
5
Playing the Novikov Game

5.1 Overview

It turns out that the topological Novikov conjecture is only the first example of
a more general phenomenon wherein the fundamental group of a manifold (or
variety or . . . ) plays an extremely large role on the geometry of the manifold –
often mediated through analysis. And, as is clear from Chapter 4.1, this theme
also extends to noncompact manifolds where the role of the fundamental group
is supplemented by the quasi-isometry type of the manifold.

This chapter is about the “Novikov game”: what it is, how to play, and what
are the typical things that happen when you play.

One starts with a theorem about characteristic classes (or an index) true for all
closed manifolds and interprets as being merely the simply connected version
of a more general statement, hopefully true for all groups, where one augments
the simply connected statement by the cohomology of the fundamental group.

As far as I can tell, the first player of this game was Reinhardt Schultz, in the
mid-1970s. One of the nice topological applications of the index theorem is:

Theorem 5.1 (Atiyah and Hirzebruch (1970)) If M is a closed smooth spin
manifold, and M admits a nontrivial smooth S1-action, then

〈A(M), [M]〉 = 0.

For the definition of the A-genus of a spin manifold, see Borel and Hirzebruch
(1959a,b, 1960): it is an analogue of the L-genus that played such an important
role in Chapter 4.

Schultz asked whether this theorem is true for the “higher A-genus” for
non-simply connected manifolds that have smooth circle actions.

One has to be a little careful with this statement. After all, the higher A-
number associated to the fundamental class of any K(π,1)-manifold is nonzero,
but the torus Tn has a circle action! The way around this issue is to not consider
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130 Playing the Novikov Game

all of π1(M), but rather the part that is “orthogonal to the circle,” i.e. the
following:

Theorem 5.2 (Schultz’s conjecture; see Browder and Hsiang, 1982) If M is
a smooth spin manifold admitting a smooth S1-action, and f : M → K(π,1) is
any map, then for any α ∈ H ∗ (K(π/orb,1);Q) , the higher A-genus vanishes;
that is 〈 f ∗ (α) ∪ A(M), [M]〉 = 0.

Here orb is the class in the fundamental group represented by any orbit.
(This class is clearly independent of the orbit. It always lies in the center of the
fundamental group so we can quotient by the subgroup it generates.)

Similarly, there is another result for (smooth) S1-actions:

Theorem 5.3 (Atiyah–Singer) If S1 acts on a compact manifold M , then
sign (M) = sign (F), where F is the fixed set of the action (if F is suitably
oriented).1

This has the expected generalization to the non-simply connected case.

Theorem 5.4 (Weinberger, 1985b, 1987) If S1 acts on a compact manifold
M , f : M → K(π,1) is any map, and F is the fixed set of the action (if F is
suitably oriented), then

〈 f ∗(α) ∪ L(M), [M]〉 = 〈 f ∗(α) ∪ L(F), [F]〉
for all α ∈ H∗(K(π/orb,1);Q (which equals H∗(K(π,1);Q) if F � �).

However, when we begin examining the same story for Z/n actions, the
situation is more complicated.

Theorem 5.5 (Consequence of the G-signature theorem) Suppose that Z/n
action acts homologically trivially on M , that f : M → K(π,1) is any map,
and that F is the fixed point set of the action. Then there is a characteristic
class c(ν)2 of the equivariant normal bundle to F, so that

sign (M) = 〈c(ν) ∪ L(F), [F]〉
(so that, if F � �, sign (M) = 0).

Theorem 5.6 (Weinberger, 1985b, 1987) Suppose that Z/n-action acts ho-
mologically trivially on M ,3 that f : M → K(π,1) is any map, and that F is
1 This formula makes sense and is true even for topological actions – at least if the fixed set is an

ANR. That it makes sense is due to the fact (see Borel, 1960) that the fixed set of a circle
action is automatically a rational homology manifold.

2 Here c(ν) is the average over the generators of Z/n of the characteristic classes arising in the
formula for trg G-signature in Atiyah and Singer (1968b).

3 This means that the Z/n-action lifts to the universal cover, commutes with the action of the
covering translates, and acts trivially on the rational homology there.
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5.1 Overview 131

the fixed-point set of the action. Then for the characteristic class c(ν) of the
equivariant normal bundle to F mentioned above, the formula for the higher
signature of M:

Sign α(M) = 〈 f ∗ (α) ∪ c(ν) ∪ L(F), [F]〉
is true iff the Novikov conjecture is true for the group π.

We shall discuss more the interaction between the Novikov conjecture and
group actions below in this and the succeeding chapters – because it turns out
to be actually a somewhat different problem, and it takes some work4 to find an
equivariant version that is provably exactly equivalent to the original problem!
(The first things one thinks of seem to be of the same depth as the Novikov
conjecture – i.e. proofs of the Novikov conjecture usually affirm these as well
– but not quite provably equivalent to it.)

Let me mention one last example of an equivariant problem that we will see
works out rather differently:

Theorem 5.7 Define an action of G on X to be pseudo-trivial if (X×EG)/G �
X × BG. If G = S1 or Z/pZ acts pseudo-trivially on a (noncompact) manifold
(or manifold with boundary) homotopy equivalent to a closed manifold M , then,
if the fixed set XG is a compact manifold, we have

sign (M) = sign (XG).
The proof of this follows from Smith theory5. The map XG → M can be

seen to be a rational homology equivalence, and a fortiori preserves signatures.
Later, we will discuss what happens in the non-simply connected case is a
provocative problem.

As we move from topology to differential geometry and beyond, the problems
we study do not seem to have direct implications for the original Novikov
conjecture. They are in the spirit of the problem; they are analogues and can
be studied simultaneously and profitably.

The most prominent example is the question of “which manifolds have met-
rics of positive scalar curvature?” Recall that if M is a Riemannian manifold,
then the scalar curvature is a function on M that measures infinitesimally the
4 This is all meant philosophically. Conceivably all the currently unknown versions of the

Novikov conjecture are true, and then they will be equivalent to each other . . . However, we
will see that working on the equivariant version very quickly leads one to introducing
coefficients and other refinements and extensions of the original problem.

5 One can improve this to where G is a p-group or an extension of a torus by a p-group. But for
non-p-groups or Lie groups with nonabelian identity components, the relationship between M
and MG is much more tenuous, even for pseudo-trivial actions. Indeed, in the noncompact
case, one can always arrange for MG to be empty (as the reader should be able to prove after
reading §7.1). In the compact case, achieving this also requires a condition on χ(M).
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132 Playing the Novikov Game

extent to which the Riemannian volumes of balls of radius r deviate from the
Euclidean volumes of balls of the same radius:

Vol(B(r)) = ωnrn − [K(p)/6(n + 1)]rn+2 +O(rn+3)
so positive scalar curvature means that balls are infinitesimally smaller than
they “should be.” The Gauss–Bonnet theorem implies that the only connected
oriented surface with positive scalar curvature is the sphere.

Using the index theorem for the Dirac operator and a Bochner-type formula
that Lichnerowicz discovered, Atiyah, Lichnerowicz, and Singer gave the first
obstructions to any manifold of dimension greater than 2 having positive scalar
curvature in the following theorem:

Theorem 5.8 (Atiyah and Singer, 1968b) If M is a compact spin manifold
with a Riemannian metric of positive scalar curvature, then 〈A(M), [M]〉 = 0.

This suggests, according to the same pattern:

Conjecture 5.9 (Gromov–Lawson–Rosenberg; see Gromov and Lawson (1980a,
1980b)) If M is a compact spin manifold6 with positive scalar curvature, and
f : M → K(π,1) is any map, then

f ∗ (α)〈∪A(M), [M]〉 = 0,

for all α ∈ H∗(K(π,1)Q).
In particular, no closed (spin) K(π,1)-manifold should admit a metric of

positive scalar curvature. The special case of tori of dimension ≤ 7 was estab-
lished by Schoen and Yau (1979a). Gromov and Lawson (1980a,b) observed
that, for all dimensions, the torus cannot have a positive scalar curvature metric
by combining the Atiyah–Lichnerowicz–Singer argument with the argument
of Lusztig’s thesis. Further, they proved the non-existence for closed non-
positively curved manifolds with residually finite fundamental group, and in
Gromov and Lawson (1983) they removed, by developing enough index theory
on the universal cover, the residual finiteness.7

Rosenberg (1983, 1986a,b) directly connected this problem to the work of
Kasparov (and Mischenko and Fomenko) on the Novikov conjecture, greatly
clarifying the situation and showing that more than analogies were involved
here – this chapter owes a great debt to him.

The third important operator studied by Atiyah and Singer is the ∂̄ operator
on a complex manifold, whose study leads to the Hirzebruch Riemann–Roch

6 It turns out to be reasonable to only ask for a spin structure on the universal cover of M .
7 Surely this resonates with earlier discussions.
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theorem. It, too, gives rise to a characteristic class statement in the simply
connected case that one can try to generalize.

If M is a complex manifold and E ↓ M is a holomorphic vector bundle, then
the Hirzebruch Riemann–Roch theorem calculates∑

(−1)i dimHi(M; E) = 〈ch(E) ∪ Td(M), [M]〉.
(Here ch(E) is the Chern character of E , and Td(M) is a graded characteristic
class in the Chern classes of M .) The arithmetic genus is the alternating sum
of the dimensions of the space of holomorphic k-forms.

Theorem 5.10 (Corollary to Hirzebruch Riemann–Roch) If M and M ′ are
birational smooth algebraic varieties, then

〈Td(M), [M]〉 = 〈Td(M ′), [M ′]〉.
A birational equivalence is an almost-everywhere-defined isomorphism that

is locally a quotient of polynomials. In fact, it is automatically defined in the
complement of a complex codimension-2 subvariety8 (of domain and range);
this implies, in light of Hartog’s theorem, that holomorphic functions on the
complement extend over the subvariety – and that even the individual (holo-
morphic) cohomology groups are isomorphic.

A consequence of the fact that the singularities of a birational map being
complex codimension-2 is that, if M and M ′ are smooth birational varieties,
then they have the same fundamental groups. This led Rosenberg (2008) to
conjecture the following theorem:

Theorem 5.11 (Block and Weinberger, 2006; Borisov and Libgober, 2008;
Brasselet et al., 2010) If M and M ′ are birational smooth varieties and
f : M → K(π,1) is continuous, then for any α ∈ H∗(K(π,1);Q), we have

〈 f (α) ∪ Td(M), [M]〉 = 〈 f (α) ∪ Td(M ′), [M ′]〉.
The goal of this chapter is to explain more about how to play the Novikov

game, and to give some feeling for when the result of playing the game is
a conjecture that tends to be a theorem (as in the examples of the Schultz
conjecture, the signature localization theorem for S1-actions, and the Rosenberg
conjecture) and when the conjecture seems to be deeper than this – e.g. implying
the Novikov conjecture, or at least only being currently provable for some class
of fundamental groups. And then there are sometimes when you play and you
lose: the new “Novikov conjecture” is just plain false.

In doing this, we will need to broaden our perspective from topology to
8 In the smooth case.
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134 Playing the Novikov Game

index theory (as must surely be obvious) and develop the analogy between
these fields. In doing this, it becomes possible to improve the various rational
statements that we have been focusing on to more precise integral ones.

5.2 Anteing Up: Introduction to Index Theory

As might have been obvious in the examples of §5.1, almost all of the examples
(except perhaps the one about pseudo-trivial actions) involve the Atiyah–Singer
index theorem in some fashion. (That one involved Smith theory, although an
index theorem would be involved to translate the posited equality to be one of
characteristic numbers.)

The characteristic class (while perhaps rational) represents the index of an
operator and our goal is to somehow boost the power of this result in the
presence of a fundamental group.

Here we’ll give a brief indication; more references can be found in §5.6.
Suppose that D is an elliptic complex on a manifold; that is, suppose that

we have a sequence of vector bundles, Ei,↓ M , and Di : C∞(Ei+1) are linear
operators acting on the smooth sections of the Ei , given as differential operators
(in local coordinates), so that DiDi−1 = 0. Ellipticity is the condition that the
Fourier transforms are exact away from the 0-section.

Concretely, let’s consider the case of a single operator (i.e. a complex with
just two bundles) on functions on the circle S1. The operator d/dθ (acting on
sections of the trivial line bundle) is elliptic; its Fourier transform is everywhere
×ξ, which is invertible (and hence gives an acyclic complex) when ξ � 0.
Similarly the Laplacian on functions on the flat 2-torus, i.e., T2, given by
∂2/∂X2 + ∂2/∂y2 is elliptic, but the wave operator on functions given by
∂2/∂X2−∂2/∂y2 is not. (Its Fourier transform vanishes on the lines ξx = ±ξy .)

By the “elliptic package,” i.e. Sobolev space theory together with the theory
of the Fredholm index, for any elliptic complex on a compact manifold, the
cohomology groups

Hi(D) � Ker Di/ImDi−1

are all finite-dimensional. The individual groups can be quite subtle and depend
on more information than just the symbol of the operators. For example, the
Laplacian ∇ on C∞(S1) has Ker � C, but the perturbation by a small zeroth-
order term f → ∇ f + λ f has no kernel unless λ is in the spectrum of ∇ (which
then depends on the length of the circle!).

A similar but more topological example is the de Rham complex on a compact
manifold M , but instead of considering real-valued forms, consider instead
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5.2 Anteing Up: Introduction to Index Theory 135

ξ-valued forms, for a flat bundle ξ. The symbol will only see dim(ξ), but,
say dim H0(M, ξ) is exactly the dimension of the part of ξ that has trivial
monodromy.

The index theorem gives a topological calculation, though, of the index
of D, ind(D) which is, by definition,

∑(−1)idim Hi(D). By taking an Euler
characteristic, the subtleties of the individual cohomology groups are largely
erased. The reader might enjoy seeing how this happens in these two examples.
In the first case, one should use some Fourier series to see what’s happening on
both the kernels and cokernels, and in the second, the hint might be to consider
why Euler characteristic is independent of the field used to define it (while the
cohomology vector spaces have dimensions dependent on the characteristic of
the field).

That the index is independent of “lower-order perturbations” is exactly the
key property of the Fredholm index in functional analysis – invariance under
compact perturbations.

The topological formula for the index involves the construction of a “symbol
complex” (the analogue of the Fourier transform) over T∗M . It defines an
element of K0(T∗M).9 Noting that T∗M is an almost-complex manifold, and
that the Bott–Thom isomorphism theorem (i.e. Bott periodicity for complex
bundles, the form explained in the first chapter of Atiyah and Singer, 1968a)
then says that almost-complex manifolds are oriented for K-theory, we have
K0(T∗M) � K2m(T∗M) � K2m(M), where we are now dealing with the dual
homology theory to K-theory.10 The index is then given by pushing forward
the symbol homology class under the map M → ∗:

K2m(M) → K2m(∗) � Z,
[D] → ind(D).

The equivariant index theorem holds for G a compact Lie group acting on the
complex and is essentially exactly the same result! In that case the cohomology
vector spaces are G-representations, and the relevant K-theory is equivariant
K-theory, KG(M). The pushforward to a point is now the equivariant index,
which is a (virtual) G-representation (G acts on both the kernel and cokernel).

9 We follow the standard convention that K-groups of noncompact spaces are assumed to be
with compact supports. (Despite this, we do not have a standard convention for ordinary
homology or cohomology.)

10 We have shifted our point of view away from the original (Atiyah and Singer, 1968a,b, 1971).
They pushed forward a cohomology class to a point using a “wrong-way map” that was
induced by Bott periodicity. Atiyah (1970) later gave a K-homology class associated to an
elliptic complex. Brown, Douglas, and Fillmore and Kasparov later still gave a development of
K-homology where elliptic operators on manifolds form its cycles. See Higson and Roe
(2000), and references therein, for a very lucid account.
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A similar situation arises when the (manifolds and the) elliptic complex
is part of a family (MpDp), with p ∈ P, a parameter space. In that case the
cohomology groups Hi(Dp) form a bundle over “most of” P. Atiyah and Singer
show that it is possible to add a small perturbation d to the family so one has
D + d, to repair this. In that case, the cohomology vector spaces all become
vector bundles Hi(Dp+d) over P, and the index is an element of K0(P). Atiyah
and Singer (1971) explain how to compute this (and its Chern character).

These examples will interest us considerably in what follows (both have
already been applied in earlier discussion – Lusztig11 making use of the families
index theorem to prove the Novikov conjecture for Zn, and the equivariant
index theorem is relevant to the Atiyah–Hirzebruch and signature localization
theorems mentioned in §5.1.) However, for now, we would like to focus on a
formal algebraic aspect of all these theorems.

Notice the groups that the indices in these theorems take values in: for the
index theorem it’s in Z, in the G-index theorem it is an element of R(G), the
representations of G, and in the families index theorem it is K0(p).

