Can. J. Math. Vol. 47 (5), 1995 pp. 959-973

A BERNSTEIN-SCHOENBERG TYPE OPERATOR:
SHAPE PRESERVING AND LIMITING BEHAVIOUR

T.N. T. GOODMAN AND A. SHARMA

ABSTRACT.  Using a new B-spline basis due to Dahmen, Micchelli and Seidel, we
construct a univariate spline approximation operator of Bernstein-Schoenberg type. We
show that it shares all the shape preserving properties of the usual Bernstein-Schoenberg
operator and we derive a Voronovskaya type asymptotic error estimate.

1. Introduction. In [10] Schoenberg introduced a spline approximation operator
which generalised the Bernstein polynomial and which we shall refer to as the Bernstein-
Schoenberg operator. Like the Bernstein polynomial, this operator is ‘variation diminish-
ing’ and therefore has certain ‘shape preserving’ properties, (see also [4]). The asymp-
totic error estimate for Bernstein polynomials due to Voronovskaya, (see [6]), has also
been extended to the Bernstein-Schoenberg operator by Lee and the authors [3], extend-
ing work of Marsden and Riemenschneider, ([7], [8], [9])-

In extending the Bernstein-Schoenberg operator to higher dimensions, using simplex
splines, Goodman and Lee [2] also generalised the univariate operator. More recently a
different construction has been proposed [ 1] for spaces spanned by simplex splines which
seems more natural and also leads to an approximation operator of Bernstein-Schoenberg
type. In this paper, we study the univariate case of this operator, which also generalises
Bemstein polynomials but is distinct from the Bernstein-Schoenberg operator. After
defining this operator in this section, we shall show in Section 2 that it is variation di-
minishing and shares all the shape preserving properties of the Bernstein-Schoenberg
operator, while in Section 3 we derive an asymptotic estimate of Voronovskaya type.

We first specialise to one dimension some of the definitions and results in [1]. Let
To = {&,...,0} and T} = {t,...,t.} be sequences of numbers which we shall call
clouds of knots. We assume Ty < T4, i.e., t? < t]1 foralli,j = 0,...,n. We then define
polynomials Pf‘ ofdegree k, k= 0,...,n,i =0,...,k, recursively as follows:

Pg(x)zl andfork=1,...,n,i=0,...,k,

_p L
(L1 Phw) = %’;_’—’%Pﬁ‘ )+ (tf’—Ltgf)_f)Pf“<x),

where P4! and P¥~! are taken to be zero.
We can extend this recurrence relation to the polar forms p¥ of P* as follows:

0
1.2) py=1
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andfork=1,...,n,i=0,...,k,

( Xk — tk 1) (tl *'xk)
=5 G —6 ,)
The polynomials P¥, i = 0,..., k are linearly independent. Given any polynomial P
of degree k > 1 with polar form p, then

(1.3) pieer,...x0) = P, )+ P, ).

k
(1.4) P=YaP;
i=0
where
(1.5) ai=pt,.. . 00 | nth,. ).

For any i, the B-spline BX with knots £3,...,£ . #},.. ..t canbe so normalised that it
coincides with Pf‘ on [max 7y, min 7' ]. We call Bf.‘, i=0,...,k, the B-splines of degree k
corresponding to the clouds 7 and 7.

Now take a sequence of clouds T; = { el b i = 0,...,m, with T,.; < T,
i=1,...,mandf)=-- =L =qa = = t:,” = b.Forz = 1,...,m we denote
by B »J = 0,...,n, the B-splines of degree k corresponding to the clouds 7;_; and T;.
Thus B" has knots atd ., t};’_},t{), ..., 1. The B-splines B,J,j =0,...,k, are linearly

1ndependent on (max 7;_;, min T}), whereas B t) vanishes on this interval forj = 0, ...,k
and £ # i. Thus the B-splines B{FJ., i=1,...,m,j = 0,... k are linearly independent
and so form a basis for the space of splines of degree k with knots at £, i = 0,...,m
Jj=0,...,k. (When we refer to the space of splines with given knots, we always mean
those splines which vanish outside the convex hull of the set of knots.)

