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ON SPACES OF COMPACT OPERATORS 
IN NON-ARCHIMEDEAN BANACH SPACES 

BY 

TAKEMITSU KIYOSAWA 

ABSTRACT. Let £ be a non-trivial complete non-Archimedean valued 
field and let E be an infinite-dimensional Banach space over K. Some of 
the main results are: 
(1) K is spherically complete if and only if every weakly convergent 
sequence in /°° is norm-convergent. 
(2) If the valuation of K is dense, then CQ is complemented in E if and 
only if C(£,co) is n o t complemented in L(£,co), where L(£,co) is the 
space of all continuous linear operators from E to c$ and C(E,co) is the 
subspace of L(£, co) consisting of all compact linear operators. 

1. Throughout this paper, E and F denote non-Archimedean Banach spaces over 
a non-trivial, complete, non-Archimedean valued field K. A subset A of £ is said 
to be compactoid if for every e > 0, there exists a finite subset X of E such that 
A C Be(0) + C0(X), where Be(0) = {x G E : \\x\\ ^ e} and C0(X) is the absolutely 
convex hull of X, i.e., 

C0(X) = Q ] *xx : A, G K, \\x\ ^ \,x G X . 
Lex j 

A linear operator T : £ —> F is compact if 7X#i(0)) is compactoid in F. Clearly, 
every compact operator is continuous. L(E,F) denotes the space of all continuous 
linear operators from E to F and C(E,F) the subspace of L(£,F) consisting of all 
compact operators. 

In Archimedean analysis, a linear operator T from E to F is called compact if the 
subset T(B\(0)) of F is precompact. However, in non-Archimedean analysis, if we 
use this definition for a compact operator, then the existence of non-zero compact 
operator implies that K is locally compact ([10] p. 160). Amice [1] proved that if K 
is locally compact, then a subset of E is compactoid if and only if it is precompact. 
For the properties on compact operators, see [2], [3], [5], [10] and [12] etc. 

From here, we assume that E is infinite-dimensional. Every infinite-dimensional 
Banach space contains a subspace which is isomorphic to CQ. 
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The purpose of this paper is to consider the space L(E,F) having the sequential 
convergence property, defined as below, and its subspace C(E,F). 

DEFINITION. The space L(£, F) has the sequential convergence property (s.c.p.), if 
for every sequence (Tn) C L(E,F) such that for each J G Ê , limw Tn(x) = 0 we have 
that lim„ | | r j = 0. 

The s.c.p. of E'(= L(£, K)) means that every weak*-convergent sequence in E' 
is norm-convergent. In Archimedean analysis, it is known ([4], [9]) that the dual of 
every infinite-dimensional Banach space fails to have the s.c.p. In our case, we prove 
the following: 

(1) If the valuation ofK is discrete, then L(E,F) has the s.c.p. And if the valuation 
of K is dense, then the following conditions (i)-(iii) are equivalent: 

(i) E' fails to have the s.c.p. 
(ii) Co is complemented in E. 
(iii) C(£, Co) is not completed in L(£, Co). 

If E has a base, then Co is complemented in E ([10] p. 74), and hence it follows 
from (1) that C(E, Co) is not complemented in L(£, Co). The problem whether C(E,F) 
is complemented in L(E,F) has been extensively studied by many authors in the 
Archimedean case (cf. [6], [13], [14]). Our result gives an answer to the problem in 
the non-Archimedean case. Further, we obtain the following result, which shows the 
converse of Monna [7, p. 70, Theorem 6] is also true: 

(2) The field K is spherically complete if and only if every weakly convergent 
sequence in l°° is norm-convergent. 

The following theorem ([10], p. 142) shows that C(£,F) is closed in L(E,F) and 
it will be used in the sequel. 

THEOREM 1. Let T G L(E,F). Then T is compact if and only if for every e > 0, 
there exists S G L(E,F) such that S is of finite rank and \\T — S\\ < e. 

Let 7T denote an arbitrary fixed element of K with 0 < |7r| < 1. The letter N stands 
for the set of positive integers. Other terms and symbols will be used as in [10]. 

2. We begin by proving the following proposition. 

PROPOSITION 2. T = (Tu T2,..., Tn,...) G L(E, ©„eyv F). Then T G C(£, ©MGN F) 
if and only if for every n EiV, Tn G C(E,F) and lim„ ||r„|| = 0. 