Indeed, even the Z in the index theorem is just K0(C), the Grothendieck
group of finitely generated projective as C-modules (i.e. finite-dimensional
vector spaces). R(G) is the same thing as projective modules over CG, if G
is finite, and over C∗G (the C∗ completion – to be discussed below) if G is
compact. K0(p). can be thought of, thanks to a classical theorem of Swan, as
the (Grothendieck group of finitely generated) projective modules over C(P),
the ring of continuous functions on P.

Thus we are led to thinking of the ordinary index theorem as a theorem about
complex-valued elliptic operators, and the other index theorems as being about
elliptic operators over other C∗-algebras, depending on the situation.

Commutative C∗-algebras correspond to functions on a space (the Gel’fand–
Naimark theorem) – and one can12 think of the general noncommutative case as
some kind of index theorem for families “parameterized by a noncommutative
space” – including situations where there is a group action as a very special
case – and what then follows as a chapter in Connes, 1994).

Instead let’s recall that, for elliptic operators P, there are parametrices, or
“pseudo-inverses,” Q, so that PQ = I +Compact, and similarly for QP. So, for
operators over any algebra, we should think that we have a ring R of operators,
and J an ideal, and then Fredholm (also known as elliptic) operators are those
that are invertible modulo compacts, i.e. modulo J. In algebraic K-theory, there

11 The need for perturbations for families of operators was already implicit in our discussion of
Lusztig’s method: even the cohomology of S1 with coefficients in a flat bundle is not constant
even for the Lusztig family of line bundles.

12 If one chooses to.
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is an exact sequence (see Milnor, 1971, pp. 33–34):

K1(R) → K1(R/J) → K0(J) → K0(R) .
The boundary is essentially the index map – one has ∂[p] = Ker(P) − cok (P).

In the operator-theoretic setting of “A-algebras,” the same is true, except
that one has to add on a suitable “A-compact operator” to the elliptic operator
to make the kernel and cokernel projective A-modules (e.g. vector bundles
without singularities).

Critically important for our story is the following basic C∗-algebra associated
to a representation. Suppose π is a group, and π → U(H) is a representation.
We can therefore think of Cπ as an algebra of operators on H. We then obtain
a C∗-algebra by completing with respect to the operator norm.

There are two extreme cases of this construction that are of fundamental
importance. The first is H = L2π, and the completion is called C∗r π, the
reduced C∗-algebra of π. The other is when H is the sum of all irreducible
unitary representations of π, and this yields C∗maxπ, the maximal C∗-algebra
of π.

The latter choice has better functorial properties: any group homomorphism
gives a map between the associated algebras, but Property (T) shows that C∗maxπ

can have rather large K-theory: K0(C∗maxSL3(Z)) is an infinitely generated group
with an infinitely generated subgroup generated by irreducible representations
that factor through finite groups SL3(Z/N).

Basically, if our interest is in the Novikov game, i.e. injectivity type state-
ments,13 this is not a problem and we can live cheerfully with C∗maxπ, but
when we begin playing the Borel game (which in this setting is called the
Baum–Connes conjecture) and look for isomorphism theorems, C∗r π, despite
its functorial defects, will play the starring role. We will often be cavalier and
just use C∗π as notation when these details aren’t important (or the completion
is obvious).

With the above preliminaries, we have enough of a buy-in14 to begin playing
the Novikov game.

We do not look at every possible characteristic class formula, but rather ones
associated to an elliptic operator.

Coupling this operator to an infinite-dimensional flat bundle
�

π C∗π, we
try to get information from K(C)∗π to improve the formula to one involving the
fundamental group. Analogous to the assembly map in surgery,

H∗(K(π,1)L(e)) → L∗(Zπ),
13 See §4.7.
14 For example, we have enough resources to be able to get a seat at the table.
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there is a map (also called the assembly map, but mainly by reason of analogy15

– it would be better called the index map16)

K∗(K(π,1)) → K∗(C∗π).

Both of these maps “tend to be injective” at least rationally – as we have
discussed in the case of L-theory and shall yet discuss more. These are Novikov-
type statements and can be sometimes proved by expanding our point of view
to consider L-groups of categories associated to and K-groups of algebras of
operators associated to metric spaces (and other controlled settings).

Indeed, the usual Novikov conjecture can be studied from the operator-
theoretic point of view by restricting attention to the signature operator. Thus,
the operator-theoretic setting thus is a large extension of perspective.

Note that we can now try to extract some integral information, like the
precise tangential information present in the Borel conjecture, and not just the
rational that we have focused on in our discussion of Novikov. Note that the
conclusion of the form of the Novikov conjecture that we have just proposed
(and had proposed in Chapter 4 via surgery) contains some integral information.
It asserts the vanishing of the pushforward of some operator under the natural
map

K∗(M) → K∗(K(π,1)).

For example, it will include the statement that if we push forward the signature
operator17 (viewed as an element of K∗(M) as above) into the K-homology of
the fundamental group, we get an oriented homotopy invariant.

Even if we are interested in just the rational problem, working integrally is
a good way to probe approaches, but for some applications, this information is
absolutely necessary. The map L → K (for a point, for example) is split injective
away from the prime 2, so away from 2 it is possible to deduce a topological
injectivity from the analytic results. However, at 2, one cannot obtain strong
L-theoretic results analytically (at least, not in any too direct a fashion).

15 In a recent paper (Weinberger et al., 2020) the analytic map is defined in a way that really
looks like assembly.

16 Or the higher index map, if one wants to emphasize how the higher cohomology of the group
is implicated in this story.

17 Here we are taking for granted the quite nontrivial point that the symbol class of the signature
operator can be defined for topological manifolds. (See Rosenberg and Weinberger, 1990, for a
discussion of this issue. In Weinberger et al., 2020, a functorial map is built using just smooth
manifolds, and a more substantial contribution from controlled topology.) In any case, this
class can be defined in another way that we will explain in the next section.
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Appendix: A Glimpse through the Looking Glass
. . . At a Parallel Universe whose Arrows are Reversed18

While we have focused on manifolds (and orbifolds), and in this setting there
are very nice analogies between surgery theory and index theory, both subjects
naturally encompass more territory where the analogies are not as evident (and
one might imagine pessimistically that they don’t extend or, if they do, they
don’t help19).

This mini-section is a brief about the noncommutative geometric perspective.
Many different kinds of things have L-theory: rings with (anti-)involution,20

pairs (i.e. relative L-groups), additive categories, stratified spaces, etc. Each of
these opens up new ranges of application.

On the index theory side, the object one takes the K-theory of is always
a C∗-algebra. Rather than generalize the setting of K-theory, which was the
surgical route, one instead creates innovative constructions of these algebras in
various geometric situations, as is explained lovingly and inspiringly in Connes
(1994) and Connes and Marcolli (2008).

More generally, in noncommutative geometry21 one tries to take seriously
noncommutative algebras as analogues of spaces, and then one mimics impor-
tant geometric constructions in this setting.

The basic example from which everything generalizes is that of X , a locally
compact Hausdorff space, to which one associates C∗(X), the ring of continuous
complex-valued functions on X , with respect to complex conjugation and the
uniform norm as the norm.22 This is a contravariant functor that defines an
equivalence of categories. K-theory enters by Swan’s theorem that projective
modules over C∗(X) are the same thing as vector bundles over X . On the other
hand, K-homology is associated to extensions23 (by the algebra of compact

18 That humans are remarkably symmetric makes it the case that what we see through the looking
glass is the same kind of object as we are. Of course, the looking glass of C∗-algebras assigns
an infinite-dimensional algebra to a beautiful finite-dimensional space. It might be fun to
create a mixture of a mirror with night goggles, so that one gets a similar feeling of strangeness
on looking through the mirror.

19 Even for positive-dimensional group actions on manifolds, the two theories have very different
flavors. I am not a pessimist, however.

20 I’m old fashioned: I stick in the “anti-” but many writers don’t bother and use the word
involution for the same concept.

21 We ignore the algebraic geometric side of this philosophy, just as in the commutative world we
went continuous from differentiable, not analytic.

22 This itself is in analogy to the very beginnings of algebraic geometry (initially, at least, over an
algebraically closed field) where one associates to each affine variety the coordinate ring of
polynomial functions on the variety.

23 See Higson and Roe, 2000 for an excellent exposition of the Brown–Douglas theory and the
beginnings of Kasparov’s KK-theory.
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operators on a separable Hilbert space) and (therefore) to generalized elliptic
operators over X .

Having K-theory, one wants then to generalize the Chern character K(X) →
⊕H2i(X,Q) to get (computable) invariants of elements24 of these groups.

Cyclic homology was introduced by Connes (1985) to be the target of such
a generalized Chern character from K-theory to something more immediately
computable and definable algebraically without the commutativity: it is closely
related to de Rham cohomology in the commutative case (see Loday, 1976,
1998, for an excellent treatment; needless to say, having computable invariants
for K-theory is important in many situations where the ring25 whose K-theory is
taken is not a C∗-algebra.) It is thus an excellent example of the noncommutative
philosophy: “commutative” invariants (i.e. geometric invariants of spaces) that
can be interpreted noncommutatively are much more powerful and natural.26

In this very short appendix, I will describe just a few of the noncommutative
algebras that arise in geometric situations.

Example 5.12 (A = B) Suppose we start with two points, A and B. We form
X = {A,B} and C∗(X) = C2, where addition and multiplication is coordinate-
wise. A function on X requires two values, one for each of A and B, and there
is no communication between them.

Suppose we now set A = B; then the functions need to assign the same values
to A and B and we obtain the algebra C.

But suppose we just had an equivalence relation A ∼ B: then A would
communicate with B and vice versa. It would not be crazy to consider associated
to this system M2(C), the 2×2 matrices that have off-diagonal entries, that reflect
the communication between A and B.

We can consider this as being governed by the groupoid27 associated to the
equivalence relation. Then we get C(A∪ B) acted on by the bounded operators,
one for each arrow in this category. (Assuming boundedness28 will make the
convolution product of the operators defined in this way to be defined.)

Interestingly C and M2(C) are closely related algebras: they are Morita

24 This is very relevant to the Novikov conjecture, which is, after all, a lower bound on K-theory
– so a suitable Chern character, rich enough to detect the image of the assembly map, would be
a dream come true.

25 Randy McCarthy’s thesis (see McCarthy, 1994) generalized the definition of cyclic homology
and the trace map to the setting of exact categories.

26 This is also true of working with stratified spaces. Frequently, arguments that must work in full
generality are constrained, and therefore easier to find, than ones that just apply to very
particular classes.

27 Recall that a groupoid is a category in which every arrow is invertible.
28 The boundedness is automatic in this setting, but it seemed like a good idea to say it explicitly

anyway.
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equivalent – they have equivalent categories of projective modules. So in this
case A ∼ B and A = B have very similar effects. But for more complicated
equivalence relations, it is indeed important to remember that equivalent does
not mean equal, and that the noncommutative perspective includes the price
of seeing that points are equivalent in a quotient space and keep track of these
“transaction costs” when one does further analysis.29

The Morita equivalence of various ways of producing quotient objects (and,
in particular, when there’s a reasonable commutative choice) is common in
tame situations.

Example 5.13 (Group actions) If G is a finite group acting nicely on a space
X , one can form X/G. The continuous functions on this are C(X)G . But the
G-space X has much more information than X/G.

Even from the theory of vector bundles, one knows that it’s much more
exciting to consider equivariant bundles on X as opposed to bundles over X/G.
So, what kind of space is this?

So for X that is a point, we want a vector space with a self-identification
associated to each self-identification of X given by g ∈ G. This means that
we need modules over C[G] which are representations of G. In general, we
should have modules over the semidirect product C(X) � G. For G a compact
Lie group, one needs more general convolution algebra.

Of course the K-theory of this convolution algebra is exactly the Grothendieck
group of equivariant vector bundles over X . A similar construction can also be
made for locally compact groups acting properly on X .

When the action on X is not proper, then things become less clear geo-
metrically. However, one can still form convolution algebras and study their
properties. This could well lead you to the Baum–Connes conjecture (with
coefficients) if you were bold enough.

Example 5.14 (Tilings, bounded geometry, etc.) Suppose30 that every day

29 Mathematicians are trained from early years to take equivalence classes, and form quotient
objects. Try explaining this to a non-mathematician! It is not at all easy to do. (Maybe you
remember wondering whether real numbers were really equivalence classes of sequences of
rational numbers or whether they were “really” numbers.)

Logicians know well the importance of distinguishing between = and ∼, and in model
theory have special rules for the interpretation of =. Because (as Bill Clinton famously
explained) it is not always clear what it is.

Respecting that one should have to pay for every use of an equivalence relation is a good
idea (and is behind things like Dehn functions in geometric group theory). The C∗-algebra
approach to quotients does this naturally.

30 This example is the result of many conversations with Jean Bellissard and Semail
Ulgen-Yildirim and inspired by the work of Bellissard (1995) and Abert et al. (2017), among
others.
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Figure 5.1

were exactly like the previous and the next. So 9:00 a.m. today would be like
9:00 a.m. any other day. Then my experience of time would be indistinguishable
from a circle. It would be a matter of debate for the metaphysicians (who would
come to either no conclusion or the very same conclusion every day) whether
time was “really” a line – with certain regularities holding – or whether it was
a circle.

I think it could be an amusing project to write a (series of) novel(s) that
would have such a periodic structure. But it would be a contrived project in that
even if the last page of the last volume were identical to the first page of the first,
in the absence of determinism one would not expect “the continuation” to be
the same as the first time around.31 (Very interesting are the random samples
from a periodic distribution.)

Returning to the real world, we can consider the experience of a creature with
bounded memory and resources on various spaces. Suppose that there were one
glitch in the periodic “time-line” universe. Then for all of early eternity till that
glitch, time would be a circle, but from the glitch on, depending on how good
the creature’s memory was, it would seem like there was non-periodicity – after
all, there was some time from “the beginning” or “the change” but that it would
asymptote also to a circle. (Figure 5.1 describes this – assuming the stable states
at ±∞ are the time-reversed for entertainment. Without the identification, there
would be a similar picture taking place on a subset of the cylinder.)

This topological space is the space where experience takes place. Geometric
processes that weight local geometry and involve large scales in increasingly
damped fashions should extend to this space that compactifies the time-line.

Now let’s think still about a time-bound creature, but time, while a line, is

31 It might be more interesting to double the number of volumes and have a second series not
identical to the first. I’m not sure what I want the last page of the last volume of the second
series to be like.
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tiled by tiles A and B, with some rules about how the A and B are put down.
If all the A were in positive time and all B in negative, then one would get the
two-circle space mentioned above. But if instead we can put our tiles down in
a random fashion then time would formally be R: there is no periodicity, but if
our memories get weak, each time will have been anticipated infinitely often,
and indeed history will yet repeat itself infinitely often. We can embed this R in
R × {A,B}Z/the disagonal action of Z where the product is bi-infinite. A real
number is mapped to r (this being the label of the tile of which it’s a part),
with boundary points resulting in the identification on the right. The space most
appropriate for modeling the experience of our creature will be the same as this
limit space, i.e. the closure of the R-orbit in this space. If the placement of tiles
were truly random, the closure would be the whole space. (Almost all R-orbits
in this space are dense.)

I like this example a lot. It is easy to build into topology a theory that takes
into account only balls of some, perhaps unspecified, size. However, allowing
far-away points to have influence that is decaying seems much better suited to
analysis.

This is an example of a foliated space, which is a slight generalization of the
notion of a foliation. And, there is a C∗-algebra associated to such spaces which,
in the case of a fiber bundle foliated by fibers, would be Morita-equivalent to
the continuous functions on the quotient.

This can be done for tilings of Rn rather than just on R1.
A lot of the information of a tiling on Rn can be described by giving the

centers of gravity of the tiles.32 (In higher dimensions, we can get interesting
examples without the expedient of labeling as we did in one dimension.) We
are interested in tilings where these point sets are:

(1) C-dense for some C (every point is within C of some center);
(2) sparse, i.e. no two points are within δ of each other; and
(3) repetitive, so the pattern of every ball of radius R repeats in a C(R) dense

way everywhere.

From conditions (1) and (2), one can see that the set of patterns has an embed-
ding in a nice locally compact space. This space of tilings has an Rn-action on
it (actually the whole Euclidean group acts on it, and when we take that into
account with condition (3) one gets a broader notion). Condition (3) is of a
different nature, and guarantees that the set of patterns arising forms a minimal
dynamical system with respect to this action.
32 If one is just interested in convex tiles, then one can use a slightly different point set S: a set of

points such that the tile containing p is defined as the set of points closer to p than to any of
the other points of S.
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(a) (b)

Figure 5.2 (a) The Penrose tiling. (b) A pinwheel tiling. (From Sadun, 1998.
Reprinted by permission of Springer Nature.)

Two examples of aperiodic tilings are shown in Figure 5.2. The pinwheel
tiling does not have recurrence entirely on the basis of translations, but that is
irrelevant to the story we are discussing, which allows all isometries.

