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Abstract

This paper presents PFLP, a library for probabilistic programming in the functional logic pro-
gramming language Curry. It demonstrates how the concepts of a functional logic programming
language support the implementation of a library for probabilistic programming. In fact, the
paradigms of functional logic and probabilistic programming are closely connected. That is, lan-
guage characteristics from one area exist in the other and vice versa. For example, the concepts
of non-deterministic choice and call-time choice as known from functional logic programming
are related to and coincide with stochastic memoization and probabilistic choice in probabilistic
programming, respectively. We will further see that an implementation based on the concepts
of functional logic programming can have benefits with respect to performance compared to
a standard list-based implementation and can even compete with full-blown probabilistic pro-
gramming languages, which we illustrate by several benchmarks.

KEYWORDS: probabilistic programming, functional logic programming, non-determinism, lazi-
ness, call-time choice

1 Introduction

The probabilistic programming paradigm allows the succinct definition of probabilis-

tic processes and other applications based on probability distributions, for example,

Bayesian networks as used in machine learning. A Bayesian network is a visual, graph-

based representation for a set of random variables and their dependencies. One of the

hello world -examples of Bayesian networks is the influence of rain and a sprinkler on
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Fig. 1. A simple Bayesian network.

wet grass. Figure 1 shows an instance of this example, the concrete probabilities differ

between publications. A node in the graph represents a random variable, a directed edge

between two nodes represents a conditional dependency. Each node is annotated with a

probability function represented as a table. The input values are on the left side of the

table and the right side of the table describes the possible output and the corresponding

probability. The input values of the function correspond to the incoming edges of that

node. For example, the node for sprinkler depends on rain, thus, the sprinkler node has

an incoming edge that originates from the rain node. The input parameter rain appears

directly in the table that describes the probability function for sprinkler. For the example

in Figure 1, the interpretation of the graph reads as follows: it rains with a probability

of 20%; depending on the rain, the probability for an activated sprinkler is 40% and 1%,

respectively; depending on both these factors, the grass can be observed as wet with a

probability of 0%, 80%, 90%, or 99%.

• What is the probability that it is raining?

• What is the probability that the grass is wet, given that it is raining?

• What is the probability that the sprinkler is on, given that the grass is wet?

The general idea of probabilistic programming has been quite successful. There are a

variety of probabilistic programming languages supporting all kinds of programming

paradigms. For example, the programming languages Church (Goodman et al . 2008)

and Anglican (Wood et al . 2014) are based on the functional programming language

Scheme, ProbLog (Kimmig et al . 2011) is an extension of the logic programming language

Prolog, Probabilistic C (Paige and Wood 2014) is based on the imperative language C,

and WebPPL (Goodman and Stuhlmüller 2014), the successor of Church, is embedded in

a functional subset of JavaScript. Besides full-blown languages there are also embedded

domain-specific languages that implement probabilistic programming as a library. For

example, FACTORIE (McCallum et al . 2009) is a library for the hybrid programming

language Scala, and Erwig and Kollmansberger (2006) present a library for the functional

programming language Haskell. We recommend the survey by Gordon et al. (2014) about

the current state of probabilistic programming for further information.

This paper presents PFLP, a library providing a domain-specific language for prob-

abilistic programming in the functional logic programming language Curry (Antoy and
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Hanus 2010). PFLP makes heavy use of functional logic programming concepts and

shows that this paradigm is well-suited for implementing a library for probabilistic

programming. In fact, there is a close connection between probabilistic programming

and functional logic programming. For example, non-deterministic choice and probabilis-

tic choice are similar concepts. Furthermore, the concept of call-time choice as known

from functional logic programming coincides with (stochastic) memoization (De Raedt

and Kimmig 2013) in the area of probabilistic programming. We are not the first to

observe this close connection between functional logic programming and probabilistic

programming. For example, Fischer et al. (2009) present a library for modeling func-

tional logic programs in the functional language Haskell. As they state, by extending

their approach to weighted non-determinism, we can model a probabilistic programming

language.

Besides a lightweight implementation of a library for probabilistic programming in a

functional logic programming language, this paper makes the following contributions:

• We investigate the interplay of probabilistic programming with the features of a

functional logic programming language. For example, we show how call-time choice

and non-determinism interplay with probabilistic choice.

• We discuss how we utilize functional logic features to improve the implementation

of probabilistic combinators.

• We present an implementation of probability distributions using non-determinism

in combination with non-strict probabilistic combinators that is more efficient than

an implementation using lists.

• We illustrate that the combination of non-determinism and non-strictness with

respect to distributions has to be handled with care. More precisely, it is important

to enforce a certain degree of strictness in order to guarantee correct results.

• In contrast to the conference version of the paper (Dylus et al . 2018), we discuss

the usage of partial functions in combination with library functions in more de-

tail, reason about laws for two operations of the library, and present performance

comparisons between our library, ProbLog and WebPPL.

• Finally, this paper aims at fostering the exchange between the community of prob-

abilistic programming and of functional logic programming. That is, while the

connection exists for a long time, there has not been much exchange between the

communities. We would like to take this paper as a starting point to bring these

paradigms closer together. Thus, this paper introduces the concepts of both, the

functional logic and probabilistic programming, paradigms.

Please note that the current state of our library cannot compete against full-blown prob-

abilistic languages or mature libraries for probabilistic programming in terms of features,

for example, the library does not provide any sampling mechanisms. Nevertheless, the

library is a good showcase for languages with built-in non-determinism, because the func-

tional logic approach can be superior to the functional approach using lists. Furthermore,

we want to emphasize that this paper uses non-determinism as an implementation tech-

nique to develop a library for probabilistic programming. That is, we are not mainly

concerned with the interaction of non-determinism and probabilities as, for example,

discussed in the work of Varacca and Winskel (2006) and multiple others. The library
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we develop in this paper does not combine both effects, but provides combinators for

probabilistic programming by leveraging Curry’s built-in non-strict non-determinism.

2 Library basics

In this section, we discuss the core of the PFLP library.1 The implementation is based on

a Haskell library for probabilistic programming presented by Erwig and Kollmansberger

(2006). We will not present the whole PFLP library, but only core functions. The paper

at hand is a literate Curry file. We use the Curry compiler KiCS2,2 by Braßel et al.

(2011), for all code examples.

2.1 Modeling distributions

One key ingredient of probabilistic programming is the definition of distributions. A

distribution consists of pairs of elementary events and their probability. We model prob-

abilities as Float and distributions as a combination of an elementary event and the

corresponding probability.3

type Probability = Float

data Dist a = Dist a Probability

In a functional language like Haskell, the canonical way to define distributions uses

lists. Here, we use Curry’s built-in non-determinism as an alternative for lists to model

distributions with more than one event-probability pair. As an example, we define a fair

coin, where True represents heads and False represents tails, as follows4:

coin ::Dist Bool

coin = (Dist True 1
2 ) ? (Dist False 1

2 )

In Curry, the (?)-operator non-deterministically chooses between two given arguments.

