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Abstract

For a simply connected planar domain D with 0 e D and dist(O, 3D) = 1, let hp(r) be the harmonic
measure of dD n {|z| < r) evaluated at 0. The function /io(r) is the distribution of harmonic measure.
It has been studied by B. L. Walden and L. A. Ward. We continue their study and answer some questions
raised by them by constructing domains with pre-specified distribution.
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1. Introduction

If D is a domain in the extended complex plane C^ and E is a Borel set on the
boundary dD of D, we will denote by co(z, E, D) the harmonic measure of E with
respect to D, evaluated at the point z € D. More generally, if K is a Borel set in the
closure of D, then a)(z, K, D) will denote the harmonic measure of dG fl dK with
respect to the component G of D \ K that contains z-

Let D c Coo be a domain with 0 e D. The distribution of harmonic measure at 0
is the function

(1.1) hD(r) = OJ(0, dDHlz: \z\ < r), D).

This function has been used for a long time because its behavior near oo indicates
how large D is; see for example [1, 2, 3, (page 112)] and references therein.

Here we restrict our attention to simply connected domains and study hD(r) for
small values of r. First we need a normalization: Let @ denote the class of all simply
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connected domains D such that 0 e D and dist(O, 3D) = 1. We will study the
behaviour of hD(r) near r = 1, for D e @. Such a study has been initiated by Walden
and Ward [4]. They used the Beurling-Nevanlinna projection theorem to prove that

(1.2) hD(r) > - tan"1 ^r~l
 ( £> € Q

n y/r + 1
and

(1.3) liminf > — , D € ® .
r—l+ T — \ It

They also gave examples of domains D e Q such that '•-•

(1.4) M r ) * (r - 1)', near r = 1,

for £ = 1/4 and for 1/2 < fi < 1. The notation ' « ' in (1.4) means that C\ <
hD(r)/(r — 1)^ < C2, where Ci, C2 are positive constants that depend only on D (and
not on r).

Walden and Ward [4] posed several interesting problems for the distribution of
harmonic measure. Here we state only some of them:

QUESTION 1 ([4, Question 12]). Is it true that for every D e ^ , hD(r) « (r - 1 /
near r = 1, for some ft with 0 < /8 < 1?

QUESTION 2 (see [4, pages 296-297]). Is it true that for every fi with 0 < 0 < 1
there is a domain D € Q) such that /iD(r) *s (r — 1)̂  near r = 1?

In fact, in [4] a stronger conjecture is stated:

QUESTION 3 ([4, Conjecture 11]). Is it true that for any 0 < /J < 1, there exists
D G <2l such that

(1.5) lim P ^ = c,
r-+l+ {j — 1)P

where 0 < c < oo?

QUESTION 4 ([4, Question 14]). If Dn is a sequence in $ and Dn ->• D in the sense
of Caratheodory, does hDn(r) n_>00» hD(r) for almost all r?

In Section 3 we present an example that shows that the answer to Question 2 is
positive. Given 0 < /J < 1, we construct a domain fi e Q with /i^W « (r — 1)^.
However, we do not know if the limit limr_i+ hn(r)/(r — l)fi exists. So our example
does not give an answer to Question 3. In Section 4, we use a similar construction
which shows that the answer to Question 1 is negative. For the domain G that we
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construct, hG has logarithmic growth. Finally, we note that the answer to Question 4
is known to be positive. This follows at once from [1, Theorem 7.7] which is due to
Baernstein. In Section 2 we state and prove some simple lemmas which we will need
later.

2. Some lemmas

First a piece of notation: If z\, z2 € C, \z\, Zi\ will denote the closed line segment
joining Z\ with z2. Open intervals (z\, z2) will be considered too.

The first lemma is a slight extension of the Carleman principle (domain monotonic-
ity of harmonic measure) [3].

LEMMA 2.1. Let D\ C D2 be two domains in CM and let A be an open Jordan arc
in 3Di n 3D2. Let K be a Jordan arc in D\ joining the endpoints of A. Ifzo is a point
in the component G of D\ \ K with dG DA = 0 , then

(2.1) (0(zo,A,Dl)<0>(zo,K,D2).

PROOF. We apply the maximum principle to the domain G and (2.1) follows at
once. •

LEMMA 2.2. Let H be the upper half-plane. There exist absolute positive constants
C\, c2 such that if 0 < a < 0.1, then

n -^ ^ ftj(i, [-a, a], H)
(2.2) a < < c2.

a
PROOF. The estimates (2.2) follow from a straightforward computation of

co(i, [-a, a], M). D

LEMMA 2.3. Let yo > 0, 5 = {z : Mz > 1 and |3y| < yo), and £ = C \ 5. Then
forO < a < 0.1,

(2.3) c3 < < c4,
a

where the positive constants c-i, c\ do not depend on a and yo.

PROOF. We use (as comparison domains with E) the domains Ei = {z : JRz < 1}
and E2 = £«, \ [1 — iy0, 1 + iy0]- For the domains Ej, E2, harmonic measures
can be computed via conformal maps. The estimates (2.3) follow then from explicit
computations. •
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LEMMA 2.4. For fixed fi with 0 < /} < 1/2, define the function hp with

hfi(<p) = (l + (pl/tl)cos(p, <p>0.

There exists cpp > 0 such that hp is strictly decreasing in the interval (0, <pp).