Now take any polynomial P of degree k > | with polar form p. Writing

(1.6) aij = plly sl s )

consider the function

Then s is a spline function with knots {t]’ :i=0,...,m,j =0,...,k} which coincides
with P on the intervals [max 7; 1, min 7}, i = 1,...,m. Now P = Y7L, Yk b8}, for
some coefficients b;;. For each i, 1 <i < m, the B splmes B are linearly mdependent

on(max T;_;,minT;) and so b;; = a;;,j = 0, ... ,k. Thuswehave
(1.7) Pix) = Z Za,JB,J(x) a<x<bh.
i=1j=0

In particular (1.6) and (1.7) give, for k = n,

(1.8) 1—223 (x), a<x<hb,
i=1;=0

(19) X = LZ&!,} (x)9 a<x< b,
i=1j=0
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where

1 . ) ) .
(1.10) Giji= ~(ly Hee kb e ).

J

We now define an operator S by

(1.11) S0 == 3 Y fENBLX), a<x<b,
i=1;=0
for any function f on [a, b].
By (1.8) and (1.9) we have Sf = f for all linear functions f. Clearly S is a positive
operator, i.e., f > 0 = §f > 0. Since 19 = a, {ma = b, Bjj(a) = 0 except for
i =j = 0and B],(b) = 0 except for i = m, j = n, we have

(1.12) Sf(a) =f(a), Sf(b) = f(b).
The operator S is similar to the Bernstein-Schoenberg operator but distinct from it,
coinciding only in the very special case #) = --- = £ fori = 1,...,m — 1, when §

reduces to disjoint Bernstein operators.

2. Shape properties of S.
THEOREM 1.  Iff is convex on [a,b), then Sf > f.

PROOF. Takea <x < b.By (1.9)

109 = (330 B0y ) < 35 B ).

=1 j_ l* _]_
using the convexity of £, (1.8) and the fact that B} ) >0,i=1,....mj=0,....n1t
follows from (1.11) that f(x) < Sf(x). n

We now consider what happens when we insert an extra cloud of knots. Let 7; =
{&,....4},i=0,1,be clouds of knots and Bf,j = 0,... ., k, the corresponding B-splines
of degree k, k = 0,...,n. We insert a new cloud T= {to, <ty with To < T < Ty. For
k=0,...,n, let B, o j = 0,...,k, be the B-splines of degree k corresponding to 7j and
T, and B" )= ., k, the B-splmes corresponding to 7 and 7.

LEMMA 1. Fori=0,...,n,

@.1) B —E;)a,’,BOJ+Z,8,J s
=

where a;; > 0, 3,; > 0,i,j=0,...,n and

n n
(22) Z(:)(X,‘JZE),B,‘J‘ZI, j=0,.‘.,n.
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PROOF. We have seen that the B-splines B el = 0,1,j=0,...,n, form a basis for
all splines of degree n with knots in Ty, 7' and 7. Thus (2.1) holds for some unique a;,
ﬁ,’,,', l,] = O,...,n.

Fori =0,...,n, we denote by P}, as before, the polynomial which coincides with B
on [max T, min T]. The polar form p} of P} satisfies the recurrence relation (1.2), (1.3).
Now by (1.4), (1.5) and (2.1) we see that fori,j =0, ...,n,

(2.3) = DI, s lyj 50055 1)
(2.4) ﬂ,j :p,-(to,...,t,,ﬁj_l,to,...,tjl_l).
We shall prove by induction on & that for k = 0,...,n,
2.5) PiE, -y ytoy- ) =0, ij=0,.. k.

If k = 0, this follows trivially from (1.2). Assume that it is true for £k — 1. By (1.3) we
havefori=0,...,k,j=1,...,k,

k(0 0 G =8 Pl 0

pi(t09---7tk—j+l9t0"'-9tj*1) Wj i— l(tO"'"tk—j—lat()’-'-,tj—2)

+ (1’ /. 1)

(t k 1— 1

Since Ty < t;_1 < T; forj = 1,..., k, the induction hypothesis (2.5) fori = 0,.. .k,
j=1,...,kis verified. Now from (1.4) and (1.5) for P = P* we see that

k—l 0 0
(tO’ tee ’tk—-j~l’ fo,..., tj—2)'

pf‘(tg, LR tg——l) = 61‘,0
and so (2.5) also holds forj = 0,i =0,...,k.

