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Andrew Lobb

ABSTRACT

Given a diagram D of a knot K, we give easily computable bounds for Rasmussen’s
concordance invariant s(K'). The bounds are not independent of the diagram D chosen,
but we show that for diagrams satisfying a given condition the bounds are tight. As a
corollary we improve on previously known Bennequin-type bounds on the slice genus.

1. Statement of results

1.1 Introduction
In [Ras10], Rasmussen defined a homomorphism on the smooth concordance group of knots C,

s:C — 27,
which he showed had the property that
|s(K)| < 2g97(K),

where we write ¢*(K) for the smooth 4-ball genus (or slice genus) of K.
The starting point for this paper is the following theorem of Rasmussen [Ras10].

THEOREM 1.1. For positive knots K (that is, knots that admit a diagram with no negative
crossings)

s(K) =2¢"(K).

The point here is that, in the case of positive knots K, the computation of s(K) is a triviality
and agrees with twice the genus of an obvious candidate for a minimal-genus slicing surface
(namely, the one obtained by pushing the Seifert surface given by Seifert’s algorithm into the
4-ball).

The invariant s(K) is equivalent to all the information contained in .#7H(K), where .7/ H*
is the perturbed version of standard Khovanov homology first defined and studied by Lee [Lee05].
There is a spectral sequence with E5 page being the standard Khovanov homology of a knot K
and E,, page being the bigraded group .#/H(K)/.Z/T'H(K), and many efforts to compute s
for knots other than for positive knots have made use of the existence of spectral sequences (for
some nice examples see [Shu07]).

However, since it is known that .#7 H'(K) = 0 for i # 0, to define s(K) only requires knowledge
of the partial chain complex

7]

Zic~Y(D) =L #ic%(D) -2 FicY(D),
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where D is a diagram of K. In fact, since explicit representatives for a basis of .#7H(K) are
known at the chain level, one only needs to know the map

o_1: F1C (D) - ZIC(D).

Remark. For a positive diagram D, C~1(D) =0. This is what made Theorem 1.1 a trivial
corollary once the properties of s were established.

By studying this map we obtain a diagram-dependent upper bound U (D) for s(K). We also
give an error estimate 2A(D) for this upper bound. The resulting lower bound U(D) — 2A(D)
for s(K') improves upon previously known Rudolph-Bennequin-type inequalities. We give a list
of particular cases where A(D) vanishes and so U(D) necessarily agrees with s(K).

Just prior to posting on the arXiv, we heard from Kawamura [Forthcoming Paper]| that she
has independently obtained several of the results in this paper, using entirely different methods.
Kawamura’s work is based on Livingston’s axiomatic approach to s and also to the bound 7
coming from Heegaard—Floer homology.

1.2 Results

The following results are stated for knots, since the Rasmussen invariant is most familiar in this
setting. Some results, however, admit a generalization to links (via the definition of s for links
as found for example in [BW]). We discuss this in § 3.

Our results concern an easily computable number U(D) € 2Z, which is defined from an
oriented knot diagram D. Postponing an explicit description of how to compute U(D) until
Definition 1.8, we begin by giving some results.

THEOREM 1.2. For any oriented knot diagram D,
s(D) <U(D).

Of course, we must remember that s(D) depends only on the isotopy class of the knot
represented by D, whereas the same is not true of U(D). Hence, in order for the bound of
Theorem 1.2 to be a good bound, we should expect to be forced to give some restrictions on

diagrams D.
ProrosITION 1.3. The bound of Theorem 1.2 is tight for positive diagrams D and for negative
diagrams D.
PROPOSITION 1.4. Let g; € {—1,+1} fori=1,2,...,n. Then if w is any word in the n letters

{U;—‘(l), 03(2)’ o Uf(n)}

and B is a knot diagram that is the closure of the (n + 1)-stranded braid represented by w, then
we have

s(B)=U(B).

Remark. We note that knots admitting such a braid presentation are known to be fibered [Sta7§],
so in particular not every knot admits such a presentation.

ProproSITION 1.5. Let D be an alternating diagram of a knot. Then we have

s(D)=U(D).
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Propositions 1.3-1.5 are each consequences of Theorem 1.10 for which we need a few
definitions. Given a diagram D we write O(D) for the oriented resolution.

DEFINITION 1.6. We form a decorated graph T'(D), known as the Seifert graph of D, as follows.
We start with a node for each component of O(D). Each crossing in D, when smoothed, lies
on two distinct components of O(D); for each positive (respectively negative) crossing of D we
connect the corresponding nodes by an edge decorated with + (respectively —).

Note that T'(D) by itself is not enough to recover the full Khovanov chain complex of the
diagram D, but if we added extra data of an ordering of the edges at each node, we would be
able to recover the full complex.

DEFINITION 1.7. From T'(D) we now form two other graphs. We form a subgraph 7~ (D) (respec-
tively 77 (D)) from T(D) by removing all edges of T'(D) decorated with a + (respectively —).