Non-determinism is not reflected in the type system, that is, a non-deterministic choice

has type a → a → a. Such non-deterministic computations introduced by (?) describe

two individual computation branches; one for the left argument and one for the right

argument of (?).

We could also define coin in Prolog-style by giving two rules for coin.

coin ::Dist Bool

coin = Dist True 1
2

coin = Dist False 1
2

Both implementations can be used interchangeably since the (?)-operator is defined in

the Prolog-style using two rules as well.

1 We provide the code for the library at https://github.com/finnteegen/pflp.
2 We use version 0.6.0 of KiCS2 and the source is found at https://www-ps.informatik.uni-kiel.
de/kics2/.

3 The polymorph data type Dist is parameterized over a type variable a. It has a single constructor also
named Dist that is of type a → Probability → Dist a. The constructor Dist in Curry corresponds to
a binary functor in Prolog.

4 Here, and in the following, we write probabilities as fractions for readability.
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(?) :: a → a → a

x ? y = x

x ? y = y

Printing an expression in the REPL5 evaluates the non-deterministic computations, thus,

yields one result for each branch as shown in the following examples:

> 1 ? 2

1

2

> coin

Dist True 0.5

Dist False 0.5

The REPL computes the values using a breadth-first-search strategy to visualize the

results. Due to the search strategy, we observe different outputs when changing the order

of arguments to (?). However, because Curry’s semantics is set-based (Christiansen et al .

2011), the order of the results does not matter.

It is cumbersome to define distributions explicitly as in the case of coin. Hence, we

define helper functions for constructing distributions.6 Given a list of events and prob-

abilities, enum creates a distribution by folding these pairs non-deterministically with a

helper function member .7

member :: [a ] → a

member xs = foldr (?) failed xs

enum :: [a ] → [Probability ] → Dist a

enum xs ps = member (zipWith Dist xs ps)

In Curry, the constant failed is a silent failure that behaves as neutral element with

respect to (?). That is, the expression True ? failed is equivalent to True. Hence, the

function member takes a list and yields a non-deterministic choice of all elements of the

list.

As a shortcut, we define a function that yields a uniform distribution given a list of

events as well as a function certainly , which yields a distribution with a single event of

probability one.

uniform :: [a ] → Dist a

uniform xs = let len = length xs in enum xs (repeat 1
len )

certainly :: a → Dist a

certainly x = Dist x 1.0

The function repeat yields a list that contains the given value infinitely often. Because

of Curry’s laziness, it is sufficient if one of the arguments of enum is a finite list because

zipWith stops when one of its arguments is empty. We can then refactor the definition

of coin using uniform as follows:

coin ::Dist Bool

coin = uniform [True,False ]

5 We visualize the interactions with the REPL using> as prompt.
6 The definitions of predefined Curry functions like foldr are listed in Appendix.
7 We shorten the implementation of enum for presentation purposes; actually, enum only allows valid
distributions, for example, that the given probabilities sum up to 1.0.

https://doi.org/10.1017/S1471068419000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000085


152 S. Dylus et al.

In general, the library hides the constructor Dist , that is, the user has to define distri-

butions by using the combinators provided by the library.

The library provides additional functions to combine and manipulate distributions.

In order to work with dependent distributions, the operator (>>>=) applies a function,

which yields a distribution, to each event of a given distribution and multiplies the

corresponding probabilities.8

(>>>=) ::Dist a → (a → Dist b) → Dist b

d >>>= f = let Dist x p = d

Dist y q = f x

in Dist y (p ∗. q)
Intuitively, we have to apply the function f to each event of the distribution d and com-

bine the resulting distributions into a single distribution. In a Haskell implementation,

we would use a list comprehension to define this function. In the Curry implementation,

we model distributions as non-deterministic computations, thus, the above rule describes

the behavior of the function for an arbitrary pair of the first distribution and an arbitrary

pair of the second distribution, that is, the result of f .

Using the operator (>>>=) we can, for example, define a distribution that models flip-

ping two coins. The events of this distribution are pairs whose first component is the

result of the first coin flip and whose second component is the result of the second coin

flip.

independentCoins ::Dist (Bool ,Bool)

independentCoins = coin >>>= (λb1 → coin >>>= (λb2 → certainly (b1 , b2 )))

In contrast to the example independentCoins , we can also use the operator (>>>=) to

combine two distributions where we choose the second distribution on the basis of the

result of the first. For example, we can define a distribution that models flipping two

coins, but in this case, we only flip a second coin if the first coin yields heads.

dependentCoins ::Dist Bool

dependentCoins = coin >>>= (λb → if b then coin else certainly False)

The implementation of (>>>=) via let-bindings seems a bit tedious, however, it is im-

portant that we define (>>>=) as it is. The canonical implementation performs pattern

matching on the first argument but uses a let-binding for the result of f . That is, it is

strict in the first argument but non-strict in the application of f , the second argument.

For now it is sufficient to note – and keep in mind – that there is a difference between

pattern matching and using let-bindings. In order to understand this difference, let us

consider the following implementation of fromJustToList and an alternative implemen-

tation fromJustToListLet .9

fromJustToList ::Maybe a → [a ]

fromJustToList (Just x ) = x : [ ]

8 Due to the lack of overloading in Curry, operations on Float have a (floating) point suffix, for example,
(∗.), whereas operations on Int use the common operation names.

9 (:) ::a → [a ] → [a ] denotes the constructor for a non-empty list – similar to the functor ./2 in Prolog.
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fromJustToListLet ::Maybe a → [a ]

fromJustToListLet mx = let Just x = mx in x : [ ]

The second implementation, fromJustToListLet , is less strict, because it yields a list con-

structor, (:), without evaluating its argument first. That is, we can observe the difference

when passing failed and checking if the resulting list is empty or not.

> null (fromJustToList failed)

failed

> null (fromJustToListLet failed)

False

Due to the pattern matching in the definition of fromJustToList the argument failed needs

to be evaluated, and thus, the function null propagates failed as result. In contrast, the

definition of fromJustToListLet postpones the evaluation of its argument to the right-

hand side, that is, the argument needs to be evaluated only if the computation demands

the value x explicitly. The function null does not demand the evaluation of x , because

it only checks the surrounding list constructor.

null :: [a ] → Bool

null [ ] = True

null (x : xs) = False

The same strictness property as for fromJustToList holds for a definition via explicit

pattern matching using case ... of . In particular, pattern matching of the left-hand side

of a rule desugars to case expressions on the right-hand side.

fromJustToListCase ::Maybe a → [a ]

fromJustToListCase mx = case mx of

Just x → [x ]

> null (fromJustToListCase failed)

failed

We discuss the implementation of (>>>=) in more detail later. For now, it is sufficient

to keep in mind that (>>>=) yields a Dist-constructor without evaluating any of its ar-

guments. In contrast, a definition using pattern matching or a case expression needs to

evaluate its argument first, thus, is more strict.