PROOF. We differentiate the function hp and see that h'p (<p) < 0 if

1 «!//»-!
(2.4) ft(v):=_T0

We differentiate the function gp:

Observe that gp(0) = 0 and g'fi{0) = — 1 < 0. By continuity, g'p((p) < 0 in an interval
(0, <pp), which implies that gp(cp) < 0 and hence h'p(<p) < 0 for <p e (0, <pfi). Thus the
lemma is proved. •

3. Answer to Question 2

Let 0 < fi < 1/2 be given. We will construct a domain Q e S) with ha(r) «
(r — i y near r = 1. We denote by p, <p the polar coordinates in the plane and consider
the curves Lp = [peiip : p - 1 + <pl/f>, <p e [0, nJ2]}, V0 - {z : z e Lp}. Let Q be
the simply connected domain bounded by Lp U Lp and containing 0. It is clear that
ft e $>. We will prove that

(3.1) M r ) « ( r - i y , for r near 1.

Let 1 < r < 1.1. By the maximum principle,

(3.2) ftn(r) > *><0, { « * : 1̂1 < (r - 1)"}, D,) = - ( r - 1)',
n

where Dr is the disk with center 0 and radius r.
To establish an inequality in the opposite direction we first need to prove some

geometric properties of the domain £2. Let r e (1, ro). The number ro will be
specified later. Let 6r > 0 be such that r = 1 + 0r

1//J. The circle {z : \z\ = r] intersects
3 ft at two points, namely at rei0r and re~l6r.

LEMMA 3.1. Let Kr be the line segment (re~iBr, rem'). Then Kr C ft.

https://doi.org/10.1017/S1446788700003682 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003682


[5] Distribution of harmonic measure 149

PROOF. Let k e Kr and write k = \k\eis, s € (0, 9r). We must prove that

|Jfc| < 1 + sl/fi. Since it e Kr, we have \k\ cos s = r cos 6r. Hence

(3.3) ,*| = ( )
cos s cos s

Therefore we must prove the inequality

(3.4) (l+eyfi)cos9r < (1 + JW)COSJ.

By Lemma 2.4, the function hp(cp) = (1 + (pl/p)cos<p is decreasing in an interval
(0, <pp). Hence (3.4) is true provided that ro < 1 + <Pp/P, and the lemma is proved. •

LEMMA 3.2. Let Mr = [z : 5Hz = rcosOr, rsinOr < %z < rcosOr t a n ^ } . Then
Mr n £2 = 0.

PROOF. Let f i = r cos 6r + iyt be a point of Mr. We write r cos 0r + I>I = p\ em.
With this notation we have

(3.5) yx=p! sin <pu

(3.6) p\cos<p\ = rcos0 r ,

and we must prove

(3.7) px>l+<p\">,

or, equivalently (by (3.6)),

(3.8) (1 + el") cos 6r > (1 + ^,1//() cos <pt.

Because of Lemma 2.4, in order to prove (3.8), it suffices to prove that

(3.9) 9r < <pt < <pfi.

Since ^i € Mr, we have

(3.10) rs in^ r < y\ < rcosOrlan<pp.

Now using (3.5) and (3.6), it is easy to verify that (3.9) is equivalent to (3.10) and the
lemma is proved. •

For r near 1, the number r cos 9r tan <pfi is close to tan (pfi which is a fixed positive
number. By Lemma 3.2, we can fix a number yo close to tan q>p such that r cos 6r+iya e
Mr for all r e (1, n ) , where r\ is a constant greater than 1. For such a yo consider the
domain Q.r = C \ {z : SHz > rcos0r , |3z| < yo). Note that by Lemma 3.1, KF is a
crosscut of Q. Also, it follows easily from Lemma 3.2 that fir contains the component
£2' of Q \ Kr with 0 e fi'. So we may apply Lemma 2.1 to obtain

ha{r) = e>(0, (z : \z\ < r) n 9fi, £2) < «u(0, /Cr, « , )•
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Therefore it remains to prove that co(0, Kr, £2r) < C(r — \Y for some positive
constant C. By Lemma 2.3, <u(0, Kr, S2r) < c4r sin6r < C6r = C(r - l)p and
so we have proved that ha(r) < C(r - \)fi. This together with (3.2) imply that
hn(r) » (r - 1)* near r = 1.

4. Answer to Question 1

We will construct a domain G e $ such that near r = 1 we have hG(r) ft (r— 1 /
for any 0 < ft < 1. This shows that the answer to Question 1 is negative. The
construction of G is similar to the construction of Q in Section 3.

Let

Lx = I pe"" : p = \-\— , <p e (0, n] \ U {1} and L\ = [z : z e L\).

Let G be the domain bounded by L\ U Lx and containing 0. It is clear that G e f@.
By the maximum principle, for r > 1,

1

• " • - l o g o + I /O--1) ) .

where Dr is the disk with center 0 and radius r. Since

lim (r - 1 / log ( 1 + ) = 0, for any 0 < 0 < 1,
r-+i+ \ r — 1 /

we have /iG(r) 76 (r - 1)0.

REMARK. One can actually prove that
1 11Ogl+ 1/1-1)'

NOTE ADDED ON JANUARY 17,2003: The paper [5] by B. L. Walden and L. A. Ward
which appeared recently is very much related with the present paper and contains a
more complete treatment of Questions 1-3. Some of our results are proved in [5] but
the proofs are different.
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