Thus we have established (2.5) for k = 0,...,n. Putting k¥ = n and recalling (2.3)
shows that o;; > 0 fori,j = 0,...,n. Similarly we can show that §3;; > 0 for i,j =
0,...,n

Finally we note from (1.8) and (2.1) that on [max Ty, min 7} ]

l=% Bl =3 B> cij+> Bi;> Bi
i=0 Jj=0 i=0 Jj=0 i=0
But on [max To,min 7], 3_ By; = land Bi; = 0,j = 0,...,n. Thus 7 ja;; = 1.

Similarly 7, 8ij = 1. L]

We return now to the sequence of clouds 7; = {#,...,£},i = 0,...,m, and the
operator S defined by (1.11). For some », 1 < r < m, we shall insert a new cloud
T = {ty,...,t,} with T,_; < T < T,. This gives a new sequence of clouds

T, 0<i<r-—1,
T, = { T, i=vr,
Ty, r+l1<i<m+1.

We shall denote by S the operator corresponding to S in (1.11) for the sequence
Tos. .o T
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THEOREM 2.  Iff is convex on [a, b], then Sf < Sf.
PrROOF. Fori=1,...,m+1,let B, '»J =0,...,n, be the B-splines corresponding to
Ti_, and T;. Then by Lemma 1,
Bl = kz By + kz BixBl J=0,...,n,
=0 =0

where ajx > 0, B > 0,/,k = 0,...,n, and Yook = TioBik = 1. So for any
function g on [a, b] we have

Zn(:)g(ém)B E B k§ ijkg(ﬁm)’f}:B 1k§ B,kg(ﬁm)
=
and so

(2 6) Sg Zl Zg(gt,/)B + ZB Z ak,jg(fr k) + Z Bfﬂ,/ Z 5k,]g(€rk)
i#rj

Putting g(x) = x and recalling that in this case Sg = g, we have

2.7 x= Z z&,; (x)+ZB () Z Otk,,frk+2 By (%) Z Bk a<x<h.

i=1j=0
i#r

Now the definition of Sg is of the form

2.3 Sg= ZZg(éu)B +Zg(§rJ)B +Zg(€r+u)3m,,

i=1 j=0
i#r

Putting g(x) = x gives

3

n

(2.9) x= 303 6B +i) &,B7,() +z"3 Erri Bl (), a<x<b.
F= =

i=1

2
Comparing (2.7) and (2.9) and recalling the linear independence of the B-splines gives

gr,/ = é ak,jgr,k, gH—l,j Z Bk,/grk

Thus if £ is a convex function,
1) < 3 enf )
FErn) < 3 Buf €

By (2.6) and (2.8) with g = f we then have Sf < SF. "
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We now return to the situation of Lemma 1 in which we insert a new cloud T =
{to,...,t,} between Ty and T;. From (2.1) we see that for constants aq, . . . , ap,

n n n
2oaiB] = a; )y {ai;iBy; + BB}
i=0 =0 j=0
n n n n
= By, > aijai+ B Bijai
=0 i=0 =0 i=o

Thus
n n n
Y B! = Z aO,iBg,i +) aiBy;,
i=0 i=0 i=0
where
[a0,0, L a() n’al,Oa ... ,al,n]T = A[aO, e :van]T:v
where the matrix 4 = (4;)"g' I is defined by
aj, i=0,...,n
(2.10) iy {5,,n L odi=n+l,. 20+ 1
LEMMA 2. Ifty = - = t,, then the matrix A defined by (2.10) is totally positive.
PROOF. Suppose that #y = --- = #, = t. As in the proof of Lemma 1 we recall

that the polar forms p?, i = 0,...,n, are given by the recurrence relation (1.2), (1.3).
Extending (2.3) and (2.4) we define for k = 0,...,n,i,j =0,...,k,

@2.11) o = pigs -l tos s 1),
(2.12) =P, te1a gy ).
From (1.3), (2.11) and (2.12) we see thatfork = 1,...,n,i =0,...,k,
(2.13) oy =Vl + orf;‘., j=1..k
(2.14) B =B 8B, =0, k=1,
where
t— 10
V= o—E, i=1,...k
tr l_tk i
I _
b=l o0 k-1
t —t
1 k—1—i