DEFINITION 1.8. We define the number
U(D) = #nodes(T(D)) — 2#components(T (D)) + w(D) + 1,
where w(D) is the writhe of D.
DEFINITION 1.9. We define the number
A(D) = #nodes(T (D)) — #components(T~ (D)) — #components(T" (D)) + 1.

Then we have the following theorem.

THEOREM 1.10. If A(D) =0 then s(D)=U(D). In fact we can say more:
U(D)—-2A(D)<s(D)<U(D).

Theorem 1.10 enables us to improve on previously known easily computable combinatorial
lower bounds for the slice genus. We have the following corollary.

COROLLARY 1.11.
29" (K) = s(K) =2 U(D) = 2A(D)
> w(D) — #nodes(T(D)) + 2#components(T+ (D)) — 1,

which is stronger than the Rudolph—Bennequin inequalities as proved in [Kaw07, Pla06, Shu07]
(for a nice discussion see [Sto07]).

Proof of Propositions 1.53-1.5. This is just a matter of checking that the condition A(D) =0
of Theorem 1.10 holds in each case. This is only a non-trivial check for the case of D being
alternating.

Suppose D is an alternating diagram. The complement of the oriented resolution O(D) is a
number of regions of the plane. If D is not the trivial diagram, there is a unique way to associate
to each region either a + or a — such that only positive (respectively negative) crossings of
D occur in regions associated with a + (respectively —) and such that adjacent regions have
different associated signs. See Figure 1 for an example.

Then each region with associated sign + (respectively —) corresponds to exactly one
component of T (D) (respectively T~ (D)). Since there is one more region than there are circles
of O(D) (or equivalently nodes of T'(D)) we must have A(D) = 0. O

663

https://doi.org/10.1112/50010437X10005117 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X10005117

A. LoBB

\ \ )
. fw >

D
D

FIGURE 1. On the left we show part of an alternating knot diagram D. We indicate which cross-
ings are positive and which negative. On the right is the oriented resolution O(D) on which we
indicate how to associate + or — uniquely to each component of the complement of O(D).

We note that Proposition 1.5 gives a combinatorial formula for the Rasmussen invariant of
an alternating diagram. It is known [Lee05] that the Rasmussen invariant of an alternating knot
agrees with the signature of the knot, and there is also known [Tra04] a combinatorial formula
for the signature of an alternating diagram. Proposition 1.5 gives an equivalence between these
two results.

There is a nice topological interpretation of A, which is useful in computing it by hand.

PROPOSITION 1.12. Form a graph G that has a node for each component of T~ (D) and a
node for each component of T (D). Each circle in O(D) is a member of exactly one component
of T~ (D) and exactly one component of T+ (D); for each circle in O(D) let G have an edge
connecting the corresponding pair of nodes.

Then A(D) = b1(G), the first Betti number of G.

Proof. This follows from the connectedness of G so that we have

b1(G) = bo(G) — x(G) =1 — #nodes(G) + #edges(G)
= 1 — #components(T~ (D)) — #components(T" (D)) + #nodes(T(D))
= A(D). O
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2. Proof of main results

We assume familiarity with the definition of the Khovanov chain complex defined from a knot
diagram D, and with Rasmussen’s paper [Ras10]. We write .%7C?(D) for Lee’s perturbed chain
complex with complex coefficients (where the topological quantum field theory (TQFT) is
induced from the Frobenius algebra C — C[xz]/(x? — 1)), with the .#/ representing the quantum
filtration

.cgitlgicgictc eIt C. ..
and the superscript ¢ denoting the homological grading
0, FICt — FICH, 9,0,_1 =0.
Similarly we write .%7 H'(D) for the homology of the chain complex .#7C%(D).

There is a distinguished subspace of C%(D), which I shall write as H(O(D)){w(D)}, O(D)
being the oriented resolution of D and {w(D)} being a shift in the quantum filtration by the
writhe of D. Here one can think either of H as being Lee’s TQFT functor or of H(O(D)) as
being the perturbed Khovanov homology of the (0-crossing) diagram O(D).

Remark. Our method of proving Theorem 1.2 is to restrict our attention to the summand
H(O(D)) of C°(D). There is a generator for the homology H°(D) whose filtered degree in
the homology determines s(D). This generator lies in the summand H(O(D)), so a bound on
s(D) can be calculated by looking at the filtered degree of the generator in a certain quotient of
H(O(D)).

This method will give possibly better (certainly no worse) approximations for s(D) if the
subspace H(O(D)) is enlarged (for example by taking the direct sum of H(O(D)) with a
summand corresponding to a different resolution of D, which still lies in homological degree
zero). In the general case, there is no obvious choice for a useful enlargement, but given a
particular class of knots it is possible that better bounds on s(D) can be obtained by a suitable
choice of larger summand.

By Lee [Lee05] we know that the following theorem holds.

THEOREM 2.1. Given a knot diagram D with orientation o, there exist s,,s5 € H(O(D))
{w(D)} CC°(D) such that 9ys, = ysg=0 Furthermore, the homology #JH!(D) is two-
dimensional and supported in homological grading i = 0 with H°(D) = ([s,], [s5])-

There is an explicit description of these generators at the chain level.