PROOF. Let T G C(E, 0n G A , F). Then Tn=PnoT with 

Pn'-®F-^F:{xn)n^xn. 
nEN 

Since T is compact and Pn is continuous, Tn is compact. If lim„ ||r„|| ^ 0, then we 
can assume that there exists e > 0 with \\Tn\\ > e for all n G N. Hence, for all n G N, 
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there exists xn G F with ||jcn|| ^ 1 and ||rw(jcn)|| > e. Since T is compact, there are 
ax, a2,..., ak in 0 „ G N F such that 

T(Bl(0))C{ye@F:\\y\\^e} + Co{aua2,...,ak}. 

For y = 1,2,..., k, put a, = (#/„)«• Since lim^ a;n = 0, there exists no E N such that 
\\ajm\\ < e for m ^ /IQ, y = 1,2,...,/:. Since xm G #i(0), we have 

k 

T(xm) = dm + Y^ ocjmah 

7=1 

where dm = (dmn)n E 0 w € i V F , \\dm\\ ^ e and a,m G K, \ajm\ ^ 1. Hence Tm(xm) -
^™ = 5^=i ajmajm. But || £*= 1 of/wa/w|| < e while ||rOT(jcm) - dmm|| > e. This is a 
contradiction. 

Conversely, assume that Tn G C(E, F), n EN, and lim„ ||rn|| = 0. Then by Theorem 
1, for each n E N and for each e > 0, there exists Sen G L(E,F) such that Sen(E) is 
finite-dimensional and \\Tn — Sen\\ < e. Put 

Se
(w) = ( S e l , S £ 2 , . . . , S e „ , 0 , 0 , . . . ) : 

Then Se
("} G L(E,@neNF) and Se

(rt)(F) is finite-dimensional. For every e > 0, there 
exists no EN such that \\Tm\\ <e for all m =̂  «o- Hence 

| | r - ^ o ) | | - max ( | | r f - S e i | | J r w | | ) < e . 
Z = l , . . . , / I 0 

This means that T EC(E, ®neN F). • 

COROLLARY 3. / /L(F, 0r tGiV F) = C(E, 0 w e N F), then L(E,F) has the s.c.p. More­
over, if L(E,F) = C(E,F), then the converse is also true. 

PROOF. Let (Tn) be a sequence in L(E,F) with lim^ T^jc) = 0 for every x G E. 
Then by the Banach-Steinhaus Theorem, sup„ ||rn|| < oo. Put 

r:E — 0 F : * —(rn(x))„. 
n(EN 

Then T is continuous and therefore compact. By Proposition 2, limw \\Tn\\ = 0 . 
Conversely, assume that L(E,F) — C{E,F) and L(E,F) has the s.c.p. Let 

T = (TuT2,...,Tn,...) G L(F,©nG7VF). Then for every n G N, Tn G L(E,F) 
and lim„r„(jc) = 0 for any x G F. By assumption limn ||r„|| = 0. The conclusion 
T G C(F, 0n G i V F) follows directly from Proposition 2. D 

The following corollary is due to De Grande-de Kimpe [2]. 
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COROLLARY 4. The dual E' has the s.c.p. if and only if L(E, Co) — C(E, CQ). 

A Banach space F is said to be weakly injective if for any Banach space X and for 
any subspace D of X, every S G L(D,F) has an extension S G L(X,F), and F is said 
to be weakly projective if for every Banach space Y and for every continuous linear 
surjection T :Y —> F, there exists S G L(F, Y) such that TS = idF. It is known ([10, 
p. 177, 106]) that a Banach space is weakly projective if and only if it has a base and 
that if a Banach space is spherically complete, then it is weakly injective. 

By Corollary 5.20 in [10] and Corollary 3 we obtain the following corollary. 

COROLLARY 5. Let the valuation of K be dense. Let E be weakly injective and 
F weakly projective. Then L(E,F) has the s.c.p. if and only if L(E,@neNF) = 

C\E") \BnEN ^' 

THEOREM 6. If E contains a complemented subspace of countable type, then for 
every F, L(E,F) fails to have the s.c.p. 

PROOF. Let E\ be a complemented subspace of countable type and EQ a subspace 
of E such that E = E\ (& E0. Then there exist a number t with 0 < t ^ 1 and a 
r-orthogonal base (xn) for E\. We can assume that for all n G N \ir\ ^ ||jcn|| ^ 1. 
Every x € E can be written as 

X — XQ + 2_^ anXn<> 
n<EN 

where xo G £o and an G K, n G N. Since there exists a number s (0 < s ^ 1) such 
that E\ is s-orthogonal to EQ ([10], p. 63), ||JC|| ^ ts\ir\ \an\ for all n G N. Let a G F, 
a ^ 0, be fixed and we define a linear operator 

Tn : E —» F by Tn(x) = ana (n G N). 