For independent distributions, we provide the function joinWith that combines two

distributions with respect to a given function. We implement joinWith by means of

(>>>=).

joinWith :: (a → b → c) → Dist a → Dist b → Dist c

joinWith f d1 d2 = d1 >>>= (λx → d2 >>>= (λy → certainly (f x y)))

In a monadic setting, this function is sometimes called liftM2 . Here, we use the same

nomenclature as Erwig and Kollmansberger (2006).

As an example, we define a function that flips a coin n times.

flipCoin :: Int → Dist [Bool ]

flipCoin n | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) coin (flipCoin (n − 1))
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When we run the example of flipping two coins in the REPL of KiCS2, we get four events.

> flipCoin 2

Dist [True,True ] 0.25

Dist [True,False ] 0.25

Dist [False,True ] 0.25

Dist [False,False ] 0.25

In the example above, coin is non-deterministic, namely, coin = (Dist True 1
2 ) ?

(Dist False 1
2 ). Applying joinWith to coin and coin combines all possible results of

two coin tosses.

2.2 Querying distributions

With a handful of building blocks to define distributions available, we now want to

query the distribution, that is, calculate the probability of certain events. We provide an

operator (??) :: (a → Bool) → Dist a → Probability – which we will define shortly – to

extract the probability of an event. The event is specified as a predicate, passed as first

argument. The operator filters events that satisfy the given predicate and computes the

sum of the probabilities of the remaining elementary events. We implement this kind of

filter function on distributions in Curry.

filterDist :: (a → Bool) → Dist a → Dist a

filterDist pred d = let Dist x p = d

in if (pred x ) then (Dist x p) else failed

The implementation of filterDist is a partial identity on the event-probability pairs. Every

event that satisfies the predicate is part of the resulting distribution. The function fails

for event-probability pairs that do not satisfy the predicate.

Querying a distribution, that is, summing up all probabilities that satisfy a predicate,

is a more advanced task in the functional logic approach. Remember that we represent

a distribution by chaining all event-probability pairs with (?), thus, constructing non-

deterministic computations. These non-deterministic computations introduce individual

branches of computations that cannot interact with each other. In order to compute the

total probability of a distribution, we have to merge these distinct branches. Such a merge

is possible by the encapsulation of non-deterministic computations. Similar to the findall

construct of the logic language Prolog, in Curry we encapsulate a non-deterministic

computation by using a primitive called allValues.10 The function allValues :: a → {a}
operates on a polymorphic – and potentially non-deterministic – value and yields a

multiset of all non-deterministic values. In order to work with encapsulated values, Curry

provides the function foldValues :: (a → a → a) → a → {a} → a to fold the resulting

multiset.

We do not discuss the implementation details behind allValues here. It is sufficient

to know that, as a library developer, we can employ this function to encapsulate non-

10 We use an abstract view of the result of an encapsulation to emphasize that the order of encapsulated
results does not matter. In practice, we can, for example, use the function allValues :: a → [a ] defined
in the library Findall .
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deterministic values and use these values in further computations. However, due to non-

transparent behavior in combination with sharing as discussed by Braßel et al. (2004), a

user of the library should not use allValues at all. In a nutshell, inner-most and outer-most

evaluation strategies may cause different results when combining sharing and encapsula-

tion.

With this encapsulation mechanism at hand, we can define the query operator (??) as

follows:

prob ::Dist a → Probability

prob (Dist x p) = p

(??) :: (a → Bool) → Dist a → Probability

(??) pred d = foldValues (+.) 0.0 (allValues (prob (filterDist pred d)))

First, we filter the elementary events by some predicate and project to the probabilities

only. Afterwards, we encapsulate the remaining probabilities and sum them up. As an

example for the use of (??), we may flip four coins and calculate the probability of at

least two heads – that is, the list contains at least two True values.

> (λcoins → length (filter id coins) � 2) ?? (flipCoin 4)

0.6875

In order to check the result, we calculate the probability by hand. Since there are more

events that satisfy the predicate than events that do not, we sum up the probabilities of

the events that do not satisfy the predicate and calculate the complementary probability.

There is one event where all coins show tails and four events where one of the coins shows

heads and all other show tails.

1−(P (Tails)·P (Tails)·P (Tails)·P (Tails) + 4·P (Heads)·P (Tails)·P (Tails)·P (Tails))

= 1− (0.5 · 0.5 · 0.5 · 0.5 + 4 · 0.5 · 0.5 · 0.5 · 0.5)
= 1− (0.0625 + 0.25) = 1− 0.3125 = 0.6875.

3 Library pragmatics

Up to now, we have discussed a simple library for probabilistic programming that uses

non-determinism to represent distributions. In this section, we will see that we can highly

benefit from Curry-like non-determinism with respect to performance when we com-

pare PFLP’s implementation with a list-based implementation. More precisely, when we

query a distribution with a predicate that does not evaluate its argument completely,

we can possibly prune large parts of the search space. Before we discuss the details of

the combination of non-strictness and non-determinism, we discuss aspects of sharing

non-deterministic choices. Finally, we discuss details about the implementation of (>>>=)

and why PFLP does not allow non-deterministic events within distributions.

3.1 Call-time choice vs. Run-time choice

By default Curry uses call-time choice, that is, variables denote single determinis-

tic choices. When we bind a variable to a non-deterministic computation, one value

is chosen and all occurrences of the variable denote the same deterministic choice.
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Often call-time choice is what you are looking for. For example, this slightly modified

definition of filterDist makes use of call-time choice.

filterDist :: (a → Bool) → Dist a → Dist a

filterDist pred d = let Dist x p = d

in if (pred x ) then d else failed

Due to pattern matching via let-binding, the variable d on the right-hand side corre-

sponds to a single deterministic choice for the input distribution, namely, the one that

satisfies the predicate and not the non-deterministic computation that was initially passed

as second argument to filterDist .

Almost as often run-time choice is what you are looking for and call-time choice gets

in your way; probabilistic programming is no exception. For example, let us reconsider

flipping a coin n times. We parametrize the function flipCoin over the given distribution

and define the following generalized function:

replicateDist :: Int → Dist a → Dist [a ]

replicateDist n d | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) d (replicateDist (n − 1) d)

Here, we again use guard syntax in order to distinguish several cases depending on the

Boolean expression. When we use this function to flip a coin twice, the result is not what

we intended.

> replicateDist 2 coin

Dist [True,True ] 0.25

Dist [False,False ] 0.25

Because replicateDist shares the variable d , we only perform a choice once and replicate

deterministic choices. In contrast, top-level nullary functions like coin are evaluated every

time, thus, exhibit run-time choice, which is the reason why the previously shown flipCoin

behaves properly.