Now fork = 0,. .., n, we define a matrix 4* = (AffJ. kel ,]'(:o by

A,_(:{aj’{,‘, i=0,...,k

g P= k1L 2k 1

We shall prove by induction on & that 4* is totally positive. For k = 0, the 2 x 1 matrix
A° has entries equal to 1 and so 4° is totally positive. Take £ > 1 and assume that 4*~"
is totally positive. From (2.13) and (2.14) we deduce that

(2.15) A=A AT, i=1,..,2k,j=0,...k,

i—1j%j»
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while from (1.4) and (1.5) we deduce that

(216) Ao,,—p](th .- tk l) IO’
(2.17) A2k+1,j = Pj(to, .- ’tkfl) = ch+l‘
Let B = (bi)i=y %, be defined by
&, Jj=1i
bij=3k j=i+1,

0, otherwise.

Since ¥f > 0,5 > 0, Bis totally positive. Now from (2.15), the matrix (4, )" £
is equal to 41p and since A~ is totally positive, 4! B is totally positive. From (2.16)
and (2.17) it follows that 4* is totally positive, which completes the proof by induction.
From (2.3), (2.4), (2.11), (2.12), we see that A" = A4 and thus 4 is totally positive. =

LEMMA 3. Let T; = {&,...,&}, i = 0,1, be clouds with Ty < T and let B,
i =0,...,n, be the corresponding B-splines For points 1y,..., 7 withmax Ty < 11 <
- < 1 < min T, the matrix (B"(T,))r L 7=0 is totally posztlve

PROOF. Fori=1,...,r, define a cloud U; = {u,...,u,} by u} =7,j=0,...,n
Writing Uy = Ty, U+ = T, we let B:], j =0,...,n be the B-splines associated with
Ui_1and U, fori=1,...,r+ 1. For any constants ay, .. . ,a, we can write

n rtl n
n
Z ajB Z Z a’J u’
Jj=0 i=1j=0
where by repeated application of Lemma 2,
T T
(2. 18) [aly())m,al,,,,az 05---,02 IR ,a,-+1,(), . ,a,+|,,,] = C[a(), e ,a,,] 5

where the matrix C = (C; ,,)(rJr l)("ﬂ) i 1s totally positive. Now fori = 1,...,r, Bf, has
a knot of multiplicity n + 1 at 7 and thus

Ain = Zaij’-'(T,»).
j=0
Comparing with (2.18) shows that
B(T,)—— i(n+1),js i:l,...,l‘,j—_—(),...,n,

so the matrix (B (T,)) is a sub-matrix of C and so is totally positive. .

=1 1 0

THEOREM 3.  Take a sequenceof clouds T; = {#),..., £}, i =0,...,m with T; < T,
JorO0<i<j<mFori=1,....mj=0,...,n, let Bj; be the corresponding B-splines
and write Bj; =: B{;_y,41);- Then for any numbers o < --- <, foranyp > 1, the
matrix (B”( ,))m("ﬂ) lp l

PROOF. 1t is sufficient to prove that for0 < r <r+p—1<mmn+1)—1and
T < < Ty

is totally positive.

2.19) det(Br, ()", P > 0.

https://doi.org/10.4153/CJM-1995-050-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-050-8

966 T.N. T. GOODMAN AND A. SHARMA

Suppose that r = (iy — I)(n+1)+ji and r+p—1 = (i — 1)(n+1)+/>. Thus B} = B} ;
and' B, = B} x Then .{Bﬁﬂ- :i=0,...,p— 1} span the space of splines with knots
at t{)‘_',...,t;'__jll,tg,...,tj’.; and tj’ forijy <i < ippandj = 0,...,n. Suppose that this
set of knots is {s,..., Sy}, where so < 51 < -+ < sp1,. By the Schoenberg-Whitney
theorem we know that the determinant in (2.19) is non-zero if and only if

(2.20) §;i < T < Spgne1, i=0,...,p—1.

Thus it is sufficient to prove (2.19) under the assumption (2.20). Now we can vary the
numbers 7y, ..., T,—; continuously so that (2.20) always holds until we have T; < 7; <
Tj+1 whenever BY,; has knots from 7; and Tj:,. Since the determinant in (2.19) varies
continuously and is never zero, it is sufficient to show that (2.19) holds for this new
choice of 7, ..., 7,_1. But in this case the matrix in (2.19) comprises diagonal blocks:

n—ji
(Bh i), Loy
(Bl e Tenye—i). =0

J2
(B:IZ ,i(TP_ 1—j +.I)) ij=0"

" C=1,...,0—i—1,

By Lemma 3, each of these blocks has positive determinants and so (2.19) holds. =

In the standard manner we can deduce from Theorem 3 variation diminishing prop-
erties of the operator S. Given a sequence ay,...,a, of real numbers, we denote by
S7(ao,...,a,) the number of strict sign changes in the sequence. For a function /" on
an interval [a, b] we write V(f) = sup S~ (f (x0), - ..,/ (xr)), where the supremum is taken
overalla <xy <---<x,<b,forallr > 1.

