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Abstract

Naturally acquired immunity to the different types of malaria in humans occurs in areas of
endemic transmission and results in asymptomatic infection of peripheral blood. The current
study examined the possibility of naturally acquired immunity in Bornean orangutans, Pongo
pygmaeus, exposed to endemic Plasmodium pitheci malaria. A total of 2140 peripheral blood
samples were collected between January 2017 and December 2022 from a cohort of 135 oran-
gutans housed at a natural forested Rescue and Rehabilitation Centre in West Kalimantan,
Indonesia. Each individual was observed for an average of 4.3 years during the study period.
Blood samples were examined by microscopy and polymerase chain reaction for the presence
of plasmodial parasites. Infection rates and parasitaemia levels were measured among age
groups and all 20 documented clinical malaria cases were reviewed to estimate the incidence
of illness and risk ratios among age groups. A case group of all 17 individuals that had experi-
enced clinical malaria and a control group of 34 individuals having an event of >2000 para-
sites uL.~" blood but with no outward or clinical sign of illness were studied. Immature
orangutans had higher-grade and more frequent parasitaemia events, but mature individuals
were more likely to suffer from clinical malaria than juveniles. The case orangutans having
patent clinical malaria were 256 times more likely to have had no parasitaemia event in the
prior year relative to asymptomatic control orangutans. The findings are consistent with rap-
idly acquired immunity to P. pitheci illness among orangutans that wanes without re-exposure
to the pathogen.

Introduction

Four species of the genus Plasmodium are adapted to humans as their primary intermediate
host and cause pathogenic infections (Lindblade et al., 2014). The presentation of clinical mal-
aria in human patients ranges from mild and uncomplicated to complicated and severe with
variable potential for fatal outcomes (Wickramasinghe and Abdalla, 2000). Active plasmodial
infection of the bloodstream may also occur without illness. This asymptomatic malaria is
defined as the observed presence of asexual Plasmodium spp. parasites in blood (patent para-
sitaemia) in the absence of fever or any other observable signs of disease (Lindblade et al.,
2014; World Health Organization, 2015; Sumbele et al., 2015; Chen et al., 2016; Botwe
et al., 2017). Chronic asymptomatic malaria may be associated with sub-clinical effects such
as anaemia (Owusu-Agyei et al., 2001; Lindblade et al., 2014; Chen et al., 2016; Pava et al.,
2016). Sexual gametocytes in human blood do not provoke illness. The hepatic pre-patent
and latent states of malaria infection also occur without illness but do so naturally (in numbers
insufficient to provoke illness) and are not further considered here in the context of immune
suppression of the otherwise pathogenic characteristics of patent asexual parasitaemia events.

In some malaria-endemic areas up to 75% of infections of peripheral blood may be asymp-
tomatic and rarely progress to severe disease among most demographic groups (Kinyanjui,
2012; Teun et al., 2014). Where this occurs, the highest susceptibility to severe malaria illness
occurs in infants, small children and pregnant women, especially the primigravidae (Baird
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et al.,, 2003; Doolan et al., 2009; Guinovart et al., 2012; World
Health Organization, 2016, 2019). Similarly, immuno-naive
adults suffering from a new infection (Baird et al., 1998) (e.g. visi-
tors to malaria-endemic countries from non-endemic areas; Baird
et al., 2003) are at much higher risk of severe and threatening
acute illness of varied syndromes (Kinyanjui, 2012; World
Health Organization, 2019). Variably understood factors explain
this wide spectrum of clinical disease (Joyner et al., 2017). The
dominating mitigation of illness with endemic infection is widely
accepted as a naturally acquired and non-sterilizing immunity
(Guinovart et al., 2012; Lindblade et al., 2014). Host genetic fac-
tors may also influence morbidity, disease severity and mortality
of malaria infection in humans (Fortin et al., 2002; Botwe et al.,
2017), but less markedly and commonly than naturally acquired
immunity.

Human malaria immunity is typically observed epidemiologi-
cally, with striking impacts on the prevalence and density of para-
sitaemia, and frequency of morbidity and mortality across age
groups at the population level. This naturally acquired age-
dependent immunity is believed to develop first by creating
immunity to clinical disease early in life and later protect from
the illness by reducing parasite loads in blood (Doolan et al.,
2009; Kinyanjui, 2012). However, paradoxically, malaria-naive
adults or those who experienced a prolonged period of non-
exposure (e.g. in excess of 2 years) are also at a high risk of suffer-
ing from clinical acute malaria (Owusu-Agyei et al., 2001; Baird
et al., 2003; Doolan et al, 2009) even with relatively low-grade
parasitaemia (Owusu-Agyei et al, 2001; Doolan et al., 2009).
These trends are invariably age-dependent, albeit in varied pat-
terns depending on local character of malaria transmission
(Owusu-Agyei et al., 2001; Baird et al., 2003, 2012; Basri et al.,
2003; Baird and Snow, 2007; Doolan et al, 2009; Barry and
Hansen, 2016).