The closure of this orbit is called the hull of the tiling. It consists of the
pointed Gromov–Hausdorff limits of centered balls in the tiling.33 It consists
of the tilings that cannot be locally distinguished from the tilings that occur
within the original one, but is usually much larger. If the tiling is aperiodic,
then it has countably many “subtilings” (just recenterings, essentially) but there
are always uncountably many possible limits.

For aperiodic tilings, the hull usually has the local structure of the product of
a manifold with a Cantor set, but if one relaxes condition (3) then very different
kinds of structures can occur. (The reader might enjoy considering the hulls of
graphite versus diamond.)

This can also be done with respect to any manifold with bounded geometry.
These limits can be thought of as doppelgangers, whose properties restrict
the original manifolds. They are like the way a novelist can use pieces of our
personalities to create characters that resemble us yet are more extreme than
we are – in order to shed light on what we are like. More subtle than just the

33 Following an unpublished note with Bellissard and Ulgen-Yildirim, it can be defined as the
closure of the natural map of the manifold into the inverse limit of the pointed
Gromov–Hausdorff space of centered Riemannian balls of various radii (under the natural map
that sends a centered ball of radius R to one of radius r if R > r). Each point in M is mapped
to the consistent set of balls in M centered at that point. Generically this map is an embedding,
and the closure is a foliated space, but for special manifolds that have a lot of symmetry, this
mapping can have some strange properties.
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individual limit points within this construction are the properties that describe
the size of the hull.

Periodicity, like regular covers, gives rise to compact hulls with the manifold
not embedded in the hull. The difference between crystals, quasicrystals, and
glass is apparent in the structure of the hull. One is led very naturally to
fascinating problems like when such constructions have transverse measures
(e.g. when one has a reasonable notion of “typical behavior” on a manifold), etc.

Example 5.15 Connes introduced C∗-algebras associated to foliations (as in
the previous examples); these are variations on the ones associated to groupoids
– and they are all essentially convolution algebras acting on functions (or half-
densities34) on the total space. If the foliation were a fibration, this algebra is
Morita-equivalent to the continuous functions on the quotient, but interesting
foliated spaces can frequently have all leaves dense (like the foliation of a torus
by irrational lines or planes, and the example of aperiodic tilings above).

There are many more examples that come up from physics (e.g. the standard
model) or number theory (e.g. spaces of Q-lattices, etc.). I won’t discuss these,
but see Connes and Marcolli (2008), and references therein.

When one has a C∗-algebra/noncommutative space, one begins using it to do
mathematics. At first, there are questions about which algebraic properties of
the algebra hold, or how are they reflected in the geometry of the situation. For
example, a trace on the C∗-algebra of a foliation corresponds to a transverse
measure.

After such a dictionary is established, it becomes possible to implicate vari-
ous functors such K-homology and K-theory and develop and apply appropriate
index theorems in this setting. Foliations (say, of compact manifolds) always
have an implicit dynamics as noncompact leaves recur, and such results can
have profound implications.

Cyclic homology was invented to be a noncommutative analogue of de Rham
cohomology. It’s close, but doesn’t quite agree with this. Nevertheless, it pro-
vides an important invariant of algebras and a place to map K-theory to.

In dimension 0, it captures the idea of a trace, and these are associated to the
simplest index theorems. Higher homology reflect higher index theorems (with
the important, seemingly technical, issue that one frequently has to go to dense
subalgebras35 to get nontrivial higher homology).

Let’s color in the outlines of the picture we tried to draw. Here’s how the
dream would go in the special case of R = Cπ), a group ring: we are interested
34 Half-densities are useful for creating appropriate L2-spaces.
35 Such algebras describe types of smoothness – and, once one says this, the idea of passing to

such algebras is not at all shocking if we are to use these for doing analysis.
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in invariants on projective modules over R (i.e. K0(R)) generalizing the notion
of dimension. Consider the formula

dim P = rankP,

which almost looks too tautologous for words! This formula exploits our habit
of writing the same letter P for a projective module and a projection P2 = P
whose image is that module. For projections we have

rankP = traceP.

The key defining property of a trace is that for all matrices trace(AB) =
trace(BA) (from which follows the key property that it is an invariant of an
automorphism, not merely of a matrix). This suggests considering

R/[R,R] = R/{ab − ba}

as the best target for a trace that we could possibly hope for (and why hope for
any less?).

Here we are considering a quotient abelian group in this formula. (The set of
elements ab − ba is not closed under addition, and we consider the subgroup
generated by such commutators.) In the case of a group ring, the right-hand
side breaks up into pieces,

⊕
C(g), where (g) is the equivalence class of g

under conjugation. A little thought shows that taking the “ordinary” trace of
a matrix and collecting all the coefficients of the elements within a conjugacy
class actually is a well-defined operation.

This quotient is exactly HC0(Cπ), and this algebraic trace is called the
Hattori–Stallings trace. The trace map from K0 is quite nontrivial, as the case
of π finite readily indicates. Indeed, it shows that for any non-torsion-free group,
the modules induced from finite subgroups can be non-free projective modules
for the group. (The converse, of course, is part of the Borel package to which
we have alluded several times.)

It also clearly has connections to Nielsen fixed-point theory (where we gen-
eralize the Lefshetz number just by changing the meaning of the word trace).

In the K0 setting it is an interesting and natural question whether the coef-
ficient of a conjugacy class of infinite order can ever be nonzero. (That this
is impossible is sometimes called the Bass conjecture: see Bass, 1976.) This
is known in many cases – and it seems worth noting here that the theory of
cyclic homology and the higher trace maps has been effectively deployed in
this direction (see Eckmann, 1986)).

In passing to the completion there is very serious (analytic) trouble. If an
element g has infinitely many conjugates, perhaps an element in C∗π might
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want to give that trace an infinite value.36 That there are homomorphisms from
K(C∗π) to C corresponding to conjugacy classes of finite order does not seem
any less deep than the Novikov conjecture.37

Cyclic homology actually closely resembles the homology of ES1 ×S1 ΛX ,
where Λ denotes the free loop space, and S1 acts on this space by rotation of
loops (see, e.g., Burghelea, 1985; Goodwillie, 1985). The case relevant to us is
Bπ: ΛBπ has components corresponding to the conjugacy classes of elements
of π – the HC0 that we saw earlier. The component of loops freely homotopic to
a given g is itself aspherical, and is a K(Z(g),1), where Z(g) is the centralizer
of g.

When we take the Borel construction on the action ofS1 by loop rotation, we
get different behavior when g is finite order and when it’s infinite. In the finite
case we get a K(Z(g),1) × CP∞, but in the infinite case, it is K(Z(g)/〈g〉,1).
Rationally, the Baum–Connes conjecture asserts that K(C ∗ ∗π) is isomorphic
to

⊕
K(C(g)) where the sum is taken over g with finite order.38

The general theory provides for maps HCn → HCn−2 dual to Bott periodicity,
which here is dual to the cup product with the Euler class of the circle bundle,
and the trace with target HCn−2k factors through this. This is used in Eckmann’s
work on the Bass conjecture, and is also completely reasonable in the C∗-
setting where K-theory has a Bott periodicity isomorphism. Of course, the
K(Z(g),1) × CP∞ results in certain homology groups being counted many
times, but, inverting the periodicity, they each are rationally counted once.

5.3 Playing the Game: What Happens in Particular Cases?

In §5.2 we explained that the formal framework of index theory is rather similar
to that of surgery theory,39 and, as a result, the Novikov phenomenon applies
more broadly to other operators.

This point of view is fine as a starting point, but it is way too formal to be a
36 On the other hand, if g has only finitely many conjugates, then there is no trouble defining a

trace associated to (g) and this can be exploited for geometric gain. This, for example, arises
for groups with a finite normal subgroup whose quotient is torsion free.

37 More precisely, it actually does seem less deep, but I have never found an a priori argument
that doesn’t involve Novikov technology. Weinberger and Yu (2015) is a failed struggle with
this problem.

38 This is compatible with what one would expect from the topological conjectures if one
replaced Qπ or Rπ with Cπ (with the involution being complex conjugation on C).

39 Indeed, the signature operator gives rise to a functorial mapping of surgery theory into
operator K-theory, as mentioned above (see Higson and Roe, 2005a,b,c). It is important,
though, to note that the infinite loop space structures on the two theories are different at the
prime 2 (see Rosenberg and Weinberger, 2006) because of the nature of the boundary map in
the exact sequences of pairs.
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stopping point – it oversimplifies, missing the exquisite texture of the subject
and the true benefit of unification.

Some methods develop naturally within the context of one problem, and the
informal parallels between subjects leads to a search for cognate results for
other problems – ultimately leading to multiple analogous theorems. In some
sense, every time we play the Novikov game, we get a new test, a new area that
is suggestive of techniques internal to it – that afterwards we can hope will shed
light on the original problem, or, if not to it, perhaps to some other analogues,
and it also leaves us with the puzzle of understanding why we didn’t succeed
in this export.

Surely the richest two cases were the original Novikov problem, which we
have already discussed and shall have to review in light of the index-theoretic
perspective, followed by the problem of positive scalar curvature.40 We shall
first discuss this latter problem before returning to the first and then to the
general discussion.

The first results on the positive scalar curvature problem, after the Atiyah–
Lichnerowicz–Singer vanishing result, was the proof by Schoen and Yau
(1979a) of the nonexistence of positive scalar curvature metrics on the torus
and related manifolds (e.g. those that resemble Haken manifolds or have maps
of nonzero degree to them) and have dimension ≤ 7.41 This method has the
feel of the original methods on the Novikov conjecture using codimension-1
splitting, and it has consequences that we do not yet know how to approach by
Dirac operator techniques (coupled to the fundamental group).42 The geomet-
ric nature of this method makes it possible to describe it before any discussion
of applications of the index theorem.

The very elegant idea in Schoen and Yau (1979a), in its embryonic form, is
this. Let M be a manifold with positive scalar curvature and a nonzero degree
map to Tn. Then one finds in M an area-minimizing minimal hypersurface dual
to any class in H1. This hypersurface is smooth if M has dimension ≤ 7 (and
this is where the dimension hypothesis enters) and has a map of nonzero degree
to Tn−1.

40 Needless to say, for many people the positive scalar curvature problem is the more interesting
one, because, for example, it has important connections to general relativity (the positive mass
conjecture).

41 See also Lohkamp (2006) for an announcement of a method for getting around the fact that
minimal surfaces can develop singularities in dimension greater than 7, and a more recent
paper of Schoen and Yau (2017) that gives a different approach.

42 Results using the Dirac operator require some spin structure. Indeed, for non-spin simply
connected manifold of dimension greater than 4, Gromov and Lawson (1980a,b) have shown
that positive scalar curvature metrics always exist! On the other hand, the Schoen–Yau result
shows that if V is any manifold of dim < 8, then V#T never has positive scalar curvature. This
manifold’s universal cover is, of course, not spin.
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A calculation then shows that the induced metric on a minimal hypersurface
in a positive scalar curvature manifold is naturally conformally equivalent
to a positive scalar curvature metric. (The conformal factor is a power of
the eigenfunction associated to the first eigenvalue (necessarily positive) of
Δ − (n − 3)K/4(n − 2), where k is scalar curvature on the hypersurface.)

One repeats this argument till one gets down to dimension 2, and the result
follows from the Gauss–Bonnet theorem.

Let us now turn to the Dirac operator method. We shall not review the
definition of the Dirac operator, leaving the reader to standard references for
it and its theory (e.g. Atiyah et al., 1964; Atiyah and Singer, 1968a,b, 1971;
Lawson and Michelsohn, 1989; Roe, 1998; Berline et al., 2004; Higson and
Roe (20XX)).

Lichnerowicz showed the following “Bochner type” formula relating the
Dirac operator on a manifold and the Laplacian on forms: D2 = ∇∗∇ + k/4
(see e.g. Atiyah and Singer, 1968b; Roe, 1998). This implies, assuming that
the scalar curvature is everywhere positive,43 that D and D∗ can have no kernel
(as the Laplacian is semidefinite). In other words “M can have no harmonic
spinors,” and, in particular, ind(D) = 0. The index theorem then gives (see,
e.g., Atiyah and Singer, 1968b for the calculations of the symbol of the Dirac
operator, and how the index theorem works out in this case) that

〈A(M), [M]〉 = ind(D) = 0.

In every dimension that is a multiple of 4, there is a spin manifold whose A-
genus is nonzero, and these give examples of simply connected manifolds with
no positive scalar curvature metrics.

Actually, one can do somewhat better than this (without using the funda-
mental group at all). The Dirac operator naturally has a real structure, allowing
more subtle real index theorems to be applied. The index then takes values in
KOi(∗) = Z/2, Z/2, 0, Z, 0, 0, 0, Z (depending on i mod 8) – thus providing a
refinement at the prime 2. Hitchin (1974) showed that, under the assumptions
of spin and positive scalar curvature, for an i-manifold

ind(D) = 0 ∈ KOi(∗).

Thus spin manifolds of dimensions 1, 2 mod 8 there is an extra mod 2 obstruc-
tion to having positive scalar curvature. There are even examples of manifolds
homeomorphic to the sphere that do not have positive scalar curvature metrics.

43 Kazdan and Warner (1975) showed that if M has a metric that is nonnegative everywhere, and
positive somewhere, then any smooth function on M is the scalar curvature function of some
metric. Therefore, we can weaken the curvature conditions in this argument.
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Remarkably, for spin manifolds of dimension greater than 4,44 Stoltz (1992)
has shown that every simply connected manifold with vanishing ind(D) (in
KOi(∗)) actually has a positive scalar curvature metric.45

Lusztig’s proof of the Novikov conjecture (§4.4) applies: when we couple
the Dirac operator to a bundle ξ, the formula D ∗ D = Δ ∗ Δ + K/4 gets
another term coming from the curvature of the bundle, but if the bundle is flat,
then the same argument gives the vanishing of ind(Dξ ). As we vary ξ over a
parameter space, especially over the dual torus T = (Hom (π1(M) : S1), we get
a zero-dimensional trivial bundle as the index ∈ K0(T).

This then gives the result that, if M is a spin manifold with positive scalar
curvature, then for any f : M → T, and α ∈ H∗(T),

〈 f ∗ (α) ∪ A(M), [M]〉 = 0.

Gromov and Lawson (1980a,b) suggested a beautiful alternative, using families.
If we use only a single (finite-dimensional) flat bundle, then we gain nothing

from the index theorem; we still have ind(Dξ ) = ind(D) = 0, but the index
theorem just has on the topological side

〈ch(Dξ ) ∪ A(M), [M]〉.
But ch(Dξ ) = dimξ has no positive-dimensional component.46 However, if we
allow ξ to be a bundle with very small curvature (in comparison to inf k/4 that
we assume is > ε > 0), then conceivably ch(Dξ ) = dimξ � 0, but the new
curvature term in the Lichnerowicz–Bochner formula is still positive enough
to give the vanishing of the index.

So, how do we get bundles with arbitrarily small curvature and nontrivial
Chern class cn so we can implement this idea?

This is impossible on a single compact manifold (because the cohomology
classes represented by Chern classes are integral, so, if they are sufficiently
small,47 they will integrate to 0 on all cycles). However, we can find (sometimes)
a sequence of bundles ξi on covers Mi of M with nontrivial cn, and whose
curvatures tend to 0.

For example, suppose M = K\G/Γ, where Γ is a uniform lattice, and suppose
(without loss of generality for our current purposes) that dim(G/K) = 2n is
44 In dimension 4, the Seiberg–Witten invariants give additional obstructions to the existence of

positive scalar curvature metrics (see, e.g., Morgan, 1996).
45 Gromov and Lawson had earlier used cobordism methods to show that every simply connected

non-spin closed n-manifold (n > 4) has a positive scalar curvature metric, and Stoltz extended
their cobordism arguments using very clever algebraic topological arguments.

46 Chern classes are integral, so sufficiently small curvature implies that they vanish rationally.
(Note that it’s only the real Chern classes that have a description in terms of curvature, so even
zero curvature is compatible with a torsion Chern class.)

47 And of a fixed dimension.
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even. Then, by the residual finiteness of Γ we can find finite normal covers
K\G/Γi whose injectivity radii Ri are arbitrarily large. We can use the logarithm
map, i.e. the inverse of the exponential map, followed by the pinch map that
wraps the Euclidean ball of radius R < Ri (for i large) onto the standard round
sphere S2n of curvature equal to +1. Let Li : K\G/Γi → S2n be this logarithm
map, associated to some base point where there is an embedded geodesic R-
ball. As i → ∞, the Lipschitz constant of L → 0 (because of the rescaling by
R; the logarithm map itself is 1-Lipschitz for non-positively curved manifolds).

