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Synchrotron radiation light source facilities are leading the way to ultrahigh resolution X-ray imaging. 
High resolution imaging is essential to understanding the fundamental structure and interaction of 

materials at the smallest length scale possible. Coherent diffraction imaging (CDI) achieves nanoscale 
imaging by replacing traditional objective lenses by pixelated area detectors and computational image 
reconstruction. We present our work for solving CDI reconstruction problems through fitting a physics 

based model to measured data. The model parameters are learned in a similar manner to deep neural 
networks, utilizing the backpropagation method as implemented in Google TensorFlow package. This 

approach has advantages in terms of speed and accuracy compared to current state of the art algorithms, 
and demonstrates re-purposing the deep learning backpropagation algorithm to solve general phase 
retrieval problems that are prevalent in lensless microscopy research. 

 
Solving the challenging phase retrieval problem, where one attempts to reconstruct an object from only 

the magnitude of its Fourier transform, requires the use of oversampling and support constraints. These 
are typically used in an iterative projection framework that updates the object guess by applying a Fourier 
magnitude projection and a real-space constraint projection [1].  Alternatively, we can also frame phase 

retrieval as a nonlinear minimization problem, where we minimize an error metric using a gradient-based 
approach. The gradient-based approach is flexible and can include in the forward model 

a large variety of the physical phenomena related to the probing light (such as partial coherence, source 
fluctuations, and experimental errors), or the detection process (such as the measurement noise and the 
finite size of the pixel). 
 

Gradient-based phase retrieval methods in the literature tend to rely on the availability of a closed-form 

expression for the gradient calculation. This closed-form expression is typically obtained by writing down 
an explicit expression for the error metric to minimize, then symbolically differentiating the error metric 
with respect to the individual input parameters [2]. Calculating the gradient in this fashion is laborious; a 

slight modification of the forward model usually requires a complete rederivation and algorithmic 
reimplementation of the gradient expressions. This becomes especially limiting if we desire to explore 

variations of, or introduce new capabilities to, our basic experimental methodology. As such, it is more 
than desirable to have an approach beyond symbolic differentiation in order to easily explore a variety of 
algorithms and approaches. 

 
Automatic differentiation or Algorithmic Differentiation (AD), provides such an alternative to symbolic 

differentiation. This approach is based upon the observation that vector-valued functions can, in general, 
be interpreted as composites of basic arithmetic operations and a limited number of elementary functions 
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(including exponentials and trigonometric operations). Differentiation of functions can then be understood 
as a recursive application of the chain rule of differentiation, wherein we repeatedly differentiate the same 

elementary functions (with known derivatives), only with different input parameters. Here we use the 
backpropagation algorithm used to train deep neural networks is a special case of reverse mode AD [3]. 

Consequently, several software libraries available for deep learning also include high performance 
routines for AD. TensorFlow is a Python based deep learning API provided by Google. Here we use 
TensorFlow to automatically calculate gradients for different phase retrieval forward models, in order to 

highlight the flexibility of the approach. The physics-based forward model is the only part that needs to 
be explicitly specified. The solution to the associated inverse phase retrieval problem is achieved through 

the repeated application of the backpropagation algorithm to an initial random guess. In previous 
publications we demonstrate f our approach for various ptychography forward models, namely: far-field 
ptychography [4], near-field ptychography, and multi-angle Bragg ptychography [5]. 
 

The use of AD not only provides an alternative to current 2D CDI reconstruction methods but also allow 
one to easily extend to 3D reconstruction with more complicated physics models. Recently, by modelling 

wave propagating in the sample volume with the multislice method, we have developed a novel 
reconstruction algorithm that addresses the multiple scattering of x-ray in thick objects, which enables the 
retrieval of samples beyond the depth of focus. Shown in Fig. 1 is the output of a thick object using the 

described method, where the reconstruction quality is much better than that obtained using conventiona l 
methods (error reduction + filtered back projection). 
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Figure 1.  Comparison between our approach (top) and the standard method (bottom), for 3D beyond 
depth-of-focus ptychographic reconstruction of a simulated sample.   
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