Naturally acquired immunity was long considered a phenom-
enon restricted to areas of relatively intense exposure, as in
sub-Saharan Africa or the island of New Guinea. The relatively
recent exploration of malaria epidemiology in areas of relatively
lower transmission revealed that acquired immunity also occurred
in variable fractions of those populations (Doolan et al., 2009). In
a longitudinal cohort study of non-immune people recently
exposed to endemic malaria, adults required only 2 consecutive
acute attacks within 24 months to subsequently become immune
to following infections; however, this was not the case with their
children (Baird, 1995). Conversely, during the first exposure to
acute malaria among migrants, it was adults who were most vul-
nerable to severe morbidity and mortality relative to their children
(Baird et al., 1998, 2003; Owusu-Agyei et al, 2001). These age-
and exposure-dependent patterns seem to hinge on poorly under-
stood age-related host factors. In another study, physiological
markers of onset of puberty among African children at variable
ages better correlated with onset of protection from febrile illness
with patent malaria than age of onset (and cumulative exposure to
malaria) (Kurtis et al., 2001). Vulnerability to illness with malaria
depends on multiple factors, but host age and frequency of recent
exposure stand out as dominant.

Populations of wild great apes live with endemic transmission
of Plasmodium species adapted to them as intermediate hosts, and
do so without interventions or known mitigating genetic adapta-
tions. The prevalence of these infections is often quite high
(Peters et al., 1976; Liu et al., 2010, 2017; De Nys et al., 2013,
2014, 2017; Wu et al., 2018), but very few published studies docu-
ment the health effects of malaria in these species (Steiper et al.,
2005; De Nys et al., 2017). In the case of orangutans, malaria ill-
ness had been reported in rare individual cases (Reid et al., 2006),
but never studied in detail or at the population level until very
recently (Sanchez et al, 2022). Utilizing extensive health data
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longitudinally collected at a Rescue and Rehabilitation Centre
(RRC) for orangutans in West Kalimantan, Indonesia, Sanchez
et al. (2022) described in detail clinical and parasitological fea-
tures of endemic natural infection of orangutans caused by
Plasmodium pitheci, 1 of the 2 species known to naturally infect
orangutans. Most of those infections (86%) were asymptomatic,
but illness did occur in a minority of cases, sometimes serious
and life threatening in character (Sanchez et al., 2022).

The study of great apes in the wild comes with conspicuous
limitations to access, but some preliminary studies have examined
the epidemiology of malaria in great ape species (Wolfe et al.,
2002; De Nys et al., 2013, 2014; Liu et al., 2017; Wu et al.,
2018). Some of these studies reported age as a key factor influen-
cing malaria detection rates for most species of great apes (Wolfe
et al., 2002; Reid et al., 2006; De Nys et al., 2013; Mapua et al.,
2015; Siregar et al., 2015). The impact of unmitigated exposure
to infection by the plasmodia on all of the great apes is primarily
a matter of clinical concern for their conservation, but also of
scientific interest as an analogue of human immunity.
Epidemiological similarities between the vulnerability of humans
and apes to different types of malaria would corroborate the
hypothesis for non-sterilizing immunity, which is similar to that
in humans (Reid et al., 2006; De Nys et al., 2013, 2014).

Populations of orangutans living at RRCs within their natural
habitats and range expose them to endemic transmission of plas-
modia that naturally infect them, P. pitheci and Plasmodium silva-
ticum (Peters et al., 1976; Wolfe et al.,, 2002; Reid et al., 2006;
Sanchez et al., 2022). These settings provide the means to safely,
easily and ethically collect blood samples from wild orangutans
under rehabilitation (Wolfe et al., 2001; Leendertz et al., 2006).
The current study was carried out under those circumstances,
where orangutan age and exposure to parasitaemia as a determin-
ant of vulnerability to illness with patent infection were examined.
An increase in our understanding of this infection will aid in the
health management of orangutans living in RRCs before reintro-
duction into the wild.

Materials and methods
Study site and subjects

The Inisiasi Alam Rehabilitasi Indonesia Foundation (IAR Indonesia)
works under the Directorate of Biodiversity Conservation of the
Ministry of Environment and Forestry of the Republic of Indonesia
to operate an RRC for Bornean orangutans at Ketapang, West
Kalimantan, Indonesia (IAR RRC). This centre began operations in
2009 and has since rescued over 260 orangutans.