Then for every i G £ , 

||r„(jc)|| è M 11*11 (n€N). 
\-K\tS 

Hence Tn G L(£,F) and lim„ Tn(x) = 0. While for all n 6 N, 

IIT M > l|r„fa)|| _ M > lui 
llnll= ikii "iwr"11 ' 

which completes the proof. D 

If E has a base, then E satisfies the condition of Theorem 6 ([10], p. 74). Hence 
we have 

COROLLARY 1. If E has a base, then L(E,F) fails to have the s.c.p. 

COROLLARY 8. The valuation of K is discrete if and only if (Z00)' fails to have the 
s.c.p. 
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PROOF. If the valuation of K is discrete, then Z°° has a base. Hence by Corollary 7, 
(l°°)f fails to have the s.c.p. If the valuation of K is dense, then L(/°°, c0) = C(/°°, c0) 
([10], p. 181). Hence (/°°)' has the s.c.p. • 

3. Next, we characterize the spherical completeness of K. 

THEOREM 9. If there exists a E F, a ^ 0, swc/z f/wif the subspace {\a : \ € K} of F 
is complemented, then the following statements are equivalent. 

(1) K is not spherically complete. 
(2) (X„ € J V F/®„ 6 W F) ' = {0}. 
(3) For every h G (X„eAr F)f, lim„ A(an) = 0, where a\ = (a, 0,0,. . .) , 2L2 =: 

(0,fl,0,0,... ) , . . . . 

PROOF. The implication (1) => (2) follows from Theorem 4.1 and Corollary 4.3 in 
[10]. We now show the implication (2) => (3). By hypothesis there exists a subspace 
Fi of F such that F = {Xa : A G if} 0 Fi. Let x = (xn)n G X„eN F and let 

*„ = ana + yn (an EK,yn EFun EN). 

There exists a number £ (0 < t ^ 1) such that for every n EN, 

(*) rmax( | |ana | | , | |yn | | )^ | |^ | | . 

Suppose that (3) is not true. Then we can assume that there exist e > 0 and h G 
O^neN F)' such that \h(an)\ ^ e for each n EN. Hence, 

(**) \\an(h{*n»-la\\ S M ^ M («€#) 

and the linear operator 

vi : X F -> X F : * - • ( c a ^ a , , ) ) " ' ^ 
n€iV «eN 

is continuous. If x G 0 w G ^ F , then by (*) and (**), 

vi(*) = 5 3 an(/i(a„))_1an G £ ^ F and A o vx(x) = ^ a„. 
n€iV n€N nG/V 

Further, since for every x G XnG# F and for every n EN \\ana\\ ^ \\x\\/t, the linear 
operator v2 : Xw€iV F —> XneN F defined by 

v2(x) = (a2a, a3a,...) 

is continuous. Define g E (Xn€Ar F)' by 

g(x) = al+{hovxo v2)(x) -(ho vi)(x) (x E X F). 
«e/v 
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If x G (&n(ENF, then v2(x) G Ç&neNF and g(x) = 0. Thus we can define/ G 
(KeN Fl®neNF)' by}{x) = g(x). Let b = (a, a , . . . , a , . . . ) G XneNF. Thenf(b) = 
gib) = 1 and (Xw€N F/®neN F)' ^ {0}. This contradicts (2). Finally, to prove 
(3) => (1), let x = ixn)n G ©nGA,F, and let xn = ana + yn ian eK,yneFune N). 
Define a linear operator 

f :®F->K by fix) = Y,<*n. 
neN nEN 

Since 

/ G (©w€w F)'. If AT is spherically complete, then/ has an extension g G (Xn€# F)'. 
For all nEN, g(an) =/(a„) = 1. This contradicts (3). • 

In the following corollary, the implication (1) => (2) is well known ([7], p. 70), 
(2) => (3) => (4) are obvious, and (4) => (1) is a special case of Theorem 9. It is also 
well known that (5) is equivalent to (1) (cf. [10]); we include (5) here for the sake of 
completeness: 

COROLLARY 10. The following statements are equivalent. 
(1) K is spherically complete. 
il) In every Banach space E over K, every weakly convergent sequence is norm-

convergent. 
(3) In l°°, every weakly convergent sequence is norm-convergent 
(4) There exists an element x' G il00)' such that ]\mnx'(en) ^ 0, where e\ = 

(1,0,0,...),*2 = (0 ,1 ,0 ,0 , . . . ) , . . . . 
(5) l°° is spherically complete. 

