partners and hence sex-differences 

in the level of left-handedness favoured by females versus males. Whether humans have been 
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characterised by sex-biased dispersal in our evolutionary past, and in which direction, 

remains a controversial topic: the traditional view is that human dispersal has been female-

biased (Ember, 1975), but evidence has also been marshalled in support of dispersal having 

been unbiased or mixed (Marlowe, 2004). Our use of sex-biased dispersal is merely as an 

illustration, and the results extend more generally to any ecological and demographic factors 

that result in sex-differences in relatedness to one’s social partners—such as patterns of 

inbreeding (Wilkins & Haig, 2003). In addition to relatedness, our analysis has emphasised 

that sex difference in left-handedness might also reflect sex differences in the costs and/or 

benefits of left-handedness. For example, men are generally understood to engage in—and to 

benefit from winning—combat more than do women (Micheletti et al., 2018), which could 

explain a higher incidence in left-handedness on account of a surprise advantage in combat 

settings. The higher incidence of left-handedness in males could also arise for non-adaptive 

reasons. One possibility is sexually differential liability thresholds (Khramtsova et al., 2019; 

Merikangas & Almasy, 2020; Antaki et al., 2022), whereby the number of risk alleles 

required for an individual to exhibit a minority phenotype is greater for females than males, 

i.e. the female buffering effect. Another is sex-linked inheritance (McManus & Bryden, 1992; 

Jones & Martin, 2010; but see McManus, 2010), although X-linked left-handedness genes 

have not been found in the recent sex-stratified GWAS analysis (Cuellar-Partida et al., 2021).  

 

Our analysis shows the potential for parental genetic effects to occur in relation to left-

handedness, such that alleles carried by a parent exert an influence on their offspring’s 

handedness phenotype, irrespective of whether the offspring carries the same alleles. These 

parental genetic effects are expected to arise evolutionarily as a consequence of parents 

having different interests regarding their offspring’s handedness phenotype, and our analysis 

yields predictions as to patterns of such genetic effects depending on the sex of parent and 
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offspring (see Supplementary Material §§S1.7 and S2.5). Note that we have taken a 

“battleground” approach (Godfray, 1995) that enables characterisation of the existence and 

direction of this parent-offspring conflict. A further “resolution” model (Godfray, 1995) 

would be required to explore more fully the resulting arms race and to determine its 

evolutionary endpoint—this represents an avenue for future theoretical analysis. Schmitz et 

al. (2022)’s genomic analyses suggested the existence of parental effects in relation to hand 

preference, and stronger maternal effects than paternal effects in another multidimensional 

laterality trait—footedness, even when controlling for possible non-paternity cases. However, 

despite the well-known difference in association between offspring handedness and maternal 

versus paternal handedness (Jordan, 1911; Ramaley, 1913), the possibility of parental genetic 

effects has neither been confirmed nor excluded. Parental genetic effects have been suggested 

to arise in neurodevelopmental disorders associated with handedness, such as maternal 

genetic effects in relation to loci associated with ASD—potential loci include SHANK3 on 

chromosome 22 and WBSCR17 on chromosome 7q11—but these findings have not been 

replicated (Connolly et al., 2017). The predictions of our analysis therefore offer a new 

perspective for understanding the role of parental genetic effects in neurodevelopmental 

disorders. 

 

Finally, our analysis also shows maternal-origin versus paternal-origin genes within an 

individual’s own genome may come into conflict in relation to their carrier’s handedness 

phenotype, and how this conflict may lead to the evolution of parent-of-origin-specific gene 

expression. Genomic imprinting is associated with a variety of debilitating disorders, with 

parent-of-origin-specific clinical effects and nonstandard patterns of inheritance that are often 

predictable in light of the kinship theory (Wilkins & Úbeda, 2011). Our results concerning 

patterns of imprinting allow us to make predictions as to the effects of a range of different 
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mutational and epimutational perturbations of imprinted loci affecting handedness (Figure 

S7). For example, a gene deletion at an imprinted locus is expected to have no impact on the 

phenotype if the gene was to be silenced anyway, but it is expected to have a—potentially 

major—impact upon the phenotype if it was to be expressed such that no functional gene 

product at all will derive from the affected locus (Figure S7). Such effects might often be 

lethal insofar as they involve disruption to early stages of brain development when left-right 

asymmetry is usually established. These predictions could potentially enhance our 

understanding of various neurodevelopmental disorders associated with handedness. A range 

of neurodevelopmental conditions are associated with elevated level of left (or non-right) 

handedness, e.g. dyslexia or developmental language disorders (Abbondanza et al., 2023; 

Packheiser et al., 2023), schizophrenia (Hirnstein & Hugdahl, 2014), and ASD (Markou et 

al., 2017). Several loci that are associated with ASD have been suggested to have a parent-of-

origin effects—with maternally over-expressed components including a region between 

LOC391642 and LOC645641 on chromosome 4 and the LRRC16A gene on chromosome 6, 

and paternally over-transmitted genes including the STPG2 gene on chromosome 4 and the 

TBC1D4 gene on chromosome 13—but these findings are not replicated (Connolly et al., 

2017). Considering novel parent-of-origin effects on complex traits have recently been 

reported with larger samples and new method such as probabilistic approach (Hofmeister et 

al., 2022), we suggest parent-of-origin effects might be more widespread than anticipated. 