Routine management and health procedures

All orangutans arriving at IAR RRC spend a minimum of 60 days
in quarantine. During this time, they undergo medical checks as
part of their medical quarantine procedure. Upon completion of
the quarantine period, healthy orangutans are transferred to
open rehabilitation areas or socialization cages, where they join
with conspecifics of approximately the same age and size. Some
orangutans are deemed unsuitable for rehabilitation and release,
and those become permanent residents of the centre. All other
orangutans undergo a rehabilitation process of variable duration
that ends with reintroduction into suitable wild protected forested
areas of Kalimantan (island of Borneo). The rehabilitation activ-
ities take place in semi-natural secondary-forested areas, delimited
by artificial canals and electric fences forming islands of free range
where they have contact with each other and with wild animals.
After successful rehabilitation, orangutans are then transferred
and released into a protected natural habitat maintained and
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designated for this purpose. Intense post-reintroduction monitor-
ing continues for as long as possible to evaluate behaviour and
wellbeing.

The health of all orangutans managed at the IAR RRC is
closely monitored daily by a team of veterinarians, veterinary
assistants and animal keepers. Biological samples are collected
only for medical purposes from healthy animals during routine
medical check-ups or when orangutans show any signs of illness.
Medical records are kept for each orangutan and every medical
procedure is recorded both in a hard copy format (paper files)
and electronic format (using FileMaker® database).

One of the illnesses diagnosed at this centre is malaria, as
reported by Sanchez et al. (2022). In this publication, a malaria
illness definition has been developed as follows: asymptomatic
malaria; clinical (symptomatic) malaria (acute uncomplicated,
chronic uncomplicated or mild malaria) and severe malaria
(Sanchez et al., 2022). Most common clinical malaria symptoms
described included: fever and/or lethargy or other general symp-
toms, accompanied by anaemia and/or thrombocytopaenia and/
or leucopaenia.

Sample collection and classification

As part of routine medical checks conducted on all orangutans at
the IAR RRC, blood samples were collected by the staff veterinar-
ians during either manual restraint or incident to clinically indi-
cated anaesthesia. Samples were classified per sampling purpose
of each screening event:

(1) Routine medical health checks: (a) annual health checks; (b)
quarantine procedures on arrival and prior to release or (c)
health check-ups conducted to monitor the health of the
population;

(2) Health monitoring for diagnostic purposes of inpatients during
any illness (except for malaria) and during recumbence
periods;

(3) Handling procedures (requiring anaesthesia or not) and minor
medical interventions in healthy individuals for the purpose of
transportation, wound cleaning, eye examination and other
conditions not considered to affect the general health or the
malaria status of the orangutan;

(4) Monitoring the health of patients presenting Plasmodium spp.
patent infections: routine consecutive screening in those indi-
viduals known to present patent malaria infection either
symptomatically or asymptomatically, for the monitoring of
haematology values and/or parasitaemia levels. The finding
of plasmodia in blood samples does not prompt chemother-
apeutic intervention unless illness consistent with acute or
chronic malaria disease is observed, as detailed elsewhere
(Sanchez et al., 2022).

Age category
Age was determined using the individual’s dental formula and the
age classification as presented in Table 1 and based on

Table 1. Orangutan age class definition
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descriptions on previous publications (Fooden and Izor, 1983;
Smith et al., 1994).

Sample analysis

Diagnosis of malaria

Microscopy: In total, 2105 fresh blood samples were collected by
venepuncture and immediately used to prepare thick and thin
blood smears on glass slides for microscopic examination to
detect the presence of Plasmodium spp. If 1 or more sexual or
asexual forms of the Plasmodium spp. parasite was detected, the
sample was classified as positive, while it was classified as negative
if after observing at least 100x oil immersion microscopy fields no
parasite was detected. All positive blood films contained foreign
intracellular microbes having morphologic characteristics com-
patible with those of plasmodial parasites, and the features of
those observed were consistent with a single species, P. pitheci,
as detailed elsewhere (Sanchez et al., 2022).

