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AN EXTENSION OF A HARDY-LITTLEWOOD-POLYA
INEQUALITY

by A. ERDELYI

(Received 11th May 1976, revised 17th August 1976)

1.

The Hardy-Littlewood-Polya inequality in question can be written in the form

f K(xly)f(y)y-ldyl
o

«||r"K(0llil|y(I/pV7(y)llp. U-0

Here and throughout, all functions are assumed to be locally integrable on ]0, °°[, 1 =s
p =£<», p~'+ (pT1 = 1 (with similar conventions for q,r,s), \\.\\p is the usual norm on
1/(0, oo), and if the right hand side is finite, then (1.1) is understood to mean that

Kf(x)= f K(xly)f(y)y~>dy, x>0 (1.2)
Jo

defines a locally integrable function Kf for which (1.1) holds.
(1.1) is a paraphrase of Lemma 1 of (3). To see this, take

H(x, y) = xa-1-(l/('')y("p')-°K(y/x)

in that lemma. The lemma itself is an elaboration of Theorem 319 of (2) and was used
by Kober for the investigation of the operators of fractional integration named after
him. The form chosen here exhibits the relation of the inequality of Hardy, Little-
wood, and Polya to the well-known convolution inequality ||/* g\\p =s ||/||i||g||p. This
relationship becomes more conspicuous if one introduces the abbreviation

p (1-3)

when (1.1) becomes

In several contexts, for instance in connection with the Stieltjes transformation, it
is desirable to replace /"" in (1.3) by a weighting factor which behaves at 0 like t~° and
at infinity like t~b, say. The simplest such factor is

Ub{t)=C for 0<t^l,= rb for t > 1. (1.5)

In analogy with (1.3) the notation

MI*fc, = ll«"''&*(0/(*)||, (1.6)

will be used. It is then natural to ask whether there is an inequality similar to (1.4) but
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12 A. ERDELYI

involving (1.6). The result we give corresponds to ||/*g||, ^ ||/IU|g||P with p~l-q'l +
r~l = 1(2, Theorem 280) (this includes \\f * g\\p «||/||i||g||p), and the proof is modelled on
that given in (2) for the corresponding inequality for sums.

Let

l=£p, q, r *£<*>, p~l-q-l + rl= 1 (1.7)

a 2*0, a ^ A, b «£ 17, b^B, A^r], B^d. (1.8)

Then

P- (1.9)

This inequality has applications to Mellin transforms, Stieltjes transforms, in-
tegrals of fractional order, and certain integral transforms with hypergeometric
kernels (5).

2.

The key to the proof of (1.9) is the following

Lemma. Under the conditions (1.8),

UB(X) « Ub(y)UMy) x > 0, y > 0.

The lines j c = l , y = l , x = y divide the positive quadrant of the x, y plane into six
parts, and in each of the six parts the lemma can be verified by means of the explicit
expressions for the £'s. For instance, if 0 < x «s y =£ 1, then

UB(x)l[Ub(yUr,Axly)] = o w y - * * 1.

To prove (1.9), assume first r> 1 so that p <q and p > 1 so that r<q. By the
lemma we have

*x"«' f Cr,Axly)Ub{y)\K{xly)f(y)\y-ldy
Jo

= I <f»l/xdy,
Jo

where

if, = ixy-^

x = \y"p'CaAyWy)\'"q\x"r'y-l£nAxly)K(x/y)\'">.

Since

\q-pj \q-

from (1.7), we may apply the extended Holder inequality
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Then

\gW\q^\\fM7JK\\qr,Z [xqdy,
Jo

and by integration

which is (1.9).
If r = 1 and p = q, then <f> = 1,

and (1.9) follows as before; and if p = 1 so that q = r, then i/» = 1 and the proof is
similar.

3.

Under suitable conditions operators of the form (1.2) can be composed, and it is of
interest to know whether the composition is commutative. For instance, the com-
mutative property of Kober's operators of fractional integration (3, Theorem 4) gives
the so-called second index law (4) of fractional calculus.

Let

p'1 - q~l + r"1 + s~l = 2, r"' + i " ' ? l ,

a 3s max(0, T), b =£ min(7j, a), t) ^ T, 6 «S a (3.1)

A *£ min(a, TJ, a), B 5= max(b, 0, T).