In order to implement replicateDist correctly, we have to enforce run-time choice. We

introduce the following type synonym and function to model and work with values with

run-time choice behavior.

type RT a = () → a

pick :: RT a → a

pick rt = rt ()

We can now use the type RT to hide the non-determinism on the right-hand side of a

function arrow. This way, pick explicitly triggers the evaluation of rt , performing a new

choice for every element of the result list.

replicateDist :: Int → RT (Dist a) → Dist [a ]

replicateDist n rt | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) (pick rt) (replicateDist (n − 1) rt)

In order to use replicateDist with coin, we have to construct a value of type

RT (Dist Bool). However, we cannot provide a function to construct a value of type RT
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that behaves as intended. Such a function would share a deterministic choice and non-

deterministically yield two functions, instead of one function that yields a non-

deterministic computation. The only way to construct a value of type RT is to explicitly

use a lambda abstraction.

> replicateDist 2 (λ() → coin)

Dist [True,True ] 0.25

Dist [True,False ] 0.25

Dist [False,True ] 0.25

Dist [False,False ] 0.25

Instead of relying on call-time choice as default behavior, we could model Dist as a

function and make run-time choice the default in PFLP. In this case, to get call-time

choice we would have to use a special construct provided by the library – as it is the case

in many probabilistic programming libraries, for example, mem in WebPPL (Goodman

and Stuhlmüller 2014).

On the other hand, ProbLog uses a similar concept to call-time choice, namely, stochas-

tic memoization, which reuses already computed results. That is, predicates that are

associated with probabilities become part of the memoized result. If a fair coin flip, for

example, already resulted in True, then the probability of all further coin flips that also

result in True have probability 1. Due to stochastic memoization the coin is not flipped

a second time, but is identified as the same coin as before. Thus, stochastic memoization

as used in ProbLog is similar to the extension of tabling in Prolog systems, but adapted

to the setting of probabilistic programming that extends predicates with probabilities.

Similar to our usage of RT to mimic run-time choice in Curry, we can use a so-called

trial identifier, which is basically an additional argument, to circumvent memoization for

a predicate like coin in ProbLog. The difference to RT is that the trial identifier needs

to be different for each call to the predicate in order to force re-evaluation.

In the end, we have decided to go with the current modeling based on call-time choice,

because the alternative would work against the spirit of the Curry programming language.

There is a long history of discussions about the pros and cons of call-time choice and

run-time choice. It is common knowledge in probabilistic programming (De Raedt and

Kimmig 2013) that memoization – that is, call-time choice – has to be avoided in order to

model stochastic automata or probabilistic grammars. Similarly, Antoy (2005) observes

that you need run-time choice to elegantly model regular expressions in the context

of functional logic programming languages. Then again, probabilistic languages need a

concept like memoization in order to use a single value drawn from a distribution multiple

times.

3.2 Combination of non-strictness and non-determinism

This subsection illustrates the benefits from the combination of non-strictness and non-

determinism with respect to performance. More precisely, in a setting that uses Curry-like

non-determinism, non-strictness can prevent non-determinism from being “spawned.”

Let us consider calculating the probability for throwing only sixes when throwing n dice.

First, we define a uniform die as follows:
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Table 1. Overview of running times for the query allSix n

No. of dice 5 6 7 8 9 10 100 200 300

Curry ND <1 <1 <1 <1 <1 <1 48 231 547
Curry List 2 13 72 419 2554 15,394 – – –
Curry ND! 52 409 2568 16,382 – – – – –
Haskell List 1 5 30 210 1415 6538 – – –

data Side = One | Two | Three | Four | Five | Six
die ::Dist Side

die = uniform [One,Two,Three,Four ,Five,Six ]

We define the following query by means of the combinators introduced so far. The func-

tion all simply checks that all elements of a list satisfy a given predicate; it is defined by

means of the Boolean conjunction (∧).
allSix :: Int → Probability

allSix n = (all (≡ Six )) ?? (replicateDist n (λ() → die))

Table 1 compares running times11 of this query for different numbers of dice. The row

labeled “Curry ND” lists the running times for an implementation that uses the operator

(>>>=). The row “Curry List” shows the numbers for a list-based implementation in Curry,

which is a literal translation of the library by Erwig and Kollmansberger. The row labeled

“Curry ND!” uses an operator (>>>=!) instead, which we will discuss shortly. Finally, we

compare our implementation to the original list-based implementation, which the row

labeled “Haskell List” refers to. The table states the running times in milliseconds of a

compiled executable for each benchmark as a mean of three runs. Cells marked with “–”

take more than 1 min.

Obviously, the example above is a little contrived. While the query is exponential in

both list versions, it is linear in the non-deterministic setting.12 To illustrate the behavior

of the example above, we consider the following application for an arbitrary distribution

dist of type Dist [Side ].

filterDist (all (≡ Six )) (joinWith (:) (Dist One 1
6 ) dist)

This application yields an empty distribution without evaluating the distribution dist .

The interesting point here is that joinWith yields a Dist-constructor without inspecting

its arguments. When we demand the event of the resulting Dist , joinWith has to evaluate

only its first argument to see that the predicate all (≡ Six ) yields False. The evaluation

of the expression fails without inspecting the second argument of joinWith. Figure 2

illustrates the evaluation in more detail.

11 All benchmarks were executed on a Linux machine with an Intel Core i7-6500U (2.50 GHz) and 8 GiB
RAM running Fedora 25. We used the Glasgow Haskell Compiler (version 8.0.2, option -O2) and set
the search strategy in KiCS2 to depth-first.

12 Non-determinism causes significant overhead for KiCS2, thus, “Curry ND” does not show linear de-
velopment, but we measured a linear running time using PAKCS (Hanus 2017).
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Fig. 2. Simplified evaluation illustrating non-strict non-determinism.

In case of the example allSix , all non-deterministic branches that contain a value

different from Six fail fast due to the non-strictness. Thus, the number of evaluation

steps is linear in the number of rolled dice.

We can only benefit from the combination of non-strictness and non-determinism if we

define (>>>=) with care. Let us take a look at a strict variant of (>>>=) and discuss its

consequences.

(>>>=!) ::Dist a → (a → Dist b) → Dist b

(Dist x p)>>>=! f = case f x of

Dist y q → Dist y (p ∗. q)
This implementation is strict in its first argument as well as in the result of the function

application. When we use (>>>=!) to implement the allSix example, we lose the benefit of

Curry-like non-determinism. The row in Table 1 labeled “Curry ND!” shows the running

times when using (>>>=!) instead of (>>>=). As (>>>=!) is strict, the function joinWith

has to evaluate both its arguments to yield a result. Figure 3 shows how the formerly

unneeded distribution dist now has to be evaluated in order to yield a value. More

precisely, using (>>>=!) causes a complete evaluation of dist .

Please note that an implementation that is similar to (>>>=) is not possible in a list-

based implementation. The following definition of concatMap is usually used to define

the bind operator for lists.
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Fig. 3. Simplified evaluation illustrating strict non-determinism.

concatMap :: (a → [b ]) → [a ] → [b ]

concatMap f [ ] = [ ]

concatMap f (x : xs) = f x ++ concatMap f xs

The strict behavior follows from the definition via pattern matching on the list argument.