Molecular detection by real-time polymerase chain reaction:
Two hundred and thirty-one samples among those tested by
microscopy were also analysed using molecular analysis - real-
time polymerase chain reaction (PCR). Additionally, 35 samples
not examined by microscopy were tested by real-time PCR. The
sensitivity of microscopy relative to real-time PCR was estimated
to be 79.33% (95% confidence interval (CI) 73.40-85.26). We
extracted DNA directly from fresh blood in ethylenediamine tet-
raacetic acid (EDTA), or from frozen whole blood in EDTA stored
at —80°C using a commercially available kit: PureLink®TM
Genomic DNA Mini Kit (Invitrogen®TM, ThermoFisher Scientific,
Roskilde, Denmark), following the protocol provided by the manu-
facturer. The extracted DNA was used directly for PCR analysis, or
stored at —80 °C. Blood samples were tested by quantitative PCR on
a Genesig q16° Real Time-PCR machine (PrimerDesign® Ltd,
Eastleigh, UK) using a commercially available kit: Plasmodium
(all species) Genesig® Easy kit (PrimerDesign® Ltd, UK) following
the standard protocol provided by the manufacturer. The primers
and probe sequences in this kit, which targets the 18S ribosomal
gene, have 100% homology with over 95% of clinically relevant
Plasmodium spp. references (PrimerDesign-Ltd, 2018). The cut-off
cycle threshold value used for this study was 34 cycles (Ct). The
lowest parasitaemia load detected below this cut-off value was 2
parasites per uL (>1 parasite uL™").

Parasite load in blood

Sexual and asexual parasites in red blood cells were counted by
examining Giemsa-stained thick smears by 1000x oil immersion
light microscopy until a total of 200 leucocytes (white blood cells
(WBCs)) had been observed (Owusu-Agyei et al., 2001; Gwamaka
et al., 2012). To convert the number of parasites observed to a
count per microlitre (par uL™") the number observed was multiplied
by the actual leucocyte numbers per pL blood and divided by 200
when contemporaneous haematology data were available (Sumbele
et al., 2015; Raja et al., 2020). When those counts were not available,
the number observed was simply multiplied by 60 (assuming an

Age classification Age Dentition

Infant (young) (code 1) 4-12 months First to last deciduous tooth

Infant (old) (code 1) 1-3 years Last deciduous to first permanent tooth (M1)

Juvenile (code 2) 4-8 years First permanent tooth to all canines (all permanent teeth except 3rd molars (M3))
Sub-adult (adolescent) (code 3) 9-13 years At least 1 permanent canine to last permanent tooth (all permanent M3)

Adult (code 4) 14 years on (12-15)

From last permanent tooth (all 4 M3 present) onwards
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average WBC count in orangutans was 12000 uL™"; Sanchez
et al., 2022). The normal detection limit for parasites in blood
using competent microscopy ranges between 4 and 100 par uL ™!
(Lindblade et al., 2014). In this study, the lowest parasitaemia
detected by microscopy was 29 paruL ™" (Sénchez et al., 2022).

Epidemiology

The prospective epidemiological analysis of malaria in orangutans
at the JAR RRC covered a period of active malaria surveillance
between 2017 and 2022 with a total of 2140 samples examined
by microscopy, PCR (n=35) or both (n=232) from a total of
135 orangutans (62 females and 73 males) observed for an average
of 4.3 years or a total of 582.3 orangutan-years.

The initiation of surveillance and follow-up for each individual
occurred opportunistically, i.e. when permitted by accessibility of a
blood sample for analysis and during random routine tests con-
ducted in the population. Among the 135 orangutans involved,
the number of microscopic malaria-independent examinations
(i.e. those conducted without regard to malaria infection status)
was 1351 in total ranging from 1 to 26 observations per orangutan
with an average of 10 per individual. The interval between initial
and final observations of blood varied among individuals as
newly rescued orangutans were added and others that were
removed from the study population during the surveillance period.
Immature individuals (infants and juveniles) represented 58% of
the time (years) under observation, whereas mature orangutans
(sub-adults and adults) represented 42% (Table 2). The minimum
observation period for an individual was 5 days and the maximum
was 73 months, with an average of 51.8 months of observation time
per individual. The results of these examinations were classified as
negative, positive asymptomatic or positive symptomatic.

Statistical analysis

Incidence rate of clinical malaria (symptomatic malaria
infection)

Incidence rate (IR) per 100 orangutan-years of clinical malaria
cases (symptomatic parasitaemia) was obtained by reviewing data
from inpatient medical records between 2017 and 2022. Inpatient
clinical records of all orangutans at the centre are compiled in a
computer database (FileMaker®). Selection of clinical malaria
cases was conducted according to criteria detailed in a previous
study (Sanchez et al., 2022): a presenting patent malaria infection
with over 4000 par uL™" of blood, an increasing density of parasit-
aemia with an axillary temperature >38 °C, moderate-to-severe
normocytic normochromic anaemia (Haemoglobin (HGB) below
82mg dL™Y), and/or thrombocytopaenia (Platelets (Thrombocytes)
lower than 70 x 10° L™!) and/or leucopaenia (WBC below 4.7 x
10°L7"). General symptoms considered indicative of illness
included lethargy defined as any unusual period of inactivity or
reduced activity during daily active periods, increased resting
activity and reduced responsiveness to stimuli, and/or anorexia
defined as decreased appetite. Potentially more severe syndromes

Table 2. Number of total samples, total individuals and total orangutan-years
at risk for each age category included in this analysis

No. of No. of Orangutan-years at
samples individuals risk
Infants 329 43 339 (58.2%)
Juveniles 734 87
Sub-adults 223 46 243 (41.8%)
Adults 65 24
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involving vital organ impairment included severe neurological
signs (coma or mental status impairment, prostration, multiple
convulsions and other neurological impairments) in cerebral mal-
aria, kidney failure or respiratory distress (in cases of very acute
and severe anaemia).