 

In relation to parent-of-origin effects, we have focused on the “loudest voice prevails” model 

of the evolution of genomic imprinting (Haig, 2002), which applies here to loci whereby a 

greater level of gene expression either increases (“left-handedness promoter”) or decreases 

(“left-handedness inhibitor”) the likelihood of the individual exhibiting left-handedness. For 

loci at which an intermediate level of gene expression yields a right-handed phenotype and 
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deviations in gene expression (in either direction) are liable to yield a left-handed 

phenotype—in line with the developmental instability hypothesis of handedness (Yeo & 

Gangestad, 1993)—we might instead expect the gene that favours a greater incidence of left-

handedness to exhibit more stochastic expression, i.e. the “chaotic voice prevails” logic of 

Úbeda et al. (2014). More generally, the kinship theory of genomic imprinting, as it currently 

stands, predicts genomic imprinting of all loci that experience parent-of-origin conflict, 

irrespective of the intensity of the conflict. Yet empirical studies suggest that genomic 

imprinting is quite rare—around 1% of genes in the human genome (Luedi et al., 2007). 

Clearly, there are additional requirements for a locus to evolve imprinting, and our hope is 

that through confronting these quite speculative theoretical predictions with empirical data, 

the theory can be further refined. 

 

The strong population bias in favour of one sidedness type while the other remains a 

substantial minority appears to be an exclusively human phenomenon. However, 

lateralization itself has a taxonomically widespread occurrence. The historical view that 

lateralization is unique in humans was disputed in 1970s during a renaissance of lateralization 

studies (Güntürkün et al., 2020), and since then lateralization has been reported across the 

animal kingdom (Rogers, 1980; Ocklenburg & Güntürkün, 2012). Some species show 

lateralization only at individual level, such as paw preference in rodents (Manns et al., 2021), 

and in cats and dogs (Ocklenburg et al., 2019), turning preferences in insects (Hassall et al., 

2007) and in fishes (Vallortigara & Rogers, 2005), and eye preference in octopuses (Byrne et 

al., 2004). While lateralization at population level seems to be relatively rarer (Vallortigara & 

Rogers, 2005; Meguerditchian et al., 2013), supporting evidence has steadily accumulated 

from studies of indoor/captive individuals and from the field (Forrester et al., 2013), 

including hand preference in nonhuman primates (Caspar et al., 2022), foot (Rogers, 1980) 
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and eye preferences (Brown & Magat, 2011) in Australian parrots, left-leg preference for 

prey touching in spitting spiders (Ades & Ramires, 2002), right-leg preference in kicking 

undesirable males by female mosquitoes (Benelli et al., 2015), turning bias in ants (Hunt et 

al., 2014) and a higher frequency of being attacked on the right in trilobites (Babcock, 1993). 

 

Ghirlanda et al. (2009) argued that population-level brain lateralization can occur in two 

steps: first, individuals should benefit from increased cognitive efficiency by being lateralized 

in either direction (Güntürkün et al., 2000; Rogers et al., 2004; Vallortigara & Rogers, 2005); 

second, a population-level bias in preference to one direction should bring additional benefits, 

e.g. the majority of individuals moving in the same direction creates a dilution effect which 

reduces the chances of being eaten by predators (Ghirlanda & Vallortigara, 2004; 

Vallortigara & Rogers, 2005), while the minority may also enjoy a surprise advantage if 

predators learn which direction the majority of their prey prefer (Ghirlanda & Vallortigara, 

2004). Though the additional benefits were first discussed in relation to prey-predator 

interactions, similar benefits might also emerge from intraspecific interactions. Ghirlanda et 

al. (2009) and Abrams & Panaggio (2012) have suggested that the population balance of 

right-handers versus left-handers reflects the relative prevalence of cooperative versus 

competitive interactions, with cooperative interactions promoting the fitness of the majority 

handedness type and competitive interactions promoting the fitness of the minority 

handedness type. All of these game theoretical models focus on social interactions, which are 

very likely to be mediated by genetic relatedness as shown in general cases of social 

evolution, yet our investigation is the first time to consider kin selection in human 

handedness. The predicted effect of relatedness on the evolution of handedness crucially 

depends on whether left-handedness is marginally altruistic or selfish. Although current data 
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are not sufficient for answering that question, our analyses provide a framework within which 

future data can be motivated and conceptualised. 
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Figure 1 | Comparative predictions as to how dispersal affects relatedness between 

social partners and hence the evolutionarily favoured incidence of left-handedness, 

depending on the type of social interactions: within-group (selfish) or between-group 

(altruistic) combat. Lower dispersal leads to higher relatedness, hence low dispersal 

favours a lower incidence of left-handedness when it is selfish and a higher incidence of 

left-handedness when it is altruistic. Sex-biased dispersal creates asymmetry in 

relatedness and hence favours a sex difference in left-handedness. 

 

 

Figure 2 | Sex differences, parental genetic effects and parent-of-origin effects. Sex 

biased expression of genes can lead to a sex difference in incidence of left-handedness. 

Expression of parents’ genes can lead to parental genetic effects in relation to left-

handedness. Parent-of-origin-specific gene expression can lead to parent-of-origin 

effects in relation to left-handedness. 

 

 

Figure 3 | Predictions as to how dispersal pattern and gene function modulate the 

pattern of genomic imprinting. See Supplementary Material Figure S7 for additional 

predictions concerning the phenotypic consequences of gene deletions, gene 

duplications, epimutations and uniparental disomies.  
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