In contrast to (>>>=!) there is, however, no other implementation that is less strict. The

pattern matching is inevitable due to the two possible constructors, [ ] and (:), for lists.

As a consequence, a list-based implementation has to traverse the entire distribution

before we can evaluate the predicate all (≡ Six ). The consequence is that the running

times of “Haskell List” in Table 1 cannot compete with “Curry ND” when the number

of dice increases.

Intuitively, we expect similar running times for “Curry ND!” and “Curry List” as the

bind operator for lists has to evaluate its second argument as well – similar to (>>>=!).

However, the observed running times do not have the expected resemblance. “Curry ND!”

heavily relies on non-deterministic computations, which causes significant overhead for

KiCS2. We do not investigate these differences here but propose it as a direction for

future research.

Obviously, turning an exponential problem into a linear one is like getting only sixes

when throwing dice. In most cases we are not that lucky. For example, consider the

following query for throwing n dice that are either five or six.

allFiveOrSix :: Int → Probability

allFiveOrSix n = (all (λs → s ≡ Five ∨ s ≡ Six )) ?? (replicateDist n (λ() → die))

Table 2 lists the running times of this query for different numbers of dice with respect

to the four different implementations. As we can see from the running times, this query

is exponential in all implementations. Nevertheless, the running time of the non-strict,

non-deterministic implementation is much better because we only have to consider two

sides – six and five – while we have to consider all sides in the list implementations and

the non-deterministic, strict implementation. That is, while the base of the complexity

is two in the case of the non-deterministic, non-strict implementation, it is six in all the

other cases. As we have observed in the other examples before, we get an overhead in

the case of the strict non-determinism compared to the list implementation due to the

heavy usage of non-deterministic computations.
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Table 2. Overview of running times of the query allFiveOrSix n

No. of dice 5 6 7 8 9 10

Curry ND 4 7 15 34 76 163
Curry List 2 13 84 489 2869 16,989
Curry ND! 49 382 2483 15,562 – –
Haskell List 2 5 31 219 1423 6670

3.3 Definition of the bind operator

In this subsection, we discuss our design choices concerning the implementation of the

bind operator. We illustrate that we have to be careful about non-strictness, because we

do not want to lose non-deterministic results.

First, we revisit the definition of (>>>=) introduced in Section 2.

(>>>=) ::Dist a → (a → Dist b) → Dist b

d >>>= f = let Dist x p = d

Dist y q = f x

in Dist y (p ∗. q)
We can observe two facts about this definition. First, the definition yields a Dist-

constructor without matching any argument. Second, if neither the event nor the prob-

ability of the final distribution is evaluated, the application of the function f is not

evaluated either.

We can observe these properties with some exemplary usages of (>>>=). As a reference,

we see that pattern matching the Dist-constructor of coin triggers the non-determinism

and yields two results.

> (λ(Dist x p) → True) coin

True

True

In contrast, distributions resulting from an application of (>>>=) behave differently.

This time, pattern matching on the Dist-constructor does not trigger any non-

determinism.

> (λ(Dist x p) → True) (certainly ()>>>= (λy → coin))

True

> (λ(Dist x p) → True) (coin >>>= certainly)

True

We observe that the last two examples yield a single result, because the (>>>=)-operator

changes the position of the non-determinism. That is, the non-determinism does not

reside at the same level as the Dist-constructor, but in the arguments of Dist . Therefore,

we have to be sure to trigger all non-determinism when we query distributions. Not

evaluating non-determinism might lead to false results when we sum up probabilities.

Hence, non-strictness is a crucial property for positive pruning effects, but has to be used

carefully.
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Consider the following example usage of (>>>=), which is an inlined version of joinWith

applied to the Boolean conjunction (∧).
> (λ(Dist x p) → x ) (coin >>>= (λb1 → coin >>>= (λb2 → certainly (b1 ∧ b2 ))))

False

True

False

We lose one expected result from the distribution, because (∧) is non-strict in its second

argument in case the first argument is False. When the first coin evaluates to False, (>>>=)

ignores the second coin and yields False straightaway. In this case, the non-determinism

of the second coin is not triggered and we get only three instead of four results. The non-

strictness of (∧) has no consequences when using (>>>=!), because the operator evaluates

both arguments, and thus, triggers the non-determinism. In the case of projecting to the

event, we do not care about the missing result. However, when we sum up probabilities,

we do not want events to get lost.

When we compute the total probability of a distribution, the result should always be

1.0. However, the query above has only three results and every event has a probability of

0.25, resulting in a total probability of 0.75. Here is the good news. While events can get

lost when passing non-strict functions to (>>>=), probabilities never get lost. For example,

consider the following application:

> (λ(Dist x p) → p) (coin >>>= (λb1 → coin >>>= (λb2 → certainly (b1 ∧ b2 ))))

0.25

0.25

0.25

0.25

Since multiplication is strict, if we demand the resulting probability, the operator (>>>=)

has to evaluate the Dist-constructor and its probability. That is, no values get lost if

we evaluate the resulting probability. Fortunately, the query operation (??) calculates

the total probability of the filtered distributions, thus, evaluates the probability as the

following example shows:

> not ?? (coin >>>= (λb1 → coin >>>= (λb2 → certainly (b1 ∧ b2 ))))

0.75

We calculate the probability of the event False. While there were only two False events

when we projected to the event, the total probability of the event False is still 0.75, that

is, three times 0.25, instead of only 0.5.

All in all, in order to benefit from non-strictness, all operations provided by the library

have to use the right amount of strictness, not too much and not too little. For this reason,

PFLP does not provide the Dist-constructor nor the corresponding projection functions

to the user. With this restriction, the library guarantees that no relevant probabilities

get lost.

3.4 Non-deterministic events

We assume that all events passed to library functions are deterministic, that is, the library

does not support non-deterministic events within distributions. In order to illustrate why

this restriction is crucial, we consider an example that breaks this rule.
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Fig. 4. Evaluation of a distribution that contains a free variable that is not demanded.

Curry provides free variables, that is, expressions that non-deterministically evaluate

to every possible value of its type. When we revisit the definition of a die, we might be

tempted to use a free variable instead of explicitly enumerating all values of type Side.

We can define a free variable of type Side as follows:

side :: Side

side = unknown

This free variable evaluates as follows:

> side

One

Two

Three

Four

Five

Six

With this information in mind consider the following alternative definition of a die, which

is much more concise than explicitly listing all constructors of Dist .

die2 ::Dist Side

die2 = enum [side ] [ 16 ]

We just use a free variable – the constant side – and pass the probability of each event

as second parameter. Now, let us consider the following query.

> (const True) ?? die2

0.16666667

The result of this query is 1
6 and not 1.0 as expected. Consider Figure 4 for a step-by-

step evaluation of this expression in order to understand better what is going on. This

example illustrates that probabilities can get lost if we do not use the right amount
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of strictness. The predicate const True does not touch the event at all, thus does not

trigger side to actually evaluate to all the constructors of Side. Then, the definition of

(??) directly projects to the probability of die2 and throws away all non-determinism

left in Dist side 1
6 . Therefore, we lose probabilities we would like to sum up.