The IR was defined as the number of new cases of clinical mal-
aria in a year divided by the total orangutan-time at risk (under
observation). The IR per year was calculated using an approxi-
mate denominator based on the total number of disease-free ani-
mals at the start of each year, from which half of the withdrawn
animals were subtracted and half of the new additions were
added (Dohoo et al., 2003). This number was multiplied by 100
to obtain the number of cases per 100 orangutans per year. The
IR was calculated for each age category. The overall annual IR
was then calculated by summing all the IR for 6 years (2017-
2022) and dividing this value by 6.

Demographic risk factors for malaria

Age was assessed for risk of parasitaemia and clinical malaria by
examining the frequency and density of parasitaemia across age
groups. Two-dimensional histograms of parasitaemia levels were
generated for each age category across the span of time that had
passed since any given individual had first entered the system
(usually upon arrival). This allowed us to overlay plots of age
groups according to how long individuals within those groups
were observed. Shading of points in the histograms (Fig. 2)
marked repeated observations. The parasite count was capped at
4000 par uL ™" of blood, the threshold for clinical malaria in oran-
gutans (Sanchez et al., 2022). These plots reveal the frequency and
level of exposure to P. pitheci infections of blood.

Nested case-control analysis of recent exposure and clinical
malaria

Cases included 17 individuals represented by 7 juveniles, 4 sub-
adults and 6 adults experiencing an episode of clinical, slide-
confirmed malaria during the study period (2017-2022).
Thirty-four individuals from different age groups (2 infants, 28
juveniles and 4 sub-adults) having a microscopically confirmed
parasitaemia >2000 uL~" without any sign or symptom of illness
over the same period, served as controls. Case and control events
were limited to otherwise healthy orangutans resident at the RRC
for at least 1 year. Records of microscopic examinations of periph-
eral blood for malaria during the 12 months prior to the defined
parasitaemia event were examined for controls, while in the case
group, examinations included blood microscopy analysis (n = 50)
or real-time PCR analysis (n = 5) or both (n = 2) to determine if at
least 1 single malaria positive event (patent or non-patent) had
been recorded in the year prior to the clinical case event. Each
orangutan was then classified as positive or negative for having
experienced at least 1 confirmed parasitaemia in the prior year.
An odds ratio (OR) for the absence of prior parasitaemia and
clinical malaria was thus calculated.

Model

To investigate what influenced the probability of a positive test for
Plasmodium spp. and in the onset of clinical malaria symptoms
when infection was present, a generalized linear mixed-effects
model with binomial error structure and logit link function was
used (Harrison ef al., 2018). Age was included as a categorical vari-
able, sex as a binary variable and HGB count as a continuous
numerical variable, all modelled as fixed effects, and a random
effect intercept for each individual. The age categories used were
infant, juvenile, sub-adult and adult status. For the analysis of influ-
ence of factors on symptomatic malaria the oldest 2 age groups
(mature individuals) were combined as the trend in the analysis
for each age group was similar. In this case and also due to the
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Table 3. Asymptomatic patent infection rates per age category
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No. of positive samples (no. of total samples) Infection rate (%) 95% Cl
Infants (43 indiv.) 114 (329) 34.7 29.5-39.8
Juveniles (87 indiv.) 337 (734) 45.9 42.3-49.5
Sub-adults (46 indiv.) 59 (223) 26.5 20.7-32.2
Adults (24 indiv.) 15 (65) 23.1 12.8-33.3

small sample size, a logistic regression without random effects was
fit. For comparison of models with and without age information,
analysis of variance was used. Due to the small sample sizes, P
values were not adjusted for multiple comparisons. Statistical ana-
lyses were conducted with the R statistical package (R Core Team
2021) and the Ime4 module (Bates et al., 2015).

Results

Age category effects on infection rate of asymptomatic patent
infections, parasitaemia levels and incidence of clinical cases

Age effect on infection detection rate

Infection detection rates of asymptomatic patent infections (only
microscopic examinations) for the different age groups (infants,
juveniles, sub-adults and adults) were calculated from the results
of 1351 blood samples collected from 132 orangutans over the
6-year period of observation, exclusive of those collected in con-
nection with malaria case management.