COROLLARY 11. The following statements are equivalent. 
(1) L((/00),,co) = C((/00),,co). 
(2) K is spherically complete and L(/°°, Co) = C(/0°, CQ). 

PROOF. (1) => (2). If K is not spherically complete, then il00)' is linearly home-
omorphic to c$. This contradicts (1). Hence K is spherically complete. If the val­
uation of K is discrete, then il00)' has a base. By Corollaries 4 and 7, we have 
L((/°°y, Co) T̂  C((/°°y,co). Hence the valuation of K is dense. Combining Corollaries 
4 and 8, we conclude that L(/°°, c0) = C(/°°, c0). 

(2) => (1). Suppose that L(/°°,c0) = C(/°°,c0), then the valuation of K is dense. 
Since K is spherically complete, il00)' is spherically complete ([10], p. 101). By 
Corollary 5.20 in [10], LUI00)', c0) = c((/°°)', c0). • 

4. Finally, we investigate spaces L(£,co) in which C(£,co) is complemented. If 
E' fails to have the s.c.p., then there exists a sequence ix'n) C £ ' such that for every 
x G E limnx'nix) = 0 and 1 ^ | |^ | | < 1/|TT| for each « G N. For A = (An)n G /°°, 
define Hx G L(£, c0) by Hxix) = i\nx'nix))n. 
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LEMMA 12. Suppose that E' fails to have the s.c.p. Then the linear operator 

O : / 0 0 — L ( £ , c 0 ) : A —tfA 

is injective and continuous. Moreover, if A G Co, tnen ^(A) £ C(£,co). 

REMARK. It is known for long (and in fact it follows easily from Proposition 2) that 
T G L(E,c0) is compact iff T(x) = (fn(x))n with (/„) C E', lim„ \\fn\\ = 0. 

PROOF. Since ||JC |̂| ^ 1, O is injective. For every À G Z00, A ^ 0, 

IIAII " l|A|| " H -

Hence O is continuous. Let À = (Xn)n € Co. The conclusion O(À) G C(£,co) then 
follows directly from the above remark. • 

PROPOSITION 13. If E' fails to have the s.c.p., then there exists a continuous projection 
P in L{E, c0) such that P(L(E, c0)) = <D(/°°) and P(C(E, c0)) = O(c0). 

PROOF. For a number eo (0 < eo < 1), there exists yn G E (n G N) such that 

1 , < ll/ll f < \X'n<yn)\ 1 " e 0 = I W I _ e 0 = l ^ -
Put xn = {x'n{yn)r

xyn. Then x'n(xn) = 1 and \\xn\\ ^ 1/(1 - c0). For 7 G L(£,c0), let 
7X*) = (/„(*))„, and define Ar G /°° by Ar - (/„(*„))„. Set P (D = 0>(Ar). Then F is 
the required operator as we now show the following: Since H/*!! ^ 1/(1 — eo)|7r|, P is 
continuous. For every i G £ , 

mx^xT)))(x) = (fn(xn)x'n(x))n = mxT))(x). 

It follows that (P o P)(T) — P(T). Hence the operator P is a projection in L(£,c0). 
Let A = (Xn)n G /°°, and define £/ G L(£,c0) by £/(jt) = ( A ^ (•*))« (x G £) . Then 
/>(£/) = O(A). This means that P(L(E, c0)) = 0(/°°). Let S G C(£, c0). By the remark 
in Lemma 12, S(x) = (gn(x))„ with (gn) C E', \\mn\\gn\\ = 0. Since \\gn(xn)\\ ^ 
IU/i||/(l-co), A5 = (gn(xn))n £ c0. This implies that/>(C(£,c0)) C O(c0). Conversely, 
let // = (/xn)w G Co, and define a linear operator R : E —> CQ by /?(JC) = (^^(jt)),2. 
Then by the same proof as that of Lemma 12, it can be proved that R G C(£,co). 
It follows immediately from the definition of P that P(R) = 0(/i). Thus the proof is 
complete. • 

THEOREM 14. Let the valuation of K be dense. If E' fails to have the s.c.p. then 
C(£, Co) is not complemented in L(£, Co). 