Note that by Bott periodicity there is a bundle ξ over S2n with Cn(ξ) � 0
(indeed, the “Bott element” has cn = (n−1)!). Let ξi ↓ K\G/Γi be Li ∗ (ξ). It is
an almost-flat family yet cn(ξi) = 〈cn(ξ), [S2n]〉[K\G/Γi], a nontrivial multiple
of the fundamental class. Given a manifold M with fundamental group Γ we
can use a map inducing the isomorphism of fundamental groups M → K\G/Γ
to pull back the almost-flat bundle and see that at least the higher A-genus
associated to the fundamental class of Γ obstructs positive scalar curvature.

If you are unhappy with the ξi being over different manifolds (although
this is completely irrelevant to the application of the argument!), we can push
them forward with respect to the covering map K\G/Γi → K\G/Γ. These
pushforward bundles will still be almost-flat – in the sense of having decreasing
curvature approaching 0 – and have nontrivial Chern class, but increasing
dimension.

See Hanke and Schick (2006) and Hanke et al. (2008) for papers that explain
how this argument fits into the assembly map perspective.

In Gromov and Lawson (1983), the linearity condition on the fundamental
group of the nonpositive curvature manifold were removed. Above, we used
this condition to produce the sequence of finite covers with arbitrarily large
injectivity radius – unfortunately, as far as we know, there might be a non-
positively curved manifold whose fundamental group is simple!48

However, there’s always the universal cover, which has infinite injectivity
radius – or alternatively R2n has a bundle with compact support, which has
connections on it which are trivial outside a ball, and have arbitrarily small
curvature (simply rescaling of the Bott element on Cn) – that can be used if
only you are bold enough to give up on compactness in index theory.49 Gromov
and Lawson develop the relevant index theory and, using this one almost-flat
bundle with compact support, proved the result without any residual finiteness
hypothesis.

48 No such Riemannian example is known, but Burger and Mozes (2001) have given simple
finitely presented groups that act properly discontinuously on a product of trees.

49 This is a different type of noncompact index theory than the L2 index theorem of Atiyah for
infinite regular covers that we had discussed in Chapter 3.
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These almost-flat ideas were later turned around and applied to define the
notion of the signature of a manifold with coefficients in an almost-flat bundle
(or family) (Connes et al., 1990). Then the relevant index theorem applies
to give the Novikov conjecture in the nicest possible way: it gives a simple-
to-understand homotopy invariant that expresses the reason that the higher-
signature characteristic classes are homotopy invariant.

The reader must have noticed that the discussion above sufficed to explain
the higher A-genus (and signature) associated to the fundamental class – but
not the other cohomology classes. In Gromov and Lawson (1983) and Connes
et al. (1993), various approaches to the other cohomology classes are given,
via families (very similar to the “descent argument” given in §4.9).

Rosenberg (1983, 1986a,b) modified this argument by using infinite-dimen-
sional flat bundles in place of finite-dimensional almost-flat bundles – this
is essentially the work described in §5.2. (He also explained in Section 2 of
Rosenberg (1991) the relevant aspects of the real C∗-theory and its K-theory, to
get the correct obstructions for the prime 2 to include the Hitchin obstructions.)

In the infinite-dimensional setting there is relatively little difference between
a single operator or a family. Asserting that one can fill K(K(Γ,1)) by Chern
classes of flat C∗Γ bundles is essentially a form of the Novikov conjecture.

The next step in continuing our development of the parallelism between
surgery and operator theory is to develop analogues of the topological theories
of noncompact manifolds, and, perhaps most importantly, the analogue of
bounded control. We will see that the replacement for LBdd(Γ) is the K-theory
of a C∗-algebra (the “Roe algebra” of the discrete metric space Γ, often denoted
by |Γ|). I refer the reader to Roe (1993, 1996) and Higson and Roe (2000) for
detailed discussions.

This Roe algebra is the algebra of “bounded propagation speed operators”
on |Γ|. The idea is this (and is entirely analogous to the algebraic description
of LBdd(Γ) that we did not give!): Imagine that at each point of Γ we attach
a Hilbert space, and we only allow operators that map the Hilbert space at p
to (the sum of) ones that are at most some distance away (where the distance
bound is independent of p).

Except that in order to make a C∗-algebra it is necessary to take the closure
of such operators, and this allows some amount of infinite speed, but “very
little that is going very fast.” An example is the heat flow e−t∇, where ∇ is
the Laplacian, for t > 0, which is bounded propagation speed in the most
naive sense: the combinatorial model of ∇ propagates at a scale of 1 unit,
and when we truncate the exponential after finitely many terms we get a norm
converging sequence of bounded propagation speed operators, but whose speed
keeps growing.
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The algebra is denoted by C∗ |Γ| or for general metric spaces50 by C∗(X).
If X is a complete manifold, then the “geometric operators” on X have

bounded propagation speed (see Cheeger et al., 1982). Elliptic operators give
rise to elements of K lf

x (X) and there is an “index map” (that is, a cousin of
the “assembly map” in bounded surgery theory) that assigns an index to each
elliptic operator over X an element of the group K(C∗(X)):

K lf
x (X) → Kx(C∗(X)).

This index contains, for example, for spin manifolds, an obstruction to the
existence of a positive scalar curvature metric on X so that the map (X,g) → X
is Lipschitz (in the large) (so the propagation speed still is finite from the |X |
point of view).

Note that if X is uniformly contractible, then one can conjecture that the
index map is an isomorphism, and that, even without this,

K X lf
x (X) → Kx(C∗(X))

is. (The manifold in Dranishnikov et al. (2003) gives a counterexample to the
first statement, but it makes use of the map from K X lf

x (X) and remarkably,
even though X is uniformly contractible, the left-hand sides of these seemingly
identical constructions do not coincide.) Guoliang Yu (1998) gave a very elegant
example showing that this latter map is not even injective. Let X be the disjoint
union of rescaled copies of the sphere:

X =
⋃√

nS2n.

This is a spin manifold with positive scalar curvature bounded away from 0.
The rescalings mean that, at any scale, only finitely many of the spheres can be
ignored. We have an isomorphism

K X lf
x (X) ≈

∏
(Z)/⊕Z

with the Dirac operator representing the element (1,1,1, . . .)which is nontrivial,
and hence an element of the kernel of the assembly map.

This is a very striking example51 but (like the Dranishnikov et al., 2003, ex-
ample) it involves unbounded geometry. I’d be curious to know what K(C∗(X))
is in this example.

Despite these counterexamples, the reverse is true: there are many situations
(such as complete non-positively curved manifolds) where one can show that
50 This only depends on the coarse quasi-isometry type of X, or even just of the bounded

category of X (in the sense of §4.8).
51 And it would be very interesting to know if it gives an example for noninjectivity of the coarse

assembly map in bounded L-theory.
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the coarse index map is an isomorphism, and then the method of descent
applies to give the Novikov conjecture for the group Γ (from the metric space
|Γ|). See §5.6 for more details and further extensions that take into account the
fundamental group of the noncompact manifold.

Now let us turn to the problems of group actions, where there are different
phenomena in the case of the circle and the case of finite groups, and then
to the birational invariance of higher Todd genus, where the result is actually
true unconditionally (and integrally!). In all of these cases52 it is not too hard
to promote the simply connected argument to a proof that’s conditional on
the injectivity of the index homomorphism K(BΓ) → K(C∗Γ) (also known as
the strong Novikov conjecture53). However, what we would like to understand
is “why” these are now known to be true unconditionally. The mechanism is
actually different in the two cases, but the “reason” seems to be the same.

Let us start with the results about S1-actions, and, for simplicity, let’s assume
that the action is “semi-free,” namely that every orbit is either trivial (corre-
sponding to fixed points) or free,54 leaving the reader to refer to the original
papers for the general case (which is philosophically the same, but does show
some different aspects in detail).

Let’s start with the case of the higher A-genus:

Proposition 5.16 Suppose S1 acts on M semi-freely with nonempty fixed
point set F; then the map M → M/S1 is split injective on the fundamental
group.

We suppose that codimension F is at least 4: this can be achieved by taking
the product with C2, giving the latter the obvious circle action thinking of S1

as unit complex numbers. In that case, the map is actually an isomorphism on
the fundamental group by a simple application of Van Kampen’s theorem (and
general position: in that removing F will not change the fundamental group).

Now, recall from §4.5 that to prove the vanishing of the image of A(M)∩[M]
in

⊕
Hm−4i(K(π,1);Q), it just suffices to show that, for all “subcycles” X of

K(π,1) that have a trivial normal bundle neighborhood, the transverse inverse
image f −1(X) has vanishing A-genus. But this is true, since by first taking the
52 Except for the case of invariance of higher signatures for fixed sets of pseudo-trivial actions.
53 So-called because it implies the homotopy invariance of higher signatures – i.e. the original

Novikov conjecture. It also implies, away from 2, integral refinements that we will discuss in
the next section.

54 Actually, the free case is even easier: M bounds a D2 bundle over M/S1 and then we can use
cobordism invariance of characteristic classes to see that, for any α ∈ H ∗ (M/S1), the higher
signature of M and the higher A-genus of M vanish. Alternatively, dually, and somewhat
more precisely, the pushforwards of [Sign ] and [D] in Km(M/S1) vanish. (They are the
boundary of the natural classes in K lf

m+1(E), where E is the total space of the vector bundle
whose unit sphere bundle is the circle bundle defined by M → M/S1.)
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transverse inverse image of X in M/S1 and then taking its inverse image in
M , we obtain an inverse image for X that is still spin (it has a trivial normal
bundle in a spin manifold) and has a nontrivial S1-action. Thus, the ordinary
Atiyah–Hirzebruch theorem gives the conclusion.

The result about higher-signature localization for S1-actions follows from
similar reasoning. There is a cobordism (see below) from M to a union of
CPc/2−1 bundles over the components of F, where c is the codimension of the
component. We need the following lemma that tells us about the L-classes of
this total space in terms of the L-class of F.

Lemma 5.17 If π : E → B is a (block) bundle with (homotopy) fiber (a
homotopy)CPk , whose monodromy is trivial on H2(CPk), then π∗

(
L(E)∩[E]) =

sign (CPk)L(M) ∩ [M].

This boils down (by the same reasoning as before) to the fact that for all such
bundles sign (E) = sign (CPk)sign (M). This is a theorem of Chern, Hirzebruch,
and Serre (1957).55

The cobordism is explicit: it is M×[0,1]/∼where we identify points on M×1
that are on the same orbit if that orbit does not touch a tubular neighborhood
of F. The structure comes from the equivariant tubular neighborhood theorem
(in the smooth case, and the proof of the existence of block bundles in the PL
case56). Explicitly, this proves:

Theorem 5.18 If S1 acts on a manifold M with nonempty fixed set F, then
the higher signatures of M are those of F, i.e. for all α ∈ H∗(Bπ), one has

〈 f ∗(α) ∪ L(M), [M]〉 = 〈 f ∗i∗(α) ∪ L(F), [F]〉.

For Zp-actions, the cobordism argument fails (the inverse image has a Zp-
action, but its homological properties are not restricted). We will give one
argument now about the connection to the Novikov conjecture – another one
can be made based on the ideas from Chapter 6 when we study the equivariant
Novikov (and Borel) conjectures more systematically. The current argument is
based on preliminary remarks about rational homology manifolds.

The reasoning given in §4.5 for the definability of L-classes for PL-manifolds
actually produces homology L-classes for oriented rational homology mani-

55 Their theorem assumes the monodromy of the bundle is trivial – for the CPk case one could
have monodromy of order 2 (i.e. inducing complex conjugation on the fiber). However, in that
case, the 2-fold cover of this fibration has trivial monodromy, and signature is multiplicative
for all finite sheeted covers (as a consequence of the Hirzebruch signature theorem) and the
result follows again.

56 The topological case requires some form of Smith theory to make these arguments (that are
essentially locally homological and sheaf-theoretic, rather than completely geometric).
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folds57 (that agrees with the Poincaré dual of the L-cohomology class): all that
one needs to produce L-classes is a cobordism-invariant definition of signature
– and one has this using rational cohomology.

Moreover, this characteristic class can be pushed into group homology to
give a “higher signature.” It turns out (see immediately below) that if the
Novikov conjecture is true for manifolds, then it is true for rational homology
manifolds in the sense that the higher signature in the homology of K(π,1)
will be preserved by maps f : X → Y that are orientation-preserving and
induceQ-homology isomorphisms on the regular covers induced from the map
Y → K(π,1).

The most straightforward argument for this uses Ranicki’s algebraic theory
of surgery (Ranicki, 1980a,b) (mentioned earlier in §4.7) or its predecessor
(Mischenko, 1976). Ranicki views the L-groups of surgery as cobordism groups
of certain chain complexes with duality over Zπ. Inverting 2,58 we can view
X ∪ X → X as a surgery problem over the ringQπ (since we are only assuming
a Q-homology manifold) and thus gives an element σ∗(Xn) ∈ Ln(Qπ). This
element is homotopy invariant since it is defined using chain complexes (the
chain complex of a homotopy equivalence gives a cobordism in the appropriate
sense). Under the assembly map,

Hn(K(π,1); L(Q)) → Ln(Qπ),

the homology L-class gets mapped to σ∗(Xn).59 It is a general and remarkable
algebraic result of Ranicki (1979a) that, for any π, the map L(Zπ) → L(Qπ)
is an isomorphism away from the prime 2 – indeed, has kernel and cokernel
annihilated by multiplication by 8 – so the injectivity of this assembly map –
away from 2 – is equivalent to the injectivity of the usual one and thus the

57 In the PL case: for the topological situation, this can be done using controlled topology (see
Cappell et al., 1991 – as a topological definition of L-homology classes that works for
manifolds implies Novikov’s theorem on Pontrjagin classes, such a definition cannot be too
trivial.

58 In the coefficient ring, since this is a degree-2 map, so we need to multiply the Poincaré duality
isomorphism by 2 in the range – which is OK if 2 is inverted in the coefficient ring. Ranicki
actually does something different and better. He defines a slightly different cobordism group of
chain complexes with self-duality for rings with anti-involution, and then observes that the
chain complex of X is naturally an element of this different group. Wall’s L-groups, the
surgery L-groups, are denoted using subscripts, and Ranicki denotes these modified groups
with a superscript: Ls (Zπ), for instance (despite their remaining covariantly functorial) and
christens them symmetric L-groups (and refers to Wall’s as quadratic L-groups). In any case
these only differ at the prime 2. This is not merely an academic issue though: alive versus
dead, yes versus no, being and nothingness, are all mod 2 issues.

59 This, while useful, is just unraveling all the definitions of the objects and morphisms involved.
Of course, deducing the Hirzebruch formula from this approach then involves identifying two
different homology L-classes!
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Novikov conjecture in this setting follows from (is equivalent to) the usual
one.60

Now, if G × M → M is an orientation preserving action of a finite group,
then M/G is a Q-homology manifold, and sign (M/G) is just the signature of
the G-invariant part of the cohomology of M . In terms of the G-signature of
M , which is a representation, we are looking at the multiplicity of its trivial
component – which can be computed using character theory as

Sign (M/G) = 1/|G |
∑
χg(G-signature)

and the right-hand side can be computed by characteristic classes of the fixed
sets Mg and their equivariant tubular neighborhoods. If G = Zp the formula is

Sign M/Zp = 1
p

sign (M) + p − 1
p
〈v8(ξ) ∪ L(F), [F]〉,

where ν(ξ) is p/(p − 1) times61 the sum of the local contributions in the G-
signature formula from all of the generators of Zp of the characteristic class of
equivariant normal bundle to F from Atiyah and Singer (1968b). If the action
is homologically trivial, then Sign (M/Zp) = sign (M), so we get

Sign (M) = 〈v(ξ) ∪ L(F), [F]〉.
If one combines the various formulas, one obtains62 that, after applying the

assembly map,

σ∗(M) = σ∗(M/Zp) = A∗ f∗
(
v(ξ) ∪ L(F) ∩ [F]) ∈⊕ H∗−4i

(
K(/π,1);Q),

so that assuming the Novikov conjecture, one gets the localization formula.
Conversely, if M is a manifold with χ(M) = 0,63 so that f∗(L(M)∩ [M]) lies in
the kernel of the assembly map,64 then the surgery problem M → M×K(Zp,1)
in Lm(Q[π × Zp]) will have vanishing obstruction65 (after tensoring with Q).

60 Of course, this leaves some room for differences in the integral theory.
61 We put this factor in to make later formulas more pleasant.
62 Somewhat profligately, since it is possible to only invert 2 and p in this formula.
63 If the Euler characteristic is nonzero, then it is impossible to have a finite complex with a free

homologically trivial action, by the Lefshetz fixed-point theorem. It occurs formally in our
setting, in ensuring that the infinite complex M × K(Zp , 1) has rational chain complex chain
equivalent to a finite complex. (The element of K0 × (Q[π × Zp ]) represented by the complex
C∗

(
M × K(Zp , 1)) is χ(M)[Qπ] where Qπ is clearly a nontrivial projective module over

Q[π × Zp ].
64 Note that the map from bordism to group homology with coefficients in the (symmetric)

L-spectrum, given by [?] → f∗(L(?) ∩ [?]) is onto; this is certainly elementary, and all we
need, if one tensors with Q.