Table 3 lists the infection rates in each age category and the
corresponding 95% ClIs of the estimate. Juveniles had the highest
rate of infection at 45.9% (42.3-49.5) followed by infants at 34.7%
(29.5-39.8).

To demonstrate whether the difference in infection rates in
the different age groups was statistically significant, the data
were analysed using a generalized mixed linear model. Table 4
shows the juvenile group was statistically more likely (P <
0.005) to have a patent infection compared to the group of
mature individuals.

Age effect on parasitaemia levels

Figure 1 illustrates the downward trends in both parasitaemia fre-
quencies and densities as orangutans grow older. Figure 2 illus-
trates the relatively higher frequencies and levels of parasitaemia
among the infant and juveniles (immatures) relative to older
orangutans (sub-adults and adults). The immature individuals
(top row) consistently showed more frequent and higher density
parasitaemia events relative to the mature individuals (bottom
row). The highest median parasitaemia levels occurred in infants
(592 par uL™h), and the lowest was in sub-adults (362 par uL™h.

Age effect on IR of clinical malaria
We calculated the IR of symptomatic malaria (clinical malaria
cases). The IR of clinical malaria (symptomatic malaria) is defined

Table 4. Age correlation with infection

Term Estimate Std. err. z P
Intercept -1.1214 0.2823 -3.973 7.11x107°
Median HGB —1.0986 0.1675 —6.559 5.43x 107"
Sex 0.1248 0.2749 0.454 0.64973
Is.infant —0.1548 0.3183 —0.486 0.62683
Is.juvenile 0.7241 0.2542 2.848 0.00439
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as the number of clinical malaria attacks per 100 individuals per
year. The data of 17 clinical cases recorded between 2017 and
2022 were used, excluding recurrent episodes in 2 of the indivi-
duals. Table 5 lists the annual IR for each age category.

The highest IR was recorded in the adult group (6.0 cases per
100 orangutan-years) followed by the sub-adult group (5.2 cases/
100 orangutan-years) and the juvenile group (2.1 cases/100
orangutan-years). No clinical malaria was recorded among infants
over the study period. Relative to juveniles, adults were nearly 3
times more likely to experience clinical malaria.

A generalized linear mixed-effects model was used in order to
determine whether the onset of clinical malaria was statistically
associated with age (Table 6). The results showed that the
group of mature individuals (sub-adult/adults) was statistically
more likely (P < 0.01) to suffer from clinical malaria (symptomatic
patent infection) compared to the juvenile group (Table 6).

Case-control analysis of recent exposure to infection and
clinical malaria

Table 7 lists the numbers of symptomatic cases having at least 1
episode of patent parasitaemia in the year prior to that event vs
the same in individuals experiencing an asymptomatic parasit-
aemia event. Orangutans experiencing clinical malaria were over
259 times more likely to have not experienced an episode of
patent malaria in the year leading to the attack relative to
orangutans experiencing an asymptomatic episode of patent
parasitaemia.

Figure 3 illustrates the numbers and timing of blood film
examinations and findings for both cases and controls. Among
cases, there were a total of 59 microscopic examinations with
just 1 of 17 of those individuals being positive in the 12 months
period before the recorded symptomatic event. Fifteen cases had
at least 1 examination and for 2 of them there was no examination
in the previous year. The median number of examinations among
cases was 2. Among controls, a total of 121 examinations per-
formed, with 32 of 34 having at least 1 positive examination in
the previous year. All 34 controls had at least 1 examination,
and the median number of examinations among them was 3.

Discussion

The parasitological and clinical observations reported here are in
accord with the onset of naturally acquired immunity to P. pitheci
malaria in Bornean orangutans in an age- and exposure-
dependent manner. Infant and juvenile orangutans presented
higher infection rates while juveniles also presented a higher
probability of positive asymptomatic infection (P <0.005)
(Table 4). Median parasitaemia level in asymptomatic infections
was the highest in the infant group and it decreased with age
(Fig. 1). Immature orangutans experienced more frequent and
higher-grade parasitaemia events compared to the mature indivi-
duals (Fig. 2). The occurrence of lower-grade and less-frequent
parasitaemia events among mature orangutans suggests
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Table 5. Clinical malarial IR in the total population and per age in a period
between 2017 and 2022 in 17 clinical malaria cases (excluding 3 recurrent
episodes in 2 of the orangutans)

Annual IR (events/100 orangutans)

Infants 0.0
Juveniles 2.1
Sub-adults 5.2
Adults 6.0

Table 6. Generalized linear mixed-effects model results of clinical malaria (n=
20 cases; including 3 recurrent episodes in 2 of the orangutans) and age