DEFINITION 2.2. The orientation o on D induces an orientation on O(D). For each circle C' in
O(D) we give an invariant that is the mod 2 count of the number of circles in O(D) separating
C from infinity, to which we add 0 (respectively 1) if C' has the counter-clockwise (respectively
clockwise) orientation. We label C' with v_ + vy (respectively v_ — v, ) if the invariant is 0
(respectively 1) (mod 2). Here vy, v_ is a basis for the vector space H(S'), where H is Lee’s
TQFT functor; vy has quantum degree +1 and v_ has quantum degree —1. This determines an
element s, € H(O(D)){w(D)}, s being given in the same way but using the opposite orientation
oon D.

We know that, in Rasmussen’s notation, s(D) = spin(D) + 1 and spin(D) is the filtration
grading of the highest filtered part of H°(D) to contain [s,] (or equivalently [s5]; this
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interchangeability is taken as understood from now on). This is the same as the filtration grading
of the highest filtered part of C°/im(d_1) containing [s,]. The following lemma results.

LEMMA 2.3. Let p:C°D)— H(O(D)){w(D)} be the projection onto the vector space
summand. Then

Smin(D) < L(D)a
where L(D) is the filtration grading in H(O(D)){w(D)}/im(p o d_1) of the highest filtered part

containing [s,)].

Proof of Theorem 1.2. Given a knot diagram D with orientation o, we write ny,n_ for the
number of positive, negative crossings of D, respectively, so that the writhe w(D)=n4 —n_.
Form the diagram D~ by taking the oriented resolution at each of the positive crossings. Note that
diagram D~ is also oriented with writhe —n_. Suppose there are [ components D", D5, ..., D,
of D™ (where we mean components as a subset of the plane, so that the standard 2-crossing
diagram of the Hopf link would be considered as a single component, for example) and suppose
that D, has n, crossings for 1 <r <.

We observe that, up to quantum filtration shift by {ny}, the map
pod-1:C™H(D) — H(O(D)){w(D)} € C°(D)
can be identified with the map
d-1:C™HD7) = D7) = H(O(D)){-n-}.
This latter map is in fact @izl d"; ®id", where
d’y:C7Y(Dy) — C%(Dy) = H(O(Dy){—n+}
and

O(D™\D; ) {-n-+n,}

is the (—1)th differential in the chain complex C*(D,

)
id": HO(D™\D, )){-n—- +n,} — H(
is the identity map.

Inductively on 7 we observe a canonical identification

! l
coker (@(drl ® idr)> = ® coker(d" ;)
r=1

r=1
l
— (D).
r=1

Now 5, =51 ® 69 @ - - - ® 5, where 5, € C°(D;") is either the element s, or s-7, where we use
o' to stand for the induced orientation on the oriented resolution of D, . This is because the
mod 2 invariant associated to each circle C'C O(D, ) via Definition 2.2 differs by 0 or 1 from
the invariant associated to C' C O(D) via Definition 2.2, and it is the same difference for all
circles of O(D;").

Suppose that the number of components of O(D,") is e,. We observe that .Z " (C%(D,")
is the highest filtered part of C°(D;) to be non-zero and is one-dimensional. By [Rasl0,
Lemma 3.5], we know that [s,] cannot be of top filtered degree in HY(D, ). Therefore [s,] has

filtered degree less than or equal to e, —n, — 2 in H°(D;,").
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We compute for L(D) in Lemma 2.3:

l
L(D)<ny+ Y (ep—np —2)

r=1
=n4 —n_ + #nodes(T'(D)) — 2#components(T (D))
= #nodes(T(D)) — 2#components(T ™ (D)) + w(D).
Hence we have
$(D) = smin(D) +1 < L(D) + 1
< #nodes(T(D)) — 2#components(T ™ (D)) + w(D) + 1 =U(D). O
Proof of Theorem 1.10. Given an oriented knot diagram D, let D be the mirror image of D. It
is then easy to check that
2A(D)=U(D) + U(D).
So we have
s(D)=—s(D)>-U(D)=U(D) — 2A(D). O

3. Generalizations to links

Given an r-component link L C S3, let G(L) be the genus of a connected minimal-genus smooth
surface in the 4-ball that has L as boundary. We extend the definition of the slice genus ¢g* to
links by defining

1 7

(L) = borl
g (L)—G(L)+2 2622.

The definition of the s-invariant for links as found in [BW] is such that the proof of
Theorem 1.2 carries through unchanged to this setting. Also by [BW] we know that:
(i) s(L) < 2¢°(L); and
(ii) s(L)+s(L)>2—2r.
Hence we also obtain a version of Corollary 1.11 for links.

COROLLARY 3.1. Suppose D is a diagram of an r-component link and T'(D) and T (D) are the
associated graphs, then

2g*(D) = w(D) — #nodes(T (D)) + 2#tcomponents(T" (D)) — 2r + 1.

Proof. We have

2*(D) > s(D)
>2—2r—s(D)
>2-2r—-U(D)
= w(D) — #nodes(T(D)) + 2#components(T* (D)) — 2r + 1. O
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