If \\f\\a.b,p, | |H||,w, l|K|L,«.r are finite, then (1.9) shows that H(Kf) can be represented by
a repeated integral in which the order of integrations may be interchanged by Fubini's
theorem

Gf, (3.2)

where

G(t)={ H(tlu)K(u)u~ldu. (3.3)
Jo

Furthermore, if we set m'1 = r"1 + s"1 - 1, then

llGlU^maxCftr,.*, * ||H|U.T.s||XL,9,r (3.4)

by (1.9), and a second application of (1.9) results in

IIG/IU,, *£ IIHIUJ* IUJ I / IUP- (3.5)
Other deductions from (1.9) include results on the integral operator K defined by

Kf(x) = f K(xt)f(t)dt. (3.6)
Jo
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If (1.7) holds and

a 5=1-Tj, b « 1 - 8, /4=s min(l - b, 17), B ? m a x ( l - a , 9 ) ,

then

\\Kf\UB.q^\\K\Ur\\f\UP. (3.7)

4.

We shall illustrate the application of (1.9) to integral transforms by considering
fractional integrals. The definition of these has been extended in (1) to functions
which fail to satisfy the integrability conditions at the fixed limit of integration, and
this extension will be used here.

Let

K0(t) = 0 for 0 < / ^ l , = r ^ ) 7 ( 1 ~ 7 ) f o r

Kh(t) = K0(t) + 2 ( " O'r"'/[r!r(A - r)] /i = 1,2,3,

Then Kh(t) = O(t'h) if ft 2=1, and f-»0, and K*(0 = O(r*"') for all A as (^«>. It
follows that ||/Co|L<>,<-< +°° for ReA > 1/r', 6 >0, and any 17, while for ft 2= 1 we have
| |Kj „,»,,-<+°° for ReA > 1/r', TJ < 1 - ft, 0 > -ft. Also, ||Ko|U.».« < + °°for ReA 5= 1,0 2=0;
and for ft 2= 1, ||K*||„,,,„<+°o for ReA 2= 1, 77 =s 1 - ft, 0 2=-ft.

The extended definition (1, (1)) of /A is

where ft is a non-negative integer (ft €E Z+) and / is subject to certain integrability
conditions depending on ft. From (1.9) we now have the following results:-

Let ReA > p"1 - q~' 2= 0, and let ft G Z+. If ft = 0, assume a > 0 and if ft 2= 1 assume
0 < a + ft<l,fc + ft<l. Also let A =s a, B & b, B + ft > 0. Then

||/7IIA+R«A.I.+IteM * CII/IU.P- (4.1)

Let ReA ^ 1 and let ft G Z+. If ft = 0, assume a 2= 0, and if ft 2s 1 assume 0 «£
a + ft<l, b + ft=sl. Also let A « a, B ^ fc, B + h^0. Then (4.1) holds with p = 1,

Again, let

for 0 < r < l , = 0 for

HH(t) = H0(t) + 2 ( - Or+1' '"V[r!r(A - r)] ft = 1,2, 3 , . . . ,
<-=o

and define /A by

Then||Ho||^,8,r<+0°forReA > l / r ' ,T j< 1 — ReA, and any 0, while for ft 3s l,||Hh||,,»,,<+<»
for ReA > 1/r', 77 < ft + 1 - ReA, 6 > ft - ReA. Also, ||Ho||,,9,=o< +°° for ReA 2= 1, 77 =s 1 -
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ReA, and for h 3= 1, ||H*|| ,.,,.< +«> for ReA 3= 1, -q =s h + 1 - ReA, 0 5= /i - ReA. From (1.9)
we now have the following results:-

Let ReA > p~' - q'x 3= 0, and let h G Z+. If h = 0, assume b < 1, and if hs= \ assume
a > h, >i< fc < fi + 1. Also let A =£ a, A < h + 1, B & fc. Then

| |/A/IU.B.<,«C||/||o-ReA.1)-ReA.p. (4.2)

Let ReA s* 1 and let h G Z+. If h = 0, assume fc *£ 1, and if h 3= 1 assume a 2= h,
h<b^h + l. Also let .4 «s a, A =s /i + 1, B ^ fc. Then (4.2) holds with p = 1, q = <».

In (4.1) and (4.2) C is independent of /.
The inequality (3.5) has applications to composition of integral transformations,

leading to results corresponding to e.g., (1, (14), (15)) or (5, (7), (11)).
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