65 Surgery with coefficients in a subring of Q measures the obstruction of a degree-1 normal map
being cobordant to one that is a local homology equivalence (in the universal cover) (see, e.g.,
Taylor and Williams, 1979b).
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The result of the surgery will be a manifold with free homologically-trivial Zp-
action cobordant to a multiple of M , and hence with nontrivial higher signature.
It will be a counterexample to the localization principle. To summarize, we have
explained:

Theorem 5.19 If Zp acts on a manifold, trivially on π1 and on twisted
homology, then one gets a localization formula

f∗(L(M) ∩ [M]) = f∗(v(ξ) ∪ L(F) ∩ [F]) ∈
⊕

H∗−4i
(
K(π,1);Q)

iff the Novikov conjecture is true for the group π.

Why is there no localization principle for (untwisted) higher signatures for
pseudo-trivial actions? We note that the whole problem is anomalous from the
point of view of the game: although there is an index equality in the simply
connected case, it isn’t based (solely) on index theory – but rather Smith theory,
a homological result, played a key role.

That doesn’t mean that one can’t play the game – only that we don’t see how
to win. The actual failure is based on two principles.

The first is that Smith theory, i.e. the homologically trivial theory of group
actions, essentially gives p-adic information for p-groups, rational information
for tori, but almost nothing at all for non-p-groups or nonabelian compact Lie
groups.

In any case, for p-groups, the only information one can hope for is Fp[π]
information, with Fp some finite field with p elements, and, with some effort,
for any manifold M ′ that is Fp[π1(M)]-homology equivalent to M , one can
construct a quasi-trivial Zp-action on the product of M with a disk, with M ′

being the fixed-point set.66

The second is the very general67 homological surgery theory of Cappell
66 We have ignored some algebraic K-theory problems that actually arise even if π = Z (as we

will show in forthcoming work with Cappell and Yan). As usual, such can be gotten rid of by
the violent act of crossing with a circle.

In the smooth category, there are additional bundle-theoretic considerations even to
obtaining actions in a neighborhood of M′, since a real vector bundle can only admit a Zp
action if it has a complex structure. For the PL and topological situations, there are results that
put a Zp action on many neighborhoods (see Cappell and Weinberger, 1991a) and this is being
tacitly invoked here. Extending the action outside a neighborhood in the semi-free case (even
in low codimension) assuming suitable K-theory conditions is the main result of Assadi and
Vogel (1987).

67 Although, over the past decade there have been a number of occasions when I had wished for a
yet more general theory: the Cappell–Shaneson theory is very well adapted to the problems for
which it was invented, codimension-2 embedding theory, a.k.a. knot and link theory, but it
does not describe the obstructions to doing surgery to obtain a map that is a homology
equivalence so that the map is a homology equivalence with coefficients in rather general
bundles, or to handle general Serre classes that are not associated to localizations.

Even Z→ R is not “officially” part of their theory, although of course a map of Z chain
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and Shaneson (1974). They define obstruction groups to performing surgery in
this setting, and the relevant group is Γm(Zπ → Fp[π]). The even-dimensional
groups are quite hard to get one’s hands on, and there are interesting phenomena
to be unraveled, but the odd-dimensional groups are typically very small: there
is a natural map

Γm(Zπ → Fp[π]) → Lm(Fp[π])

that is automatically one-to-one for m odd. Since Lm(Fp[π]) is a module (by
tensoring) over the Witt group of nonsingular quadratic forms W(Fp), and
W(Fp) is always of exponent at most 4 (Milnor and Husemoller, 1973), these Γ
groups are exponent 4. Consequently, we can easily produce manifolds in odd
dimensions that are Fp[π] homotopy-equivalent to M , whose higher signatures
deviate almost at will from those of M .68

Then it is necessary to produce group actions with these manifolds as fixed
sets, and for this there is well-developed machinery (Assadi and Browder, 1985;
Weinberger, 1985a, 1986; Jones, 1986; Assadi and Vogel, 1987; Cappell and
Weinberger, 1991a).

We close this section with a very brief discussion of the argument given in
Block and Weinberger (2006) for Rosenberg’s algebraic–geometric Novikov
conjecture on birational invariance of higher Todd genera. It follows the pattern
we saw above for the S1 localization formula (or vanishing of higher A-genus).

If V and V ′ are birational smooth varieties, then according to Abramovich
et al. (2002)69 one can move from V to V ′ by a sequence of blowings up and
down. Thus one needs only to check that if

π : V ′ → V

is a blowup, then π∗(OV ) = Ov , and then rely on the topological Riemann–Roch
theorem of Baum, Fulton, and MacPherson (1975) to map further (and give
commutativity of the diagram) K(V) → K

(
K(π,1)) . This is a local result (and

is essentially Hartog’s argument given for the birational invariance of the Todd
class).

complexes is an R isomorphism iff it is a Q isomorphism, so one can apply their theory by
replacing R by Q.

68 In even dimensions some higher signatures survive the map Lm(Zπ) → Γm(Zπ → Fp [π])
while many don’t. For instance, for free abelian groups, only the ordinary signature survives,
but for surface groups of genus greater than 2, the higher signature associated to the
fundamental class also survives (as a consequence of the Atiyah–Kodaira fiber bundle).

69 This result is a kind of Hironaka theorem for maps.
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5.4 The Moral

What have we learned from playing several rounds of “the Novikov game”?
I think there are two lessons:
There really is a gap in level of depth between the problems that seem to

be conjectural and the ones that we know how to prove. The latter tend to be
essentially local statements, and the difficulty (nowadays) is to prove theorems
from essentially global hypotheses.

Novikov’s theorem is (as we have seen) the statement that L-classes can
be preserved by hereditary homotopy equivalences (i.e., CE-maps). The whole
problem with the Novikov conjecture is determining for which cycles homotopy
equivalences “descend” or can be “inherited” and after how much work. Also,
the birational invariance is of the same sort: the key to the proof is that a map
that is birational is birational on all of its Zariski-open subsets.70

The group actions overwhelmingly ratify this perspective. Being a circle
action is something that descends, by definition, to invariant submanifolds.
However, being a homologically trivial group-action is a local condition.

The results about positive scalar curvature are apparently exceptional in this
regard, but actually the point is that it is impossible to ever get a connection
between the Dirac operator and its kernel from positive scalar curvature locally:
this is a global phenomenon that requires completeness (and thus does not
descend to open subsets). Indeed, on a manifold with “big” A-genus, nothing
about the homological structure of this class is reflected in the structure of the
negative scalar curvature set. The remarkable results of Kazdan and Warner
(1975) imply that any closed manifold of dimension ≥ 3 has a metric whose
scalar curvature is strictly positive outside of a ball – irrespective of fundamental
group: the obstruction to positive scalar curvature doesn’t “carry” to negative
scalar curvature.71

On the other hand, the results about the Novikov conjecture all have global
hypotheses. In order to play the game, we need an operator, and a hypothesis
that combines well with flat bundles of arbitrary dimension (and that’s what

70 It is possible to write down modern proofs of these two theorems so that the diagrams look
exactly the same, as can be specialized from the argument soon to follow. For the Novikov
theorem, one thinks of the “canonical class” (that contains the signature operator, and the
Poincaré dual of the L-class) as a self-dual sheaf that is preserved under hereditary homotopy
equivalences. For the birational theorem, the canonical sheaf is a coherent algebraic sheaf that
is preserved by birational equivalences.

71 However, in some noncompact situations, something like this is true: see Roe (1988a,b) for a
situation where a nonvanishing index on a noncompact manifold guarantees that the negative
scalar curvature set is noncompact. This is also true for the results in Gromov and Lawson
(1983) for the manifolds with bad ends. See also Chang and Weinberger (2010).
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fails for the pseudo-trivial group-action situation: in passing to covers, we do
not get any information that holds in characteristic 0 generally).

In light of this analysis, we can now formulate some additional theorems of
Novikov type. That is, we need situations where our global conclusion is local
from the point of view of some alternative space. For example:

Proposition 5.20 If f : M → N is a Riemannian fiber bundle with spin struc-
ture so that the fibers f −1(n) have positive scalar curvature, then f∗([Dm]) =
0 ∈ KO∗(N).

Note that M does not immediately have positive scalar curvature in this
situation: however, by rescaling the fibers to make them tiny, we can arrange
for the vertical directions in this bundle to overwhelm the others and make the
scalar curvature positive. Doing this indicates that the reason for the positive
scalar curvature is local from the point of view of the manifold N , so the
vanishing is to be expected, and it is not hard to prove.

Similarly we can generalize Novikov’s theorem as follows:

Proposition 5.21 If f : M ′ → M → N is a homotopy equivalence over N ,
i.e. for all open subsets U of N , f : f −1π−1U → π−1U is a proper homotopy
equivalence, i.e. the map of pushforward sheaves Rπ∗R f∗(Q) → Rπ∗(Q) is a
quasi-isomorphism of sheaves over N , then

π∗[ f∗([sign M ]) = π∗([sign M ]) ∈ K∗(N).
Note that Novikov’s theorem is the special case of π = identity M = N .72

Moreover, both of the statements above can be coupled to statements about
the Novikov conjecture if the fibers are non-simply connected, but we know the
Novikov conjecture for them, and we inflate the K-theory of N to include this
additional information.

For example:

Proposition 5.22 If f : M ′ → M → N ×K(π,1) is a map that is a homotopy
equivalence (locally) over N (but not necessarily over K(π,1)), then one has,
assuming the Novikov conjecture for π, the equality

π∗[ f∗([sign M′ ]) = π∗([sign M ]) ∈ K∗
(
N × K(π,1)) ⊗ Q.

(One could work integrally if one takes the Novikov conjecture for π to mean
an integral statement.)
72 Strictly speaking, Novikov’s theorem is the rationalization of this statement. This integral

statement about the signature operators is the main result of Pedersen et al. (1995). And the
above refinement is neither simpler nor more difficult than this result (just as the rational
version of this statement follows mutatis mutandis from Novikov’s argument – or the one we
gave in §4.5).
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For N a point, this is the Novikov conjecture for π; for π = e, this is the
generalized Novikov theorem.

These results can easily be understood from the point of view of controlled
topology (see §4.8). We will explain this at the beginning of §5.5.

Another beautiful theorem that fits well into this philosophy is the following
result of Borisov and Libgober (2008) that asserts that higher elliptic genera are
invariants of K-equivalence. Recall that V and V ′ are K-equivalent if there is a
(Z,ψ,ψ ′) with V ← Z → V ′ so that ψ∗Kv = ψ∗KV ′ (where K? is the canonical
divisor of ‘?’). (A motivating case is the Calabi–Yau case, where canonical divi-
sors, by definition, vanish, so that one is asserting here the birational invariance
of invariants of Calabi–Yau manifolds.)

Theorem 5.23 (Borisov and Libgober, 2008) For any fundamental group,
all of the rational higher elliptic genera agree for any K-equivalent smooth
varieties.

The second answer is perhaps more pragmatic. Although the original Novikov
conjecture was phrased in terms of rational invariants, we have already seen
that, for torsion-free groups, one can conjecture an integral injectivity result
– and this implies that many of the characteristic class formulas or restric-
tions that we have developed have, for torsion-free groups, integral refinements
(with more refined definitions of the characteristic classes necessary: e.g. using
K-theory and the cycle associated to the defining elliptic operator73).

We will discuss in Chapter 6 what to do for groups with torsion, but, for now,
let us note that it is necessary to do something.

This is readily apparent in the case of cyclic groups Zp . If we do not invert
p, then simple examples involving homotopy-equivalent linear lens spaces (of
high dimension74) show that higher signatures are not always invariant, i.e. the
pushforward of the signature class in the K-homology of K(Zp,1) Similarly,
for the positive scalar curvature problem, this is even more obvious: lens spaces
also have nontrivial Dirac classes, yet they all have positive sectional curvature.

Moreover, in these two problems at least, things seem to be rather deeper.
We know as a consequence of functoriality that any homology class in (the
homology of) K(π,1) comes a manifold homotopy equivalent to M . One can
73 Or in topology using things related to the Sullivan orientation inverting 2 (Sullivan, 2005), and

the Morgan–Sullivan class at 2 (Morgan and Sullivan, 1974). These are subsumed in the
controlled symmetric signature, i.e., the symmetric signature in the sense of Ranicki (1980a,b),
of M , thought of as a Poincaré complex controlled over itself (see, e.g., Cappell et al., 1991),
amplifying our earlier discussion in the chapter of signature-type invariants of Q-homology
manifolds.

74 Three-dimensional lens spaces are all parallelizable. However, the K-homology of K(Zp , 1)
fills up using the differences of the signature operators of higher and higher-dimensional linear
lens spaces.
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show (using the Gromov–Lawson surgery theorem – see §5.6) that there is a
similar statement possible for positive scalar curvature manifolds – there are
no Dirac obstructions except for those detected in the K(π,1). However, in the
local cases one can often refine the equalities to lie in more refined places than
the group (K or L or Ell) homology. For example, note the refined Novikov
and positive scalar curvature theorems discussed in this section that assert
results in K∗(N) for general (i.e. for not necessarily aspherical) N . (The result
on Rosenberg’s algebraic-geometric Novikov conjecture is also true integrally
as follows from the argument of §5.3, showing how it fits into the realm of
Novikov theorems rather than conjectures.)

Needless to say, until the Novikov conjecture is disproved, we do not know
that there is a real difference between these classes of statements – and, more-
over, the connection between statements about assembly maps and the geo-
metric consequences are only tight in the topological case – conceivably the
positive scalar curvature problem can work out differently than the higher-
signature problem.75

5.5 Playing the Borel Game

It is time to take some stock again of where our journey has taken us so far.
Starting from the original Borel conjecture, we have seen how the geometry

of lattices and ideas in geometric rigidity theory can lead to a great deal of
information about the topological structure of these (and other much larger
classes of aspherical) manifolds, if not their topological rigidity. We were
inevitably led to consider the implications of functoriality (forced upon us by
the π–π theorem of surgery).

In studying how the Borel conjecture restricts the variation of characteristic
classes (and spectral geometry), we were led to the Novikov conjecture. This
is a very broad phenomenon wherein the fundamental group of a manifold
has strong implications for its global analysis, some of whose implications we
studied in this chapter. The key to the breadth of what we’ve seen to this point
always has involved elliptic operators and their properties – and was often the
75 It is even conceivable that the Gromov–Lawson–Rosenberg conjecture is true, but the strong

Novikov conjecture (i.e. the C∗-algebra version) fails and another mechanism is behind this
truth. Nevertheless, the ordinary Novikov conjecture, not involving completions, has a definite
chance of being true even if the strong Novikov conjecture is correct.

The main reason that one can imagine the first statement is that the work of Schoen, Yau,
and Lohkamp gives methods completely unrelated to Dirac operators for the nonexistence of
positive scalar curvature metrics on certain manifolds. The second statement can be suggested
(to the authors of science fiction monographs) by some deviations between the topological
analytic conjectures that will be discussed, for example, in Chapter 8.
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consequence of the general injectivity of (related) assembly maps in K-theory
or a Hermitian cousin, L-theory.

But it is natural to play the Borel game, as well, not just the Novikov. What
can we say about the isomorphism statement regarding the assembly map, say,
for torsion-free groups? Does this problem have relatives with a substantial
family resemblance – that might themselves have beautiful implications?

It is also time to expand our perspective to situations that are not mediated by
elliptic operators, topological K-theory, but exist within algebraic K-theory,76

clearly an analogue (if only because of its name), but also directly connected
to the difference between homotopy and homeomorphism. So, it could, in
principle, also obstruct the Borel conjecture.

This section is just a first pass at this project. We will return to it in Chapter 6
when we deal more seriously with groups with torsion (after all, in this chapter,
we have only dealt so far with products of torsion-free groups with finite ones).

5.5.1 Fibering and Controlled Surgery
Let us recall, temporarily ignoring the Whitehead group (see §4.1), the Farrell
fibering theorem.77 It describes the obstruction of fibering a manifold over
a circle; given f : M → S1 one first considers whether the associated infinite
cyclic cover is a finite complex up to homotopy type (or even finitely dominated).
If so, then the mapping torus of the covering translate T(τ) is a finite complex,
homotopy equivalent to M .

Indeed T(τ) → S1 describes a controlled Poincaré complex over the circle.
It is a Poincaré complex, and this is true for the inverse image of every open
subset of the circle.78 The homotopy equivalence M → T(τ) is, among other
things, a normal invariant for this Poincaré complex.