PROOF. Suppose that C(£,co) is complemented in L(£,co). Then there exists a 
subspace L0 of L(£, c0) such that L{E1 c0) = C{E1 CQ) 0 L0. For every A G /°°, there 
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exists T\ G C(E,c0) and T2 G L0 such that O(A) = Tx + T2. By Lemma 12 and 
Proposition 13 there is a unique element A^ of c$ such that P(T\) = O(A^). Consider 
a linear operator Q from /°° into Co defined by Q(A) = Ari. By Lemma 12, O ^ ) G 
C(£, Co), and thus Q o g(A) = gCA^) = Ao(Ari)- Let (xn) be the sequence in E which 
is defined in the proof of Proposition 13, and let T\(x) = (hn(x))n (x G E). Then 
Ar, = (hn(xn))n and (0>(Ari ))(*) = (hn(xn)x'n(x))n for every x G E. Hence, 

Ao>(Ari) = (/î/zfeKfe))Az = (hn(xn))n = XTl. 

This means that Q o Q(A) = g(A). We next show that Q is continuous. For every 
A G /°° A ^ 0 

||g(A)|| = max{|/ i„fa)|:ne^}^ Ĥ H 

11*11 ||A|| - | | A | | H -
Since there exists t (0 < t ^ 1) such that f||ri|| ^ /max(||ri||, ||r2||) ^ ||0(A)|| ([10], 
p. 63), 

II6WII <r 11^)11 ^ 1 
||A|| - r||A||H - rK|2" 

This implies that Q is continuous. Finally, for every \x G Co, Q(/i) = M- Thus g is a 
continuous projection from /°° onto CQ. However, since the valuation of K is dense, 
this contradicts Corollary 5.19 in [10]. • 

COROLLARY 15. Let the valuation ofK be dense. Then the following are equivalent. 
(1) Co is not complemented in E. (Recall that E contains a sub space which is 

isomorphic to CQ). 
(2) L(E,co) = C(E,c0). 
(3) C(£, Co) is complemented in L(E, Co). 

PROOF. The equivalence (1) & (2) is due to De Grande-de Kimpe [2]. (Throughout 
her paper the spherical completeness of K is assumed, however this part holds without 
this assumption.) The implication (2) => (3) is obvious. We shall show the implication 
(3) => (2). If C(£,co) is complemented in L(£,co), then by Theorem 14 E' has the 
s.c.p. Hence L(E, c0) = C(E, Co), which completes the proof. • 

If the valuation of K is discrete, then by Corollary 6, L(£,co) ^ C(£,co) and 
C(£, Co) is complemented in L(£, Co) ([10], p. 108). Combining these with Corollaries 
7 and 15, we have the following: 

COROLLARY 16. Let the valuation of K be dense. If E has a base, then C(E,co) is 
not complemented in L(£, Co). 

There is a variety of Banach spaces with basis; many of them appear in [10] and 
[11]. Further, we obtain the following result. 

COROLLARY 17. If K is not spherically complete and E has a base, then C(l°°,E') 
is not complemented in L(l°°,Ef). In particular, C(/00,/00) is not complemented in 
La00,/00). 
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To show this we need the following lemma: 

LEMMA 18. Let F be an infinite-dimensional Banach space such that F is comple­
mented in F". Suppose that C(E,F) is not complemented in L(E,F), then C(F'\E') 
is not complemented in L(Ff, E'). 

PROOF. In the Archimedean case this lemma was shown by T. H. Kuo [6]. In our 
case we can also prove similarly to his proof: Let T G L(E,F) and let T G L(F',E') 
be the dual operator of T, then it is well known that ||r|| = \\T% T"\E = T and that 
if T e C(E,F), then V G C(F',E'). Let Q be a continuous projection of F" onto 
F. Suppose that R is a continuous projection of L(F',Ef) onto C(F',E'). Define an 
operator P of L{E,F) to C(E,F) by (PT)(x) = Q{(FT')\x)). Then P is a continuous 
projection of L(E,F) onto C(E,F). This is a contradiction. 

PROOF OF COROLLARY 17. By hypothesis CQ is reflexive. Hence c$ is complemented 
in C'Q and (co)' = /°°. Since E has a base, Co is complemented in E. Using Corollary 
16 and Lemma 18, we complete the proof. • 
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