THEOREM 4.  V(Sf) < V().

PROOF. It is well-known that for any totally positive matrix 4, we have S~ (4a) <
S~ (a) for any vector a. It follows from (1.11) and Theorem 3 that whenever a < xy <
e K Xy S b’

5™ (Sf@o).. .. 5(x)
<SS (€100 oS ESE20)s oS Cap)s - oS Emo)s - f Emn))-

Since To < T} <--- <Tp,wehave§ o < - <&, < o< << - <
Emo < -+ < &np, and so

@2.21)

(2.22) ST(f€10)s oS Einds - S Em)s - oS Emn)) < V(.
Applying (2.21) and (2.22) and taking the supremum over all (xo,...,x,) with a <
xo < -+ <x < b gives the result. =

COROLLARY 1.  For any linear function £, V(Sf — €) < V(f — {).

PROOF. This follows on applying Theorem 4 to the function f — ¢ and recalling that
St = 4. .
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COROLLARY 2.  Iff is an increasing (or decreasing) function, then so is Sf.

PROOF. If f is increasing, then for any constant function ¢, Corollary 1 gives
V(Sf — ¢) < V(f — ¢) < 1. So Sf is monotonic. Also by (1.12), Sf(a) = f(a) < f(b) =
Sf(b) and so Sf is increasing. The result follows similarly if f is decreasing. n

COROLLARY 3.  Iff is convex, then so is Sf.

PROOF. Suppose that f is convex. By Corollary 1, V(Sf — £) < V(f — £) < 2 for
linear function £. So Sf is convex or concave. Choosing ¢ with £(a) = f(a), £(b) = f(b),
we have f — £ < 0 on [a,b]. Thus Sf(a) = f(a) = L(a), Sf(b) = f(b) = £(b), and
Sf— £ = S(f — £) <0.So Sf is convex. n

3. Convergence properties of S. Forn=1,2,...,wetakeclouds Ty < --- < Ty,
where 77 = {t{),n, ., nn} i=0 ..,mandtg,,l =... =t‘,,),,, =a,ly, = =1t,=>b
Fori=1,...,m,B]; j=0,...,n, denote the B-splines of degree n corresponding to the

clouds 77, and T7. As in (1.11) we define the operator S, by

3.1 Suf (x) := ZZf(ﬁ,J)B (x), a<x<b,

i=1j=0

for any function f on [a, b], where

" 1
(3.2) ,J:=;Z{t:t67’{'J},
where
(3.3) T =ty sty tops - > 61}

We are interested in the convergence properties of S, as n — 00.
Now (1.6) and (1.7) give

(3.4) 2=V mBm, a<x<b,
i=1j=0
where
(3.5) T = n(n Z{tt Ll €Tt #1}.
So from (3.1) we have
(3.6) Su(B)x) — x* = Zza,JB,J(x), a<x<b,
i=1;=0
where
= (&) -
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which after some simpliﬁcation gives

(3.7) af; = Z{ﬁ te T} — —(g,l)

n(n

THEOREM 5.  Iff is continuous on [a, b}, then S,f converges uniformly to f on [a, b]
asn— oo,

PROOF. By the Bohman-Korovkin theorem (see [5]), it is sufficient to verify the
result for the functions f(x) = 1, f(x) = x and f(x) = x°. Since S,f = f for all linear
functions f, it is sufficient to consider f(x) = x>. All sets T}, have entries lying in [a, b]
and so, by (3.7) there is a constant C, independent of i,j and n with |a,f‘J| < C/n. Thus
by (3.6), for x € [a, b],

m

C
540 0] < 23 B =
i=1j=
by (1.8), which completes the proof. u
LEMMA 4.  There is a constant C such that for any n > 4, and x € [a,b], for the
function f,(f) = (t — x)*, we have