We can think of this situation in two different ways (that up to algebraic K-
76 Actually, an analogue of the Novikov conjecture is known for the very large class of groups

whose homology is finitely generated in every degree – according to a remarkable theorem of
Bökstedt et al. (1993). (See also Dranishnikov et al. (2020) for a broader explanation of these
ideas within the realm of algebraic K-theory.) It is conceivable that the correct Hermitian
analogue of their technique could prove the Novikov conjecture for a similarly broad class of
groups – although it is unlikely that the C∗-algebra version could ever succumb to such an
approach.

77 Taking the Whitehead group into account is more subtle than one might think. One quickly
comes to the conclusion that Nil groups should be the source of non-approximate fibering, but
Farrell et al. (2018) show that, in the presence of Klein bottles in the fundamental group of the
base, there are a number of nil-type obstructions that all have to vanish.

78 To be more precise, the inverse image of each open set is a proper Poincaré complex, satisfying
the kind of Poincaré duality that open manifolds do – interchanging cohomology with support
– having compact projection to the circle with ordinary homology. One could also define an
approximate Poincaré complex, in an ε–δ fashion where deviations of duality at one scale are
trivial in a somewhat larger one
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theoretic obstructions are equivalent). First of all, we have a Poincaré complex
blocked over the circle S1. That is, we have a Poincaré complex for each vertex
(in a triangulation) and a Poincaré cobordism between these over each edge.
And associated to this we have a blocked surgery obstruction, which will be
a map [S1 : Lm−1(π)] (where π is the fundamental group of the fiber, and L
indicates the space which encapsulates the obstruction to blocked surgery).

Alternatively, we can try to do controlled surgery, which is to build a map
M → T(τ) → S1, so that over each open subset of S1 the map restricts to a
proper homotopy equivalence.

Both alternatives are a little weaker than fibering: the s-cobordism theorem
(or, alternatively, obstructions that naturally give an element in H1 (S1; Wh(π))
is used to straighten the h-cobordisms in the first theorem to be a fibration. For
the second, there are issues related to K0(Zπ) as well – there is no guaranteed
way to find the fiber over a point from the fiber over open intervals,

[S1 : Lm−1(π)] � Lm(Γ),
where Γ = π1(M). Needless to say, the π on the left-hand side really means
π1(Fθ ), the fundamental group of the fiber over a point θ in the circle. That
means the left-hand side should be thought of as sections of a fibration rather
than as a function space in general. (The monodromy of the bundle over the
circle with fiber Lm−1(π) is induced by the covering translate on the infinite
cyclic cover.)

In the controlled situation, cohomology is the wrong variance (block bun-
dles, and their obstructions, pull back): we push forward a controlled surgery
problem to obtain a problem with somewhat looser control. This leads to the
conclusion – and it is one that we had earlier seen in some situations using
the α-approximation theorem of Chapman and Ferry – that controlled surgery
theory should be a homology theory (again twisted if Γ � Z × π),

Lcontrolled(T(τ) → S1) � H1(S1 : Lm−1(π)) � Lm(Γ),
where the first statement is a “general” calculation (and would be correct were
S1 replaced by some other space X) and the second statement is a consequence
of the fibration theorem.

Note that in the Borel conjecture we had the assembly map

Hm(Mm : L(e)) → Lm(Γ),
being an isomorphism when M is a K(Γ,1)-manifold.79 But surely it is now
irresistible to suggest that Hm(Mm : L(e)) → Lm(π1(E)) is an isomorphism
79 This statement does not require M to be closed if we use compact supports, as suggested at the

end of Chapter 3 and §4.7.
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where E → M is a fibration, and where π is the fundamental group of the
fiber (and thus the left-hand side should be interpreted in a (co-)sheaf-theoretic
way).

These statements are conjecturally the case, and are included in what I call
the Borel package, a collection of statements yet more general. They have an
interpretation in terms of some kind of fibering of manifolds over aspherical
ones.

Note, of course, that the Borel conjecture itself is the statement that if M
is aspherical and M ′ is homotopy equivalent to it, we can find a homotopy
of this homotopy equivalence M ′ → M to one that is a fibration over every
open subset (which is, therefore, a controlled homotopy equivalence, which is
the same a CE map – when we are mapping between manifolds of the same
dimension – which in turn is a limit of homeomorphism, by the theorem of
Siebenmann or Edwards).

Needless to say, also, that this is compatible with the Borel conjecture if the
group π satisfies the Borel conjecture. One nice feature of this viewpoint is that
it tautologously builds in a closure of the Borel under short exact sequences:
1→ π → Γ→ π′ → 1 (i.e., the result for Γ follows from that for π and π′).

The Borel package itself needs at least two further amplifications. The first
is a modification or expansion to include algebraic K-theory; we give the
modification immediately and the expansion later in this section. Whitehead
groups are not always trivial; the product of h-cobordant manifolds with the
circle are Cat-isomorphic,80 so there can never be a uniqueness of fibering
without taking algebraic K-theory into account. Moreover, there is also an
algebraic K0 condition to being able to compactify the infinite cyclic cover,
which would surely be possible if the manifold fibered over the circle. However,
if the statements we had written were correct “on the nose,” then, for example,
blocked surgery theory would indeed give existence and uniqueness of fibering.

However, it is pretty close. It turns out that all algebraic K-theoretic obstruc-
tions die after crossing with a torus, and that, by using tori, one can make the
solutions essentially unique. (The uniqueness is typically another algebraic K-
theory obstruction). As a result, one way to get around the algebraic K-theory
issue is to “stabilize.” We can just cross all the groups involved with Z∞ and
then the arguments would work as described above. This is a little awkward,
and it is best to replace Lk(π) by lim LBdd

k+d
(π × Rd ↓ Rd), where we map

LBdd
k+d
(π × Rd ↓ Rd) → LBdd

k+d+1(π × Rd+1 ↓ Rd+1) by crossing with R.
This limit is referred to as L−∞

k
(π). The map Lk(π) → L−∞

k
(π) is an isomor-

80 Recall that the obstruction to an h-cobordism being a product is the Whitehead torsion;
torsions are multiplied by Euler characteristic in products (see e.g. Milnor, 1966; Cohen,
1973).
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phism away from the prime 2. (I don’t know any example where the kernel and
cokernel don’t have reasonably small exponent,81 but I can’t imagine a proof
of such a statement either given our current state of knowledge.)

The second comment and amplification is that L-groups have a completely al-
gebraic definition, and all of the constructions, while we have made or explained
them geometrically, can also be algebraicized. Note that Z[A × B] � Z[A][B]
(and similarly with a twisted group ring for semidirect products, and a more
complicated but obvious enough expression for the situation where one has an
extension that is not split). It suggests therefore that, even for a nontrivial family
of rings R over K(Γ,1), there should be an isomorphism

Hm(K(Γ,1), L−∞(R)) → L−∞(“ RΓ ”),
where “RΓ” is the group ring (twisted, when the family demands it). Frequently,
geometric techniques for the Borel conjecture will initially apply directly to the
assembly map where R = Z, and then have an extension to fibered situations,
allowing R to be a group ring – but, with some algebraic variation of the
method, one can get this whole package.82

The above statement is equivalent to the statement that the forget-control
map from “controlled L-theory (in the −∞ sense) with coefficients in R” to
L−∞ (“RΓ”) is an isomorphism.

This package can have useful applications geometrically that go beyond the
Borel and Novikov conjectures themselves. We mention three examples that
have bearing on issues that we’ve already discussed.

The first is the proof of the combined Novikov conjecture/Novikov theorem
made in §5.4. If we have a controlled homotopy equivalence as in the hypothesis
of that proposition, then we would get equivalence of the signature classes in

Hm

(
N, L−∞(Q, π)) .

However, if we know that the map H∗(K(π,1)L(Q)) → L−∞(Qπ) is (rationally)
split injective, then generalities about homology theories gives injectivity of
composition,

H∗(N × K(π,1), L(Q)) → Hm(N, L−∞(Qπ)),
and, therefore, controlled homotopy invariance in the domain of this map
(rationally, if that’s our assumption on π).83

81 It’s not hard, though, to give examples where these are infinitely generated.
82 See Weinberger (1985b, 1987) and Bartels and Reich (2007).
83 This argument is only being asserted for untwisted fundamental group situations. Frequently

proofs of the Novikov conjecture are natural enough to accommodate twistings, but this is a
stronger hypothesis.
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As a second application, we observe that the proper Borel conjecture for
the Q-rank-2 case follows from the Borel package of the underlying lattice. In
this case the Borel–Serre boundary is aspherical, as we have already noticed,
and proper rigidity of the original manifold follows from the rigidity of the
compactified manifold.84 This, in turn, by the exact sequence of a pair in
surgery and group homology, reduces to the isomorphism statement for the
lattice and the boundary separately. The first is the ordinary Borel conjecture,
but the second is the twisted one in a situation where we have a (non-split) group
extension (associated to the Borel–Serre boundary), and the relevant ring is the
group ring Z[F∞], which is not associated to a finitely presented group (and so
would require more effort to deal with geometrically, since the relevant fiber
could not be a compact manifold).

Finally, in our discussion of the higher-signature localization formula for
homologically trivial group actions on non-simply connected manifolds, we
gave a particularly symmetric expression of the formula that ended up being
equivalent to the Novikov conjecture. The characteristic class on the right-
hand side of the formula was the average of classes introduced by Atiyah
and Singer, as one goes over the generators of the cyclic group. However, the
reasoning suggesting the formula suggests that one can use any generator to get
a characteristic class formula: and all generators should give the same result –
i.e., included in such a formula would also be a vanishing theorem for certain
higher characteristic classes.

This is indeed feasible, except that the argument that one would naturally
give would be phrased in the ring L(Q[ξ][Γ]), where ξ is a primitive root of
unity.85 I do not see any way to deduce from a statement about theQ[Γ] the full
necessary statement about Q[ξ][Γ].86 However, the “Novikov package,” which
is also available in as wide a generality as the Novikov conjecture (at this point
in time) would give this.

5.5.2 The C∗-algebra Setting (the Baum–Connes Conjecture,
First Meeting)

In the C∗-algebra setting we also have an assembly map (interpreted as an index
map)

K(K(Γ,1)) → K(C∗Γ),
84 Modulo issues about vanishing of Whitehead groups that follow by the K-analogue of the

L-argument we are now giving (and appropriate work on the K-theoretic Borel package for
the lattice).

85 Q[ξ] arises naturally as a piece of Q[Zn].
86 This would not be an issue in the C∗-algebra framework – the abstract algebra C∗(Zn × Γ) is

obviously a finite product of m copies of C∗(Γ).
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with the Novikov conjecture being a statement about (rational) injectivity. The
Baum–Connes conjecture is the isomorphism statement that goes along with
this injectivity statement. Thus, the BC conjecture would assert (in its strong
package form) that an assembly map involving Γ–C∗-algebras going to a cross-
product algebra should always be an isomorphism for Γ torsion-free (again,
leaving the discussion of groups with torsion to Chapter 6).

Recall that C∗Γ is a completion of the group ring CΓ which we think of as
an algebra of operators either on L2Γ, in which case we get C∗redΓ (the reduced
C∗-algebra), or acting on arbitrary unitary representations, which then produce
C∗maxΓ. To have a mathematical statement, surely it is necessary to specify
which completion should be used. (Note that there is a map C∗maxΓ→ C∗redΓ so
injectivity for the reduced assembly map implies injectivity for the max.)

The problem is this. Given a homomorphism of groups Γ → Δ, there is
a map between their Eilenberg–Mac Lane spaces, so there is functoriality of
the left-hand side, but there is no induced map C∗redΓ → C∗redΔ (except for the
situation where the kernel of the map is amenable).

Using C∗maxΓ, there is an induced map, so both parts of the picture do have
the same functoriality. However, there is no chance that this map can be an
isomorphism in general: If Γ has Property (T), then the trivial representation
is a projective module over C∗maxΓ, and it lies in the cokernel of the assembly
map. (In fact, for a group like SL3(Z) – or a torsion-free congruence subgroup
thereof – there are infinitely many Z summands in K0(C∗maxΓ) coming from the
infinitely many irreducible representations coming from finite quotients that are
all isolated in the Fell topology. The domain of the assembly map is a finitely
generated abelian group.)

So we have a dilemma for those who would make conjectures: To be true, one
must work with C∗redΓ, else Property (T) immediately explodes the conjecture,
yet doing so posits a highly non-obvious functoriality for the K-groups that
does not appear to make any sense at the level of the algebras themselves.

The latter is what Baum and Connes (2000) boldly did in an influential
paper (that appeared many years after its initial circulation!).87 It was a ma-
jor advance88 when V. Lafforgue (2002) gave an example of a group that has
Property (T) and satisfies the conjecture. Subsequently, building on these tech-
niques, the Baum–Connes conjecture was verified for all hyperbolic groups by
Lafforgue (2002) and Mineyev and Yu (2002) – with Lafforgue (2012) subse-
quently giving a proof in this situation with coefficients, as well (see Puschnigg,
2012).

87 I have to admit to having been offended by this reckless behavior – as a penance for my timid
skepticism.

88 Thereby causing me to doubt my skepticism.
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However, we now know that the Baum–Connes conjecture with coefficients
is false in general (we will discuss this further in Chapter 8). It remains an
extremely important insight – injectivity is known for a very large class of
groups, as we shall see – and understanding the extent of its full validity is a
major problem, e.g. for lattices or linear groups.

5.5.3 Algebraic K-Theory
So, finally, let’s turn to the long overdue issue of algebraic K-theory and how
it connects to this story. This subject fills bookshelves in a library: we shall
devote only a few pages to this.

Classical algebraic K-theory centered around two functors of rings (that were
linked) K0(R) and K1(R). These have important applications in topology and
are analogues of (say, complex) vector bundles over X and ΣX if R is the space
of continuous functions on a compact Hausdorff space X (a C∗-algebra). (A
bundle over ΣX can be viewed as two trivial bundles over each of the two cones,
that are “clutched” or identified over X: this is a family of changes of bases –
i.e. a map X → GLk(C), i.e. an element of GLk(C(X)).)

Even earlier, these functors, in the case of number rings, had important arith-
metic interpretations, and consequently served as a bridge between topology
and arithmetic.

Subsequently, the functors and their range of topological applications grew
to include Ki(R) both for i negative and for i > 1, and also deep connections
to algebraic geometry and arithmetic developed. The negative groups having
direct meaning using controlled (or bounded) algebra, the positive groups being
related to the homeomorphism and diffeomorphism groups of manifolds.

The case i = 0, i.e., K0(R), is the Grothendieck group of finitely generated
projective R-modules. It is thus the the group that contains the most general
possible dimension for finitely generated projective modules.

It arises frequently in geometric topology as the Euler characteristic of a
chain complex that has finiteness properties. Note that a chain summand of
a chain complex of finitely generated free modules is such a chain complex;
homological vanishing theorems can often detect that a chain complex is chain-
equivalent to one of this form.

Thus K0(Zπ)/K0(Z) contains an obstruction to a finitely dominated cell
complex (e.g., a cell complex that’s a retract of a finite complex) to being
homotopy-equivalent to a finite complex, and indeed this is the whole ob-
struction according to the finiteness theory of Wall (1965). It also measures
(according to Siebenmann, 1965) the obstruction to putting a boundary on a
noncompact manifold that is “tame at∞.”
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Perhaps even simpler, consider this: if X is a finite complex with a PL G-
action (for G finite), then the cellular chain complex is projective overQG. (All
finitely generated modules over QG are projective.) As Euler characteristic is
the same on the chain and homology level (when the latter is projective), we can
identify this invariant on homology, and then, via characters, with the invariant
at the chain level. In other words, we see that

Trg χ(G,X) = χ(Xg),
and the Lefshetz fixed-point theorem is thus encoded in this functor (i.e. the
equivariant χ is a multiple of the regular representation – the image K0(Q),
which is equivalent to the vanishing of the character of the representation on
all nontrivial elements).

Whitehead actually defined K1(Zπ) earlier. We can think of it as the Grothen-
dieck group of automorphisms of finitely generated projective modules. By
adding on a complementary projective module with the identity automorphism
(a complement to P is a finitely generated module Q so that P ⊕Q is free), one
can think of this as made from automorphisms of free modules, i.e. elements
of GLn(R) which are allowed to be stabilized.

This is the same as the Grothendieck group of finitely generated free based89

acyclic chain complexes.
We can therefore think of K1 as the universal target for determinants of

invertible matrices (over the ring).
Thus for any finite-dimensional orthogonal representation of π, there is a

Norm map that assigns to an invertible matrix over Zπ the determinant of the
associated matrix with real entries. Thus for π = zp , with p an odd prime, the
trivial representation gives nothing, but the remaining (p−1)/2 representations
all give interesting invariants: however, the products of all of these determinants
must be ±1 (because it is the norm of a unit of an algebraic integer). That this
is the complete dependency is the content of the Dirichlet unit theorem.