As a consequence for PFLP, non-deterministic events within a distribution are not

allowed. If users of the library stick to this rule, it is not possible to misuse the operations

and lose non-deterministic results due to non-strictness.

However, one approach to overcome this issue when using enum is to use an alternative

stricter implementation. That is, we could easily adapt the strictness behavior of enum in

order to allow a more declarative definition of distributions using free variables without

affecting the overall advantage leveraged by non-strict functions.

3.5 Partial functions

Besides not using non-determinism for events, users have to follow another restriction.

When using the bind operator (>>>=), the second argument is a function of type a →
Dist b, that is, constructs a new distribution. As we have discussed before, distributions

need to sum up to a probability of 1.0, and the distributions we create via (>>>=) are no

exception. This restriction is violated if we use partial functions as second argument of

(>>>=). Recall the definition coin that describes a uniform distribution of type Bool , and

consider the function partialPattern that depends on coin, but maps False to failed .

partialPattern ::Dist Bool

partialPattern = coin >>>= (λb → if b then certainly True else failed)

Due to the partial pattern matching in partialPattern, the resulting distribution does not

sum up to 1.0 anymore, thus, violates the rule for a valid distribution. By performing a

query with the predicate const True, we can observe this property.

> (const True) ?? partialPattern

0.5

We only allow to filter distributions when a probability is computed using (??), but not

in any other situation. In the current implementation, this restriction on functions when

using (>>>=) is neither statically nor dynamically enforced, but a coding convention that

users should keep in mind and follow when working with the library.

3.6 Monad laws

When we comply with the restrictions we have discussed above, the operators (>>>=) and

certainly allow us to formulate probabilistic programs as one would expect. However,

there is one obvious question that we did not answer yet. We did not check whether

the operator (>>>=) together with certainly actually forms a monad as the name of the

operator suggests. That is, we have to check whether the following three laws hold for

all distributions d and all values x , f , and g of appropriate types.

• d >>>= certainly ≡ d

• certainly x >>>= f ≡ f x

• (d >>>= f )>>>= g ≡ d >>>= (λy → f y >>>= g)
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In the previous subsection, we have already observed that the first equality does not hold

in general. For example, we have seen that there is a context that is able to distinguish

the left-hand side from the right-hand side. For instance, while the expression

(λ(Dist x p) → True) coin

yields True twice, the expression

(λ(Dist x p) → True) (coin >>>= certainly)

yields True only once. As most Curry semantics are based on sets – and not on multisets,

the two sides of the equality would be the same. Notwithstanding, in a multiset semantics

the user could still not observe the difference between the two expressions because he

does not have access to the Dist-constructor. The user cannot pattern match on a Dist-

constructor, but only use the combinator (??) to inspect a distribution.

In order to discuss the validity of the monad laws more rigorously, we apply equational

reasoning to check whether the monad laws might fail.

The first monad law Let d ::Dist τ , then we reason as follows about the first monad law:

d >>>= certainly

≡ { Definition of (>>>=) }
let Dist x p = d

Dist y q = certainly x

in Dist y (p ∗. q)
≡ { Definition of certainly }
let Dist x p = d

Dist y q = Dist x 1.0

in Dist y (p ∗. q)
≡ { Inlining of Dist y q = Dist x 1.0 }
let Dist x p = d in Dist x (p ∗. 1.0)
≡ { Definition of (∗.) }
let Dist x p = d in Dist x p
?≡
d

Does the last step hold in general? It looks good for the deterministic case with d =

Dist evnt prb.

let Dist x p = Dist evnt prb in Dist x p

≡
Dist evnt prb

However, the equality let Dist x p = d in Dist x p ≡ d does not hold in general. For

instance, let us consider the case d = failed .

let Dist x p = failed in Dist x p

≡
Dist failed failed

�≡
failed

That is, the left-hand side is more defined than the right-hand side if d = failed .
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Because the user cannot access the Dist-constructor she cannot observe this difference.

The user can only compare two distributions by using the querying operator (??). There-

fore, in the following, we will show that the monad laws hold if we consider a context

of the form pred ?? d , where pred is an arbitrary predicate. Recall that we defined the

operator (??) as follows:

(??) :: (a → Bool) → Dist a → Probability

(??) pred d = foldValues (+.) 0.0 (allValues (prob (filterDist pred d)))

Fortunately, the monad laws already hold if we consider the context filterDist pred for an

arbitrary predicate pred ::a → Bool . Therefore, we will show that the following equalities

hold for all distributions d , and all values x , pred , f , and g of appropriate types.

(1) filterDist pred (d >>>= certainly) ≡ filterDist pred d

(2) filterDist pred (certainly x >>>= f ) ≡ filterDist pred (f x )

(3) filterDist pred ((d >>>= f )>>>= g)) ≡ filterDist pred (d >>>= (λy → f y >>>= g))

In the following, we will first show that equation (1) holds. We reason as follows for all

distributions d ::Dist τ and predicates pred :: τ → Bool .

filterDist pred (d >>>= certainly)

≡ { Reasoning above }
filterDist pred (let Dist x p = d in Dist x p)

≡ { Definition of filterDist }
let Dist y q = (let Dist x p = d in Dist x p)

in if (pred y) then (Dist y q) else failed

≡ { Inline let-declaration }
let Dist y q = d

in if (pred y) then (Dist y q) else failed

≡ { Definition of filterDist }
filterDist pred d

The (>>>=)-operator defers the pattern matching to the right-hand side via a let-

expression. This so-called lazy pattern matching causes the monad laws to not hold

without any context. However, because filterDist introduces a lazy pattern matching via

a let-expression as well, observing two distributions via filterDist hides the difference

between the two sides of the equation.

The second monad law. For the second monad law (2), we reason as follows for all x :: τ1,

and all f :: τ1 → Dist τ2.

certainly x >>>= f

≡ { Definition of (>>>=) }
let Dist y p = certainly x

Dist z q = f y

in Dist z (p ∗. q)
≡ { Definition of certainly }
let Dist y p = Dist x 1.0

Dist z q = f y

in Dist z (p ∗. q)
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≡ { Inlining of Dist y p = Dist x 1.0 }
let Dist z q = f x in Dist z (1.0 ∗. q)
≡ { Definition of (∗.) }
let Dist z q = f x in Dist z q
?≡
f x

Here, we observe the same restrictions as before, for example, if f yields failed for any

argument x the equality does not hold. Once again, we consider the context filterDist pred

for all pred :: τ2 → Bool to reason that the user cannot observe the difference.

filterDist pred (let Dist z q = f x in Dist z q)

≡ { Definition of filterDist }
let Dist x p = (let Dist z q = f x in Dist z q)

in if (pred x ) then (Dist x p) else failed

≡ { Inline let-declaration }
let Dist x p = f x

in if (pred x ) then (Dist x p) else failed

≡ { Definition of filterDist }
filterDist pred (f x )

Fortunately, the second monad law holds as well in the context of filterDist .