Std.
Term Estimate err. z P
Intercept —6.4341 1.0730 —5.996 2.02x107°
Median HGB —2.9565 0.5621 —5.260 1.44x107"
Sex —0.6474 0.7253 —0.893 0.372
Is.adult/ 2.0227 0.7500 2.697 0.007
sub-adult

Table 7. OR of exposure to patent parasitaemia in the previous 52 weeks in
individuals that had suffered a clinical malaria case (cases) and in individuals
that had experienced asymptomatic parasitaemic events of >2000 paruL™* in
the absence of malaria symptoms (controls)

Parasitaemia

during prior

12 months
Patent OR (95% Cl; P value)
parasitaemia
event No Yes
Clinical case 16 1 256 (21.56-3039.83; <0.0001)
Asymptomatic 2 32
control

suppression of infection by immunity acquired over periods of
nearly continuous exposure.

Paradoxically, the mature orangutans proved more susceptible
to the onset of clinical illness with P. pitheci infection (Table 5)
with the group of mature individuals (sub-adult/adults) statistic-
ally more likely (P <0.01) to suffer symptomatic patent infection
compared to the juvenile group (Table 6). Similar seemingly dis-
cordant findings have been obtained in human malaria;
malaria-naive adults exposed to endemic risk have been consist-
ently more susceptible to poor clinical outcomes compared to
younger age groups (Baird, 1998; Baird et al, 2003, 2012; Basri
et al., 2003; Doolan et al., 2009). Among the non-immune, the
young are less vulnerable to serious illness. We tested the hypoth-
esis that the relative susceptibility to illness with P. pitheci parasit-
aemia observed in mature orangutans could have been caused by a
period of prolonged absence of exposure to parasitaemia, as is
known to occur in human Plasmodium falciparum malaria
(Doolan et al., 2009; Guinovart et al, 2012; Kinyanjui, 2012;
Lindblade et al., 2014). Our findings in the case-control study
supported that hypothesis, i.e. the orangutans experiencing symp-
tomatic malaria (cases) were over 200 times more likely to have
been free of observed parasitaemia during the year leading to ill-
ness compared to orangutans experiencing a relatively heavy
(>2000 par uL™h) but asymptomatic parasitaemia (Table 7). This
apparent lack of recent exposure to parasitaemia, likely occurring
by chance in the varied habitats of the RRC, seems to have
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resulted in a waning of protection from higher parasitaemia
events and acute illness with P. pitheci malaria. This epidemiology
of malaria illness resembles that occurring in settings of
meso-endemic human malaria where most adults harbour asymp-
tomatic parasitaemia events but a minority progress to severe and
threatening malaria (Doolan et al., 2009; Lindblade et al., 2014).
Orangutans exposed to parasitaemia by P. pitheci exhibit protec-
tion from associated illness, whereas those lacking similar expos-
ure appear vulnerable to disease. Naturally acquired immunity to
P. pitheci malaria thus resembles that occurring with P. falciparum
malaria in human populations.

The potential pitfall of an apparent lack of exposure being the
result of a lack of observations among the ill cases relative to
asymptomatic controls was addressed. The observations illu-
strated in Fig. 3 show that the number and frequency of observa-
tions was similar between cases and controls. A relative lack of
years at risk among immature orangutans constituted another
potential bias creating an illusion of protective immunity in
them. However, immature orangutans contributed over 55% of
the total 579 orangutan-years under observation (Table 2).

Age is widely considered a factor influencing outcomes of mal-
aria infection in humans as well as in great apes. Two previous
orangutan malaria studies also reported a higher prevalence of
Plasmodium spp. infection in younger vs older orangutans
(Wolfe et al., 2002; Reid et al., 2006) suggesting that age could
be an epidemiologic factor influencing malaria infection status.
Density of parasites in blood is a factor affecting morbidity and
mortality in human malaria (Doolan et al., 2009). In orangutan
malaria disease, higher parasitaemia levels in blood have also
been correlated with clinical outcomes with clinical malaria
cases reported to be above approximately 3000-4000 par uL™" in
1 study (Sanchez et al., 2022).

While immature orangutans experienced a high rate of asymp-
tomatic infections and their parasitaemic levels were higher than
those in the older groups, the probability of suffering from clinical
malaria was lower in the former group. No case was detected in
any infant orangutan during the surveillance period (2017-
2022). However, in human malaria, infants and small children
are more susceptible to severe illness in endemic areas (Baird
et al., 1998, 2003; Doolan et al., 2009; Guinovart et al., 2012;
World Health Organization, 2016, 2019). Only 1 severe malaria
case had been reported at this RRC years prior to this study (in
2011). This severe case involved an infant orangutan (approxi-
mately 2 years) which presented cerebral malaria (Sanchez
et al., 2022). Malaria severity and mortality although unlikely, is
possible, and potentially with even more severe effects in the
infants vs in the older individuals, especially in the absence of
appropriate treatment (Sdnchez et al., 2022).