Just as K0(Zπ) measures existence of finite complexes within a homotopy
type, K1(Zπ) measures the uniqueness of the finite complex. Given two finite
homotopy-equivalent complexes, the mapping cone of the homotopy equiva-
lence is almost a based acyclic Zπ-complex – the chain complex under discus-
sion uses cells of the universal cover, but each cell has two orientations, and
there is no canonical lift of a cell to the universal cover, so we also have an
indeterminacy by multiplying by elements of π. So we get in this situation a
“torsion” which is an element of

Wh(π) ≡ K1(Zπ)/(±π).
89 A based chain complex is a chain complex where each chain module is given a specified basis.
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The equivalence relation this puts on finite complexes is called simple ho-
motopy equivalence: it is the equivalence relation generated by viewing any
finite L as equivalent to L ∪ e, where e is a cell and the attachment is along a
face in its boundary (i.e. elementary expansion). See Figure 5.3 for a schematic
elementary expansion.

L

a

A
K

Figure 5.3 A schematic elementary expansion. Reproduced from Cohen
(1973) with permission of Springer.

The s-cobordism theorem connects this to manifold theory. A manifold with
boundary that deform-retracts to each of its two boundary components is an
h-cobordism. It is a product – if the dimension is at least six – iff one of
(and therefore both90 of) the boundary inclusion(s) is (are) a simple homotopy
equivalence.

If W is an h-cobordism, then W − ∂_W � ∂+W × [0,1), so Wh(π) can be
thought of as measuring the uniqueness of the solution to the problem of putting
a boundary on an open manifold.

There is an important relationship (Bass et al., 1964) between K1 and K0
called the fundamental theorem of K-theory. It asserts that

K1(R[t, t−1]) � K1(R) ⊕ K0(R) ⊕ Nil(R) ⊕ Nil(R),
where Nil(R) is the Grothendieck group of nilpotent automorphisms of free
modules. It frequently vanishes (e.g. when R is a regular ring) but is nontrivial,
and indeed infinitely generated, when R = Z[Zp × Zp].

The way to get a map from the right-hand side to the left is like this. On K1
it’s obvious. From K0 consider assigning to P a finitely generated projective
module with a complement Q, the isomorphism P ⊕ Q to itself, sending (p,q)
to (tp,q), and to a nilpotent automorphism A of Rk , I + t A or I + t−1 A (hence
two copies of the Nil terms).

90 In general there is a formula, called the Milnor duality formula (see Milnor, 1966), relating
τ(W , ∂+W ) to τ(W , ∂_W ). It depends on the dimension, the orientation character, and the
involution on Wh(π) induced by g→ g−1.
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Since algebraic K-theory forms a spectrum, we can write this isomorphism
as

K1(R[Z]) � H1(S1; K(R)) ⊕ Nil(R) ⊕ Nil(R).
Loday (1976, 1998) defined an assembly map in algebraic K-theory, and thus
the fundamental theorem of algebraic K-theory91 can then be interpreted as the
statement that, for π = Z, the assembly map is always split injective (a Novikov
conjecture) and is an isomorphism if R is a regular ring.

There are transfer maps associated to the self-covers S1 → S1. On the
K1(R) summand, this map is multiplication by the index of the cover. On the
K0(R) factor, this map is the identity (i.e. K0(R) is the transfer-invariant part
of K1(R)[Z])), and on the Nil terms, the transfer is nilpotent, i.e. each element
dies on passing to sufficiently high covers.92

Considering K0(R[Z]) and insisting that the fundamental theorem holds gives
rise to a definition of Ki(R).93 We can go further, with Z replaced by Zd to get
negative K-groups. These have interpretations in terms of controlled topology.
The controlled Whitehead group of Zπ over Rd is Ki−d(Zπ) – and it obstructs
controlled h-cobordisms from being products (or controlled simple homotopy
equivalent complexes from having controlled homeomorphic thickenings).

Higher algebraic K-groups, when introduced by Quillen, were also discov-
ered to satisfy a fundamental theorem. Thus we can hope for a statement like:

Conjecture 5.24 The assembly map

H(K(π,1); K(R)) → K(R[π])
is always split injective for π torsion-free (we assume that the nonconnective
spectrum K is used; the extension to the general case will be given in Chapter 6)
and is an isomorphism if, in addition, R is regular.

Of which the case of π = Zd would be the theorem.
By the way, when we actually apply K-theory to topology as in the ex-

amples above, we use the reduced class group, i.e. we mod out by the im-
age of H0

(
K(π,1); K(Z)) , and the Whitehead group, where we mod out by

H1
(
K(π,1); K(Z)) , which is H1(π) × {±1}. As a result, we are often interested

in the cofiber of the assembly map – Whitehead theory more than the K-groups.
Further, note that the Borel conjecture actually implies (exercise, using the

h-cobordism theorem) the vanishing of Wh(π) at least when K(π,1) is a finite
91 Farrell and Hsiang (1970) gave the generalization to twisted polynomial extensions.
92 However, there are always elements that live arbitrarily long.
93 Ferry (1981) gives a very nice geometric approach to the Wall finiteness theory via the

Whitehead simple homotopy theory and this perspective on K0.
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complex, which is the above conjecture for R = Z and for homotopy groups in
dimension ≤ 1. In particular, the above conjecture would imply that Wh(π) = 0
for π torsion-free, and that, when this holds, the Borel conjecture for π really
boils down to the isomorphism of the L-theory assembly map.94

Needless to say, it is important to understand what happens when R is not
regular. In that case, let me mention a beautiful special case that shows what
one can hope for.

Theorem 5.25 (Farrell and Jones, 1993a; Bartels et al., 2008) If π is a torsion-
free hyperbolic group, then the above conjecture is true. Moreover, in general,
there is an isomorphism

Hi

(
K(π,1); K(R)) ⊕⊕

Nili(R) → Ki(R[π]),

where the sum is over conjugacy classes of nontrivial elements of π that are not
proper powers.

The split injectivity result is not that difficult: it follows from the principle
of descent, just like other Novikov conjecture results that we’ve discussed (see
Ferry and Weinberger, 1991, 1995; Carlsson and Pederson, 1995), together
with a trick (transferring to the infinite cover corresponding to the various Zs
in π and thinking of this in a suitably controlled at∞ way) for detecting the Nil
terms.

The surjectivity statement is much deeper, and we have not yet seen any
mechanism (other than codimension-1 splitting methods95) that can yield it.

In Chapter 8, I will explain where these summands come from, at least in
the original situation of closed hyperbolic manifolds, where Farrell and Jones
proved this using dynamical properties of geodesic flow. The Farrell–Jones
conjectures describe in both K-theory and L-theory a more comprehensive
picture of what happens that goes beyond the cases predicted by the Borel
conjecture.

The higher K-groups have a close topological cousin invented by Wald-
hausen, called A-theory. Waldhausen’s A

(
K(π,1)) is a kind of group comple-

tion of BGL
(
Ω∞Σ∞K(π,1)+) (which surely looks close to BGL(Zπ)), and the

assembly map for them enters into an understanding of the higher homotopy
of diffeomorphism and homeomorphism groups. We cannot do justice to this
here, but instead refer the reader to Cohen (1987); Waldhausen (1987); Weiss

94 One can think of Wh(π) as being an analogue in K-theory of S(Bπ) in surgery. (Early on.
historically, because the difference between K1 and Wh is so small, this point was obscured,
and people would think of Wh(π) and L(π) as being analogues.)

95 Waldhausen (1978) developed such methods and, for example, proved that Whitehead groups
vanish for fundamental groups of Haken manifolds.
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and Williams (2001) and Rognes and Waldhausen (2013) and just discuss a
little piece of the story that directly bears on the Borel philosophy.

We discussed in §1.2 the notion of pseudo-isotopy, and observed that part of
the Borel conjecture should be the statement that homotopic homeomorphisms
are pseudo-isotopic.

A pseudo-isotopy is essentially a homeomorphism of M × [0,1] and we can
ask whether it is isotopic to an isotopy, i.e. a level-preserving homeomorphism
of M × [0,1].

This is kind of like uniqueness of the product structure in the s-cobordism
theorem, and so should involve K2. This is the case. It is a beautiful theorem of
Cerf (1970) that for simply connected manifolds pseudo-isotopies are always
isotopic to isotopies (in high enough dimensions), but Hatcher (1973) showed
that it is never true in the non-simply connected case. This starts already on
S1 × Dn (rel ∂) and gives rise to homeomorphisms pseudo-isotopic to the
identity but not isotopic on all aspherical manifolds. The space A(S1) is quite
complicated, and the fundamental theorem is already not unobstructed in this
case: the cofiber of the assembly map is an analogue of Nil; and Ω∞S∞ is not
a regular ring.

5.6 Notes

The notes in this chapter really divide up by problem more than by section.
Regarding the index theorem and K-theory, which plays a critical role in

this chapter, good references, from various points of view, are the original
papers of Atiyah and Singer (1968a,b, 1971), and the more recent Lawson and
Michelsohn (1989), Roe (1998), Berline et al. (2004), Higson and Roe (2010),
and Bleecker and Booss-Bavnbek (2013). The basic relevant functional analysis
and understanding of elliptic operators can be found in many more places, such
as Zimmer (1984), Evans (2010), and Taylor (2011a,b,c).

Topological K-theory, and the K-theory of C∗-algebras cannot be separated
from index theory. For example, for compact Lie groups, equivariant Bott
periodicity still only has the analytic proof given by Atiyah (1968), as far as
I know. For the thrilling initial chapters of this story, nothing beats Atiyah’s
collected works.

Good sources for K-theory of C∗-algebras are Wegge-Olsen (1993), Black-
adar (1998), and Higson and Roe (2000). At some point, you will surely want
to look at Connes’ (1994) masterpiece for a view of the world, indeed of the
universe, centered at this mathematics. I hope my brief appendix is not useless
in stimulating an interest in doing this sooner rather than later.
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We started the chapter by mentioning the celebrated theorem of Atiyah and
Hirzebruch on circle actions on spin manifolds. This has had a celebrated
extension, conjectured by Witten by arguing heuristically about the equivariant
Dirac operator on ΛM (the free loop space, thought of as an S1 space by rotating
loops) and proved by Bott and Taubes (1989), with another proof by Liu (see
Liu, 1995; Liu and Ma, 2000) that gives a K-theoretic refinement.

Stoltz (1996) has observed that Witten’s heuristic can be developed to give
a vanishing theorem for the so-called Witten genus, for manifolds of positive
Ricci curvature that have W1 = W2 = 0 and p1/2 = 0 (“string manifolds”).
Unfortunately, this has never been proved.

It is not hard to see that all of this work has the expected non-simply connected
generalization, by the method of Browder and Hsiang.

The twisted higher-signature localization theorem for Zn-actions discussed
is equivalent to the Novikov conjecture for any fixed n. However, for other
choices of characteristic class c(ν), this seems to be related to the Novikov
conjecture with coefficients in a ring other than Z or Q. It is for this reason
that I was led to introduce this problem in Weinberger (1988a). The “simplest”
formula is the Galois invariant one (i.e., invariant under change of generator
of Zn). Rosenberg and Weinberger (1988) is an attempt to understand these
equivariant geometric and topological phenomena in a coherent way.

Weinberger (1988a) also gives other formulations of the Borel conjecture
with suitable coefficients in terms of being able to solve transversality problems
in the setting of “homologically trivial group actions.” Thus, if one has a
free homologically trivial Zp-action on a manifold with fundamental group π
satisfying the Borel conjecture, then, with a suitable dimension restriction, one
can arrange for an equivariant map from M → K(π,1) to have the transverse
inverse image of any cycle (with manifold normal bundle) to have inverse image
homologically trivial.

For smooth SU(2)-actions (or in general any smooth nonabelian connected
group actions) there is a connection between the equivariant index theory and
the positive scalar curvature problem: Lawson and Yau (1974) showed that any
manifold with effective SU(2)-action has an invariant metric of positive scalar
curvature. As a consequence we get a vanishing result of the (equivariant)
Dirac operator for such manifolds. When combined with Hitchin’s theorem,
we discover that certain exotic spheres, for example, of dimensions 1, 2mod 8,
do not have any (positive-dimensional) nonabelian group actions. For SU(2)-
actions on non-simply connected manifolds, we then get a vanishing result in
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KO(K(π,1) for all fundamental groups.96 (Note that this integral statement is
true even for groups with torsion!)

It is interesting to note that some of these exotic spheres do possess S1-
actions (by work of Schultz, 1975). Thus the Atiyah–Hirzebruch vanishing
phenomenon is indeed quite subtle – the vanishing is not due to the vanishing
of the KO-theoretic index of the Dirac operator.97

Understanding positive scalar curvature metrics has many parallels to surgery
theory, but also some essential differences. As mentioned in the text, the most
striking difference is the mysterious role of the spin condition: for simply
connected manifolds of dimension greater than 4, every non-spin manifold has
positive scalar curvature (Gromov and Lawson, 1980a), but in the spin case,
according to Stoltz (1992), the necessary and sufficient condition is the triviality
of the index of the Dirac operator in KOn(∗) (i.e. the Atiyah–Lichnerowicz–
Singer and Hitchin conditions).

Besides the appearance of indices of Dirac operators that are analogues
of the indices of signature operators (or symmetric signatures of Poincaré
complexes), a key role is played by the surgery theorem of Gromov and Lawson
(1980a) (see also Gajer, 1987; Rosenberg and Stoltz, 2001) – it gives rise to
the analogue in the positive scalar curvature problem of the π–π theorem (that
has suitable relative versions, as well): a spin manifold with boundary (M, ∂M)
of dimensions ≥ 6, that satisfies the π–π condition (namely, π1∂M → π1M is
an isomorphism) always has a positive scalar curvature metric that is a product
in a neighborhood of ∂M . Having a positive scalar curvature metric is thus a
spin cobordism invariant (with respect to the fundamental group of the relevant
manifold). This is often referred to as the “surgery theorem” since it is proved
by showing that it is possible to do surgery on spheres of codimension ≥ 3 and
maintain positive scalar curvature.98

In this analogy, the concordance classes of positive scalar curvature metrics
is closer to the surgery group than to the structure set. Thus, in the π–π setting,

96 Note that since SU(2) is simply connected, the SU(2)-action lifts to an action on the universal
cover of M . The group of all lifts of this action is then π × SU(2) (since all automorphisms of
SU(2) are inner). Thus, we can build an equivariant map M → K(π, 1) where we give the
latter the trivial action. This implies the vanishing of the Dirac class.

97 In this way, playing the Novikov game for the Atiyah–Hirzebruch theorem is a more bold
departure than playing it for the positive scalar curvature problem (or for birational invariance).

98 This theorem is behind the positive results of Gromov and Lawson and of Stolz mentioned
above. In the non-spin case, Gromov and Lawson use surgery to reduce the problem to special
generators of oriented bordism. Stoltz uses spin cobordism, which is not fully analyzed, but
shows that there are enough classes that are total spaces of HP2 bundles (with its usual
isometry group as structure group) to produce, by scaling the fibers to be very small, positive
scalar curvature metrics on the kernel of indD : Ωspin → KO(∗).
In the missing case of dimension 4, where surgery methods fail, positive scalar curvature has
additional obstructions that come from Seiberg–Witten theory.
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there is a unique concordance class of metrics. It is an important open problem
whether there is a unique isotopy class.

The analogue of the “main result” of Chapter 3 – the problem of existence
and nonexistence of complete positive scalar curvature metrics on arithmetic
manifolds in the noncompact case – was settled much earlier in Block and
Weinberger (1999). The low Q-rank case (rank ≤ 2), where one is looking
for obstructions, is settled using Novikov conjecture technology (not Borel
conjecture technology, as is necessary for the rigidity statement, see §5.5.1).
We made use of a souped-up version of an index theorem of Roe (1988c): this
index theorem is a special case of the index theorem for bounded propagation
speed operators on a metric space, adapted to the situation where the “corona”
(i.e., the space at ∞) is disconnected. The higher-rank case follows from the
surgery theorem.

For more on this theme as it refers to closed manifolds, I highly recommend
Stoltz (1995) and Rosenberg and Stoltz (2001).

The situation for noncompact manifolds is much stickier. As indicated
throughout our text, the parallels continue into the noncompact setting. One
key difference is caused by the problem that C∗r is not functorial, so we are
forced to make use of C∗max – where one is surely dealing with an algebra
that is “further away” from geometry than feels reasonable. “Surely” the extra
elements of K(C∗maxπ) coming from, say, Property (T), should not arise, e.g.
from relative indices associated to a pair of positive scalar curvature metrics on
M with fundamental group π? In any case, for noncompact manifolds that are
tame at∞, one defines an index that lies in a relative group, K(C∗maxπ,C

∗
maxπ

′).
The assembly map

KO(K(π,1),K(π′,1)) → K(C∗maxπ,C
∗
maxπ

′)

seems to have a tendency to be injective (rationally, or for torsion-free groups),
although there is no legitimate 5-lemma reason to believe that this should be
true.