The third monad law. We do not discuss the third monad law (3) in detail here, as it

holds without restrictions – even without the additional context using filterDist . All in

all, certainly and (>>>=) form a valid monad from the user’s point of view.

4 Applications and evaluation

After presenting the basic combinators of the library and motivating the advantages

of modeling distributions using non-determinism, we will implement some exemplary

applications. We reimplement examples that have been characterized as challenging for

probabilistic logic programming by Nampally and Ramakrishnan (2015), who use the ex-

amples to discuss the expressiveness of probabilistic logic programming and its cost with

respect to performance. The examples focus on properties of random strings and their

probabilities. Furthermore, we show benchmarks of these examples and compare them

with the probabilistic languages ProbLog (Kimmig et al . 2011) and WebPPL (Good-

man and Stuhlmüller 2014). These comparisons confirm the advantages of non-strict

non-determinism with respect to performance.

4.1 Random strings

In order to compare our library with other approaches for probabilistic programming,

we reimplement two examples about random strings that have also been implemented in

ProbLog. This implementation can be found online.13 We generate random strings of a

13 https://dtai.cs.kuleuven.be/problog/tutorial/various/04_nampally.html.
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fixed length over the alphabet {a, b} and calculate the probability that this string (a) is

a palindrome and (b) contains the subsequence bb.

First, we define a distribution that picks a character uniformly from the alphabet

{a, b}.
pickChar ::Dist Char

pickChar = uniform [’a’, ’b’ ]

Based on pickChar , we define a distribution that generates a random string of length n,

that is, picks a random char n times. We reuse replicateDist to define this distribution.

randomString :: Int → Dist String

randomString n = replicateDist n (λ() → pickChar)

In order to compute the probability that a random string is a palindrome and contains

a subsequence bb, respectively, we define predicates that test these properties for a given

string. A string is a palindrome, if it reads the same forwards and backwards. The fol-

lowing predicate, thus, checks if the reverse of a given string is equal to the original

string.

palindrome :: String → Bool

palindrome str = str ≡ reverse str

The predicate that checks if a string contains two consecutive bs can be easily defined

via pattern matching and recursion.

consecutiveBs :: String → Bool

consecutiveBs str = case str of

[ ] → False

(’b’ : ’b’ : rest) → True

(c : rest) → consecutiveBs rest

Now, we are ready to perform some queries. What is the probability that a random string

of length 5 is a palindrome?

> palindrome ?? (randomString 5)

0.25

What is the probability that a random string of length 10 contains two consecutive bs?

> consecutiveBs ?? (randomString 10)

0.859375

In general the above definitions of palindrome and consecutiveBs are quite naive, and

thus, inefficient because all strings of the given length have to be enumerated explicitly.

Due to the inefficiency, the ProbLog homepage introduces a more efficient version for both

problems. In the following, we will discuss the alternative implementation to compute the

probability for a palindrome only. This more efficient version has arguments for the index

of the front and back position, picks characters for both ends and then moves the position

toward the middle. That is, instead of naively generating the whole string of length n,

this version checks each pair of front and back position first and fails straightaway, if
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they do not match. If the characters do match, the approach continues by moving both

indices toward each other. In Curry, an implementation of this idea looks as follows:

palindromeEfficient :: Int → Dist (Bool ,String)

palindromeEfficient n = palindrome ′ 1 n

palindrome ′ :: Int → Int → Dist (Bool ,String)

palindrome ′ n1 n2 | n1 ≡ n2 = pickChar >>>= (λc → certainly (True, [c ]))

| n1 > n2 = certainly (True, [ ])

| otherwise = pickChar >>>= (λc1 →
pickChar >>>= (λc2 →
(palindrome ′ (n1 + 1) (n2 − 1))>>>= (λ(b, cs) →
certainly (c1 ≡ c2 ∧ b, c1 : (cs ++ [c2 ])))))

The interesting insight here is that, thanks to the combination of non-determinism and

non-strictness, the evaluation of the first query based on palindrome behaves similar to

the efficient variant in ProbLog. At first, it seems that the query performs poorly, because

the predicate palindrome needs to evaluate the whole list due to the usage of reverse.

The good news is, however, that the non-determinism is only spawned if we evaluate the

elements of that list, and the elements still evaluate non-strictly, when explicitly triggered

by (≡). More precisely, because of the combination of reverse and (≡), the evaluation

starts by checking the first and last characters of a string and only continues to check more

characters, and spawn more non-determinism, if they match. If these characters do not

match, the evaluation fails directly and does not need to check any more characters. In a

nutshell, when using PFLP, we get a version competitive with efficient implementations

although we used a naive generate and test approach.

4.2 Performance comparisons with other languages

Up to now, the only performance comparisons we discussed were for different implemen-

tations of our library in Curry and Haskell. These comparisons showed the advantage of

using non-strict non-determinism concepts for the implementation of the library. Next,

we want to take a look at the comparison with the full-blown probabilistic programming

languages ProbLog and WebPPL. ProbLog is a probabilistic extension of Prolog that is

implemented in Python. WebPPL is the successor of Church; in contrast to Church it is

not implemented in Scheme but in JavaScript.

In order to try to measure the execution of the programs only, we precompiled the

executable for the Curry programs. As Python is an interpreted language, a similar

preparation was not available for ProbLog. However, we used ProbLog as a library in

order to call the Python14 interpreter directly. ProbLog is mainly implemented in Python,

which allows users to import ProbLog as a Python package.15 For WebPPL, we used

node.js16 to run the JavaScript program as a terminal application. All of the following

running times are the mean of 1000 runs as calculated by the Haskell tool bench17 that

we use to run the benchmarks.

14 We use version 2.7.10 of Python.
15 https://dtai.cs.kuleuven.be/problog/tutorial/advanced/01_python_interface.html
16 We use version 8.12.0 of node.js.
17 https://hackage.haskell.org/package/bench
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ProbLog for n = 5

WebPPL for n = 9

Fig. 5. Getting only sixes when rolling n dice.

We compare the running times based on the two examples we already discussed: the

dice rolling example presented in Section 3.2 and the palindrome example from the

previous subsection.

Dice Rolling. As discussed before, non-strict non-determinism performs pretty well for

the dice rolling example, as a great deal of the search space is pruned early. Figure 5

shows an impressive advantage of our library in comparison with ProbLog and WebPPL.

The x-axis represents the number of rolled dice and we present the time in milliseconds

in logarithmic scale on the y-axis.

In order to demonstrate that our library outperforms ProbLog and WebPPL by several

orders of magnitude for this example, we also run the Curry implementation for bigger

values of n that eventually had the same running time as the last tested value for the

other languages. The right part of Figure 5 shows the running times for 25–5000 dice.