Accounting for age as a factor influencing malaria detection
rates might also be important in epidemiology studies in captive
vs wild populations. Previous studies reported higher infection
rates in rehabilitant vs wild orangutans (Wolfe et al, 2002)
while another study detected a higher proportion of infections
in infant wild orangutans rescued from captivity vs rehabilitants
(Reid et al., 2006). It was assumed that rehabilitant orangutans
and especially those among humans would be more at risk of suf-
fering from plasmodial infections. However, the first study had a
larger sample size of adults, while the second study had a larger
proportion of infants. Those results were perhaps confounded
by the age of the individuals sampled.

Several reports on orangutan RRCs have indicated a high inci-
dence of clinical malaria cases in orangutans undergoing rehabili-
tation or at the time of reintroduction into the wild (Sdnchez
et al, 2022) which simultaneously also suffer from increased
stress and cortisol levels (Reid et al, 2006; Russon, 2009). An
increased cortisol level is believed to be a factor increasing the
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Figure 3. Left: Microscopic surveillance among 17 clinical malaria cases (symptomatic) that formed the group of cases during 52 weeks prior to the clinical illness
event. The only case where previous asymptomatic infection had been detected (Kandi) was recorded as a mild malaria case not requiring medical treatment.
Right: Microscopic surveillance among 34 asymptomatic cases that formed the group of controls during 52 weeks leading to the event of high parasitaemia

(>2000 par uL™Y) in the absence of malaria symptoms.

risk of malaria disease in other animal species as well as in
humans (Doolan et al., 2009; Names et al., 2021). However, a
study conducted on gorillas did not find any correlation between
high stress levels and malaria detection rates (Mapua et al., 2015).
Furthermore, no stress factors were believed to affect this cohort
of orangutans during this study.

A more plausible scenario to explain the high incidence of
clinical malaria cases is an inadequate immune response to patent
infection by the host; a history of prolonged interruption of
exposure to infection in rehabilitant orangutans may result in
an increased susceptibility to more severe effects of malaria illness
when coming into contact with malaria vectors - e.g. after reintro-
duction into the wild - negatively impacting the health and hence
the welfare and even the survival of these individuals. While the
IUCN Guideline for Reintroduction of Great Apes emphasizes
the importance of ensuring the health of individuals released
into the wild to protect the health of wild populations (Beck
et al., 2007; Russon, 2009) very little is mentioned about the
reverse effect, the potential transmission of pathogens from wild
populations to the reintroduced apes.

Mosquito species thrive within specific ecological conditions and
as such, species found in forested areas might be different from
those found in non-forested areas and urban sites (Afrane et al.,
2008; Hawkes et al, 2019). Although vector species that transmit
malaria in orangutans have not been identified yet, in other great
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ape species, mosquito vectors are considered to be strictly forest spe-
cies (Scully et al., 2022). It is widely documented that anthropogenic
changes in environmental conditions, such as land-use changes, can
alter the ecology of vectors and hence how they breed, develop and
transmit disease, hence affecting malaria epidemiology in humans
(Chang et al., 1997; Afrane et al., 2008; Jiram et al, 2012; Moyes
et al, 2014, 2016; Brant et al, 2016; Austin et al, 2017; Brown
et al., 2018, 2019; Hawkes et al., 2019). Deforestation and forest frag-
mentation force orangutans to live in altered landscapes affected by
ecological changes (e.g. forest-edge habitats, in and around agricul-
tural areas and/or human settlements) in which vector mosquitos
might be absent or their capacity to transmit malaria inhibited.
This might result in an impairment of immunity and an increased
risk of more serious health implications of malaria infection in these
populations. Thus, malaria disease might represent a new threat to
the conservation of orangutan populations living in anthropogenic
and forest-fragmented landscapes. The identification of vectors
involved in the transmission of malaria and how they are affected
by ecological changes will be essential in understanding orangutan
malaria epidemiology and in developing measures for its manage-
ment and prevention.

Infectious diseases can have deleterious effects with potentially
serious implications for the conservation of already threatened
great ape populations, and are increasingly considered a threat
to the survival of wildlife species (Wolfe et al., 1998; Leendertz
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et al., 2006; Machalaba et al., 2020). Increasing our understanding
of diseases affecting wild orangutans is of paramount importance
not only for the wellbeing and survival of the species (One
Welfare) but also for its contribution to public health security
and disease control (One Health).
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