Even in the absence of tameness, one can define an algebra that gives a prima
facie place for index-theoretic obstructions (Chang et al., 2020). This includes,
lim1 type obstructions to the existence of positive scalar curvature metrics, and
other “phantom” phenomena in the theory.

Another problem in global analysis that has been connected to the Novikov
conjecture is the “zero in the spectrum” problem.

Conjecture 5.26 (Gromov) If M is a compact aspherical manifold, then the
Δ on forms on the universal cover of M always has 0 in its spectrum. Indeed,
it should be non-zero in the “middle dimension.”
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Middle dimension means dimension k if dim M = 2k + 1. At the moment
the only evidence for this is of the following form:

(1) It is observed to be true for K \ G, so it is true for the classical aspherical
manifolds.

(2) It follows from the Novikov conjecture, for otherwise the index of the
signature operator in K(C ∗ π) would vanish, but the “1” in dimension 0
of the L-class should give rise to a nonzero image in K(C∗π) ⊗ Q if the
Novikov conjecture were true.

(3) The chain complex of M (thought of as Rπ-modules) is not chain-equivalent
to one with a zero morphism in the middle (this would contradict the
cohomological dimension of π1M > K). We are alright, therefore, for
arbitrary group rings. The issue is entirely one caused by completion.

It is also likely true for all uniformly contractible Riemannian manifolds
(with bounded geometry99). In any case, neither of these problems is known to
imply anything about the original Novikov conjecture, but both of them can be
studied jointly with the Novikov conjecture.

As mentioned in the text, the analytic version of the Novikov conjecture can
be proved, just like we did in Chapter 4 in L-theory, by a principle of descent.
The analogue of the bounded category is the Roe algebra.

Other related ideas are the Dirac–dual Dirac argument (see Kasparov, 1988,
for the exemplar of this), and the use of almost-flat bundles (as in the text),
which are not completely unrelated. There are three ways of getting around the
basic fact that the (rational) Chern classes of a finite-dimensional bundle on a
compact polyhedron are trivial. The first is the use of families, as in the Lusztig
method. The second is to use families of almost-flat bundles with increasing
dimensional fiber, following Gromov and Lawson (1980a,b) and Connes et al.
(1993), as we explained in the text. This naturally could lead one towards using
infinite-dimensional fibers – which is essentially the problem of understanding
K(C ∗ π)!

The third method for producing almost-flat bundles on finite-dimensional
spaces, which allows one to keep the same ground manifold and not increase
fiber dimension, is to use compact support. (This is like the use of the Bott
element on Rn with compact support in Gromov and Lawson, 1983.)

This is quite similar in spirit, if not completely in detail, to the use of

99 A good test of the depth of this question is whether one can construct a complete uniformly
contractible manifold with 0 � spec(Δ) even with bounded geometry. Currently one doesn’t
know any example, even, of a complete contractible manifold without 0 in its spectrum – or of
such a manifold that is homotopy-equivalent to a finite complex (although surely these must
exist!).
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the K-theory of Higson corona to obtain useful indices in Roe (1993). The
Higson compactification of a locally compact metric space is an analogue of
the Stone–Čech compactification, but one does not require that all bounded
continuous functions extend – rather only those whose variation decays at
infinity (diam f

(
B(R, p)) → 0 as p→ 0 for any fixed radius R).

Any reasonable compactification, i.e. one where restrictions to the interior
have decaying variation (such as the ideal boundary of G/K or the Gromov–Tits
compactification of a word hyperbolic group), admits a map from the Higson
compactification, so objects on any of these can effectively be pulled back to
the Higson compactification. In any case, bundles on the Higson corona (i.e. the
ideal points of the Higson compactification) can be paired with bounded prop-
agation speed operators to give useful obstruction indices. It is as if there were
a Lipschitz map to the cone on the Higson corona, and a rescaling construction
would produce tiny curvature (although this is not literally the case).

Needless to say, all of these techniques can be viewed as the simply connected
versions of a more general phenomenon. Thus one can study, on a non-simply
connected manifold, the bounded propagation speed operators taking values
in C∗π and get more subtle and useful information, just as we can do in the
situation of bounded L-theory. The small-scale version of this is precisely what
we discussed in controlled K- and L-theories in giving, for example, a Novikov
theorem for situations where we have controlled homotopy equivalences.

We used this added flexibility in proving that there are no complete positive
scalar curvature metrics on Q-rank-2 lattices. Stanley Chang (2001) proved by
this method (i.e. marrying the Roe algebra to a fundamental group) that for no
K \ G/Γ is there a coarse quasi-isometric metric of positive scalar curvature
and thus the metrics of Block and Weinberger when Q-rank > 2 must be quite
distorted.

In §5.3, the method of Thom, Milnor, Rochlin, and Schwartz gives rational
Pontrjagin classes for PL homology manifolds. Sullivan (2005) gave a refine-
ment which gives (anachronistically describes) a class

σ∗
(
X) ∈ Hx(X; L∗(Q)) .

(Note that since 2 is inverted in the coefficient ring Q, we have no issues
regarding the difference between quadratic and symmetric L-theory.) This class,
when we invert 2, then lies in KOx(X)⊗Z[1/2] (see Taylor and Williams, 1979a,
for an explanation of the work of Sullivan on the relation between L-spectra
and K-theory away from 2, and the structure of L-spectra at 2 to see what we’re
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throwing away by making this discussion somewhat crude). This is essentially
the class of the signature operator on X .100

This class assembles to σ∗(X) ∈ L∗(Qπ) just like in the case of manifolds.
This can be viewed as forgetting control, or can be viewed along assembly lines
(for the PL case, see e.g. Siegel, 1983, and Weinberger, 1987, for how such
arguments go). It is important to note that there is an issue for the Q situation
that we don’t have for Z – namely, that homotopy equivalences can have degrees
other than±1. Thus, the assembled characteristic class cannot be expected to be
an oriented homotopy invariant in this setting – integrally. However, since the
quadratic form (d) ⊕ (−1) is torsion (of exponent at worst 4) in L◦(Q) (which
equals Witt(Q)), this only affects the prime 2 – so, assuming that the assembly
map with coefficients is injective, we get Q-homotopy equivalence of higher
signatures, with respect to orientation preserving maps of arbitrary (positive)
degree – if the usual assembly map is an injection (away from the prime 2).
Note that we are making use of Ranicki’s localization result (Ranicki, 1979a)
that tells us that the integral and Q assembly issues are equivalent (for all π)
away from the prime 2.

The integral statement, allowing for 2, must take into account the degree
of the map. Also, as far as I can tell, the L∗(Q) injectivity statement is not
equivalent to the L∗(Z) – although both are part of the “Novikov package.”

If one moves from the PL setting, then assuming that X is an ANR, controlled
methods – e.g. following Yamasaki (1987) and Cappell et al. (1991) – allow
the same statements to be made for topological Q-homology manifolds.

Turning to §5.5, first of all let me call attention to Rosenberg (1996), a
book that is a very useful introduction to many of the ideas of K-theory of all
flavors, with many hands-on examples. There are still a few things that need
to be discussed in view of our (belated) discussion of torsions and algebraic
K-theory.

The first is that we have ignored all along “decorations” in surgery theory,
and we now have the ingredients to set this straight. If X is a finite complex
which satisfies Poincaré duality, then there are two natural questions to ask: (1)
Is X homotopy-equivalent to a closed manifold? (2) Is X simple homotopy-
equivalent to a closed manifold? The second takes advantage of the finite
complex structure that X has – and is not a homotopy-invariant question.

However, (2) is not a reasonable question without some additional condition.

100 This is literally the case for X smooth; for X a PL or Lipschitz manifold, this makes sense by
the work of Teleman (1980). Recently Albin et al. (2018) have taken off on the seminal work
of Cheeger on the L2-cohomology of stratified spaces and the duality induced by ∗ (a variant
of intersection homology) and have used microlocal analysis to give a suitable signature class
on Witt and “Cheeger spaces.”
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If M is a manifold, then the Poincaré duality isomorphism C∗(M) → Cn−∗

is actually a simple chain equivalence. If we change basis on C∗(X) via A
and dually to Cn−∗(X), then the torsion of the equivalence is change by [A] +
(−1)n[A∗]; here ∗ is induced by g → w(g)g−1 (where w is, as usual, the
orientation character). Note, by the way, that the self-duality of the cap product
tells us that the isomorphism C∗(M) → Cn−∗ is “self-dual.”

Thus, there is a “simplicity obstruction” lying in

{τ ∈ Wh(π)|τ = (−1)nτ∗}/{σ + (−1)nσ∗};

this is the Tate cohomology of the involution ∗ on Wh(π), i.e. Hn(Z2; Wh(π)).
This is the obstruction in the category of finite complexes; that is, can we

take a given X with a chain-level Poincaré duality map that is not a simple
equivalence homotopy-equivalent to one where the duality map is a simple
isomorphism? If this obstruction is non-zero, then there’s no chance of X being
homotopy-equivalent to a manifold!

In the relative situation this is very simple to appreciate. For the mapping
cylinder of a homotopy equivalence between closed manifolds, the τ of the
duality map for the relative Poincaré chain complex is essentially the torsion of
the homotopy equivalence.

However, more fundamentally, this discussion suggests that, for question (2)
above, we only ask it for X a simple Poincaré complex, i.e. one for which the
duality map is a simple equivalence.

Surgery theory, as we have discussed it, makes sense in both settings and
gives slightly different obstruction groups. If X is a Poincaré complex, or (Y,X)
is a Poincaré pair, we can ask if X or (Y,X) is homotopy-equivalent to a manifold
(pair) – and the obstruction is finding a degree-1 normal map with vanishing
surgery obstruction that lies in Lh

n

(
π1(X)

)
or Lh

n

(
π1(Y ), π1(X)

)
.

If X is a simple Poincaré complex, or (Y,X) is a simple Poincaré pair (which
implies that X is a simple Poincaré complex), then we can ask if X is simple
homotopy equivalent to a manifold or (Y,X) to a manifold pair (M, ∂M) – and
the obstruction lies in Ls

n

(
π1(X)

)
or Ls

n

(
π1(Y ), π1(X)

)
.

These groups have a π–π theorem, and fit into the obvious exact sequences,
and further satisfy a Rothenberg sequence (Shaneson, 1969):

· · · → Hn+1
(
Z2; Wh

(
π(X)) ) → Ls

n

(
π1(X)

)
→ Lh

n

(
π1(X)

) → Hn
(
Z2; Wh

(
π(X)) ) → · · · .

Thus the L-groups only differ at the prime 2, and only if the Whitehead group
is nontrivial. Thus, conjecturally for torsion-free groups, for example, these
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groups are isomorphic. However, in general they are different – even for cyclic
groups.

Even for manifolds, the choice of decoration makes important sense: Sh(M)
measures how unique the manifold homotopy equivalent to M is in the “h-
sense,” i.e. up to h-cobordism. The version Ss(M) measures the manifolds
simple homotopy equivalent to M up to s-cobordism, i.e. up to homeomor-
phism.

Note that, as a formal consequence of the Rothenberg sequence and a diagram
chase, we get an exact sequence

· · · → Hn+1
(
Z2; Wh

(
π1(M)

) ) → Ss(M) → Sh(M)

→ Hn
(
Z2; Wh

(
π1(M)

) ) → · · · .
However, it is not so hard to understand it directly. The map Sh(M) →
Hn(Z2; Wh

(
π1(M))

)
measures whether a homotopy equivalence can be h-

coborded to a simple homotopy equivalence. The map

Hn+1(Z2; Wh
(
π1

(
M)) ) → Ss(M)

also comes out of the s-cobordism theorem. If I take an h-cobordism from M ,
then the torsion of the homotopy equivalence M ′ → M is σ − (−1)nσ∗. If this
vanishes, then I get a new simple homotopy equivalence.

If I take an h-cobordism from M to M ′ and “turn it upside down” to get
one from M ′ to M , the torsion is changed by τ → (−1)n+1τ∗. I can glue these
together to get a nontrivial s-cobordism for M to itself. These torsions – the
obviously self-dual ones – never change the structure!

Finally, with these concepts, we can properly describe what happens for the
product formula:

LS
n (π × Z) � Ls

n(π) × Lh
n−1(π).

For Lh
n (π × Z) we would need to introduce a new group Lp

n−1(π) to obtain a
formula: the p indicating the use of projective modules in the definitions rather
than free modules in the quadratic forms used to define the L-groups. And so on.
We will be forced to descend into negative K-theory to give a comprehensive
approach.

For example, for fibrations over the circle with nontrivial monodromy α,
we would be led to “intermediate L-groups” between Ls and Lh . Instead of
allowing arbitrary torsions of homotopy equivalences in Lh , we should use the
theory associated to allowing torsions that are elements of Ker(1−α∗) ⊂ Wh(π).

We have simplified, and will continue to simplify, our discussion by working
with the L−∞-theory – which has the interpretation as having to do with being
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able to obtain a homotopy equivalence after crossing with some (unspecified-
dimensional) torus. This will, by a sequence of Rothenberg sequences, only
affect the prime 2.

Our discussion of Waldhausen’s work in §5.5 was highly inadequate. We will
leave the question of whether a pseudo-isotopy is pseudo-isotopic to an isotopy,
just saying that it is analogous to the question of whether an h-cobordism is h-
cobordant to a product. The analysis requires consideration of an involution on
pseudo-isotopy theory and its action on the homotopy types of the topological
groups, Homeo(M) and Diff(M). Waldhausen’s work gives a kind of description
of these in a stable range that grows linearly with dim(M). (Unstably, we know
very little about these groups: one could hope – although I believe that this is
dubious – that the components of Homeo(M) areQ-acyclic for closed aspherical
manifolds with centerless fundamental group.101)

More importantly, but this is a direction that has not yet been well integrated
into the Novikov/Borel philosophy, A(X) is a deformation or extension of K(R)
and allows the modification of problems involving Z to ones involving Ω∞S∞,
which has a lot of internal structure. In this analogy, one obtains that the
analogue of the result mentioned about K(Rπ) for π the fundamental group of
a hyperbolic manifold is that for such a manifold:

Wh(M) �
∏

Wh(S1),
where here Wh is the cofiber of the A-theory assembly map, and where the
product is taken over primitive closed geodesics.

Similarly, the basic trace

K0(R) → R/[R,R]
that assigns to a projection the trace (i.e. the sum of its diagonal elements
thought of as lying in R – as an additive group, modulo the additive subgroup
generated by elements of the form [r, s] = {rs−sr}), of any matrix representing
it, has a two-stage generalization. The first is Connes’s trace map102

Kn(R) → HCn(R)
from K-theory to cyclic homology. The second leaves the world of rings, and

101 And, if there’s center, rationally equivalent to a torus. Later we will see that there is not, in
general, a homomorphism T→ Homeo(M) inducing such a putative rational homotopy
equivalence.

102 Connes’s interest in the trace was to deal with K-theory of C∗-algebras and then prove the
operator-theoretic Novikov conjecture. Needless to say, executing this involves analytic
difficulties in addition to the algebraic ones – however, in several important examples, this has
been achieved – and the issues involved are in any case central for proving isomorphism
conjectures (see Chapter 8.)
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moves into stable homotopy theory (i.e. of spectra) and is an analogue of this,
called the cyclotomic trace, developed by Bökstedt and Madsen, and used in
Bökstedt et al. (1993) to detect K(Z) rationally103 and therefore a proof for all π
with finitely generated homology of the algebraic K-theory Novikov conjecture
for the ring Z. Hesselholt and Madsen (2003) have applied this to give a great
deal of information on the algebraic K-theory of, for example, the ring of
integers in a local number field.

Alas, these methods do not prove an integral version, and are highly sensitive
to the ring Z – it is not at all routine to replace Z by another ring of integers.
Currently, such a modification would require deep number-theoretic conjec-
tures104 so that, for example, certain p-adic L-functions would be guaranteed
to have nonvanishing properties.

We refer the reader to the book by Dundas et al. (2013) that explains trace
technology, and the Goodwillie calculus that shows that the trace is not just
accidentally successful in these problems: the trace gives a calculation of rel-
ative K-theory K(R,S) if the map R → S is “1-connected,” so the trace is an
effective linearization of K-theory.

I believe that the ideas of Waldhausen’s K-theory, concordance theory, and
traces are related to the embedding theory calculations in Chapter 6 that give
rise to a class of counterexamples to the equivariant Borel conjecture, and that
there should be some unification of all these – but, at the moment, this is too
vague.

103 Recall that this space was rationally analyzed by Borel by relating the cohomology of lattices
to the Lie algebra cohomology of the Lie group containing them.

104 See Lück et al. (2017) on this. We will discuss this paper somewhat in Chapter 6 – to avoid
misconception, I note that some of its implications are indeed unconditional.
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