We can see that our library can compute the probability for getting only sixes for 2500

dice in roughly the same time as ProbLog for 5 dice. The running times for WebPPL

seem very bad in the beginning, but after a few throws it becomes obvious that there is

a constant overhead. In fact, Nogatz et al. (2018) observe and discuss this overhead as

well. Nevertheless, whereas WebPPL computes the probability for 9 dice, our library can

compute the probability for 2500 dice in roughly the same time.

Palindrome. In order to back up the results of the previous example, Figure 6 shows

benchmarks for implementations of the naive and the efficient versions in Curry, ProbLog

and WebPPL. The x-axis represents the length of the generated palindrome and, once

again, we present the time in milliseconds in logarithmic scale on the y-axis.

The figure uses dashed bars for the efficient version of the algorithm and a solid filling

for the naive algorithm. The naive algorithm scales pretty bad in ProbLog and WebPPL.

The Curry version is still applicable up to 30 as its running time is similar to all three

efficient versions. Overall, the efficient versions all perform in a similar time range, but

WebPPL shows a slight performance advantage for an increasing length of the string.

More precisely, the efficient WebPPL implementation performs a query for strings of

length 50 in the same time as the efficient Curry and ProbLog perform a query for
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Fig. 6. Palindrome computation for a string of length n.

strings of length 40. That is, the efficient WebPPL implementation outperforms the

other implementations by roughly two orders of magnitude.

5 Related and future work

The approach of this paper is based on the work by Erwig and Kollmansberger (2006),

who introduce a Haskell library that represents distributions as lists of event-probability

pairs. Their library also provides a simple sampling mechanism to perform inference on

distributions. Inference algorithms come into play because common examples in proba-

bilistic programming have an exponential growth and it is not feasible to compute the

whole distribution. Similarly, Ścibior et al. (2015) present a more efficient implementation

using a DSL in Haskell. They represent distributions as a free monad and inference algo-

rithms as an interpretation of the monadic structure. Thanks to this interpretation, the

approach is competitive to full-blown probabilistic programming languages with respect

to performance. PFLP provides functions to sample from distributions as well. How-

ever, in this work, we focus on modeling distributions and do not discuss any sampling

mechanism. In particular, as future work we plan to investigate whether we can benefit

from the improved performance as presented here in the case of sampling. Furthermore,

a more detailed investigation of the performance of non-determinism in comparison to a

list model is a topic for another paper.

The benefit with respect to the combination of non-strictness and non-determinism

is similar to the benefit of property-based testing using Curry-like non-determinism in

Haskell (Runciman et al . 2008) and Curry (Christiansen and Fischer 2008). In property-

based testing, sometimes we want to generate test cases that satisfy a precondition. With

Curry-like non-determinism the precondition can prune the search space early, while a

list-based implementation has to generate all test cases and filter them afterwards. Both

applications, probabilistic programming and property-based testing, are examples, where

built-in non-determinism outperforms list-based approaches as introduced by Wadler

(1985). In comparison to property-based testing, here, we observe that we can even

add a kind of monadic layer on top of the non-determinism that computes additional
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information and still preserve the demand-driven behavior. However, the additional in-

formation has to be evaluated strictly – as it is the case for probabilities, otherwise we

might lose non-deterministic results.

There are other more elaborated approaches to implement a library for probabilistic

programming. For example, Kiselyov and Shan (2009) extend their library for proba-

bilistic programming in OCaml with a construct for lazy evaluation to achieve similar

behavior with respect to efficiency. However, they use lazy evaluation for a concrete ap-

plication based on importance sampling. Due to the combination of non-strictness and

non-determinism, we can efficiently calculate the total probability of the resulting distri-

bution without utilizing sampling.

As future work, we see a high potential for performance improvements for the Curry

compiler KiCS2. PFLP serves as a starting point for further studies of functional logic

features in practical applications. For example, we would expect the running times of the

strict implementation based on non-determinism to be approximately as efficient as a

list-based implementation. However, as the numbers in Section 3 show, the list approach

is considerably faster.

The library’s design does not support the use of non-determinism in events or prob-

abilities of a distribution. In case of deeper non-determinism, we have to be careful to

trigger all non-determinism when querying a distribution as shown in Section 3. Hence,

the extension of the library with an interface using non-determinism on the user’s side

is an idea worth studying.

Last but not least, we see an opportunity to apply ideas and solutions of the functional

logic paradigm in probabilistic programming. For instance, Christiansen et al. (2010)

investigate free theorems for functional logic programs. As their work considers non-

determinism and sharing, adapting it to probabilistic programming should be easy. As

another example, Braßel (2009) presents a debugger for Curry that works well with

non-determinism. Hence, it should be possible to reuse these ideas in the setting of

probabilistic programming as well.

6 Conclusion

We have implemented a simple library for probabilistic programming in a functional

logic programming language, namely Curry. Such a library proves to be a good fit for

a functional logic language, because both paradigms share similar features. While other

libraries need to reimplement features specific to probabilistic programming, we solely

rely on core features of functional logic languages.

The key idea of the library is to use non-determinism to model distributions. We dis-

cussed design choices as well as the disadvantages and advantages that result from this

approach. In the end, the library provides non-strict probabilistic combinators in order

to avoid spawning unnecessary non-deterministic computations. These non-strict combi-

nators have benefits in terms of performance due to early pruning. Using combinators

that are too strict leads to a loss of these performance benefits. Fortunately, the user

does not have to worry about using the right amount of strictness as long as she only

uses the provided combinators.

There are, however, two restrictions the user has to follow when using the library. If the

user does not follow these restrictions, a program may behave unexpectedly. Events may
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not be non-deterministic and the second argument of (>>>=)-operator may not be partial.

Notwithstanding, we want to emphasize that the restrictions do not affect expressibility.

In fact, a programming language like ProbLog shows similar behavior when mixing non-

determinism and probabilities as our implementation.

Last but not least, we showed that the library obeys the expected monad laws with

respect to observational behavior and reimplemented examples from the probabilistic

programming literature to compare the performance of our library with other existing

languages.
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Appendix: Predefined Curry Functions

This section presents all predefined functions that are used in this paper.

(∧) :: Bool → Bool → Bool

False ∧ x = False

True ∧ x = x

foldr :: (a → b → b) → b → [a ] → b

foldr f z [ ] = z

foldr f z (x : xs) = f x (foldr f z xs)

zipWith :: (a → b → c) → [a ] → [b ] → [c ]

zipWith f [ ] ys = [ ]

zipWith f (x : xs) [ ] = [ ]

zipWith f (x : xs) (y : ys) = f x y : zipWith f xs ys
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repeat :: a → [a ]

repeat x = x : repeat x

length :: [a ] → Int

length [ ] = 0

length (x : xs) = 1 + length xs

filter :: (a → Bool) → [a ] → [a ]

filter p [ ] = [ ]

filter p (x : xs) = if p x then x : filter p xs else filter p xs

all :: (a → Bool) → [a ] → Bool

all p xs = foldr (∧) True (map p xs)

not :: Bool → Bool

not False = True

not True = False

const :: a → b → a

const x y = x
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