C
Sufr(x) < —-
n

PROOF. Let B, denote the Bernstein operator of degree n on [a, b], i.e., B, = S, for
m = 1. Since f, is convex, repeated application of Theorem 2 gives S,f; < B,f;. But
direct calculation shows that B,f;(x) = ( 7), which gives the result. L]

Now for x in [a, b], write
(3.8) En(x) := Sp(£)(x) — x%.
THEOREM 6.  Suppose that f is a bounded, measurable function on [a, b] and has a

second derivative at x in [a, b]. If im,_,., nE,(x) =: e(x), then

lim n($,/0) —/9) = 37" @e().

PROOF. This follows by expanding f* by Taylor’s formula about x and applying
Lemma 4, exactly as in the proof of Theorem 1 of [3]. n

We would expect the limit lim, . nE,(x) to exist only if the clouds 77,i = 0,...,m,
have some form of limiting distribution as n — oo. For i = 0,...,m, we describe the
distribution of 77 by the function g; , on [0, 1) defined by

A j j+1
(3.9) 8ald) =, o Sx< I
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We shall assume that as n — 00, g;, converges almost everywhere on [0,1] to a
function g;. Clearly g0 = a, g, = band fori = 1,...,messsupg;_; < essinfg;. We
shall need the additional assumption that

(3.10) gix)>g1(1—x) aein[0,1],i=1,...,m

THEOREM 7.  Suppose that f is a bounded, measurable function on [a, b] and has
a second derivative at x in (a,b). Let a(x) in [0, 1) and i(x) € {1,...,m} be the unique

values satisfying
3.11) [‘_“(x) < (t)dz+/”(") o(O)dt =
: b 8- , Siwlar=x.
Then
(3.12) lim n(S,/(x) —f(x)) = lJ"(x)e(x),
where
1—a(x) a(x)
(3.13) e(x) = [) Loy () dt + /0 &o(tydt —

PROOF. By Theorem 6, it is sufficient to prove that
lim nE,(x) = e(x),

where e(x) is given by (3.13). Now by (3.8) and (3.6),

En(x) = ZZa,,, 7/ (%),

i=1j=0

where the coefficients a7; are given by (3.7). So by (3.7),

nE,(x) = X;Zb" Bl(x) — — ,,(tz)(x)
i=1j=0
where
by =~
n—1—j j=1
(3.14) = {z( DEPNNG

n+1

T g o [T doa),

by (3.9). Since, by Theorem 5, lim,—, #Sn(tz)(x) = x2, it is sufficient to show that

(.15 lim zzb;;B;;(x) = [ Gy i+ [ g0
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We denote the right hand side of (3.15) by F(x) and consider

(3.16) zzb"B" (X) — S,F(x) = ZZ( = F(E1)) Biy).

i=1j=0 i=1;=0

First note that the functions g;, are uniformly bounded, since |g;,| < K :=
max{|al, |b|},i=1,. ,n=1,2,.... By the bounded convergence theorem,

(3.17) hm/[g,,, gl =0, i=1,..,m,
andfori=1,...,m,

1
/0 Iglz,n—gzzl SzK'/Ol Igi,n_gii_"o asn — Q.

Take any ¢, 0 < € < 1. Then for all large enough n, (3.14) gives
= g
- [T gawd— [" gy <e,
and so, by definition of F,
(3.18) b7, — F(&;] < e+H,

where

= '/Olwg gf_l(t)dt+/0£ g?(t)dt—/ ) gz(fn) W(Hdt— /(E"/)gz(ﬁ,,)(t)dt}

We shall show that
(3.19) ez +ater) —i-Ll<e
implies
(3.20) |b}; — F(&)] < e(1 +4K?).

Suppose that (3.19) holds. Since £ < 1 and |a(¢}}) — LI <1, wehave |i(§};) —i| < 1.
If i(&};) = i, then

< Vl:i;)g%_.(t) dt' + ' /a (i,.",) 21 dtl

<2l —age,

< 2K%,
and (3.20) follows from (3.18). Next suppose that i(§;;) = i+ 1. Then a(¢];) < € and
1— ﬁ < e and so

H< “/:_ﬁg,{,(t)dt‘+

<K2(1 )+1<2|— —1+a(&l)
< 4K%e,

a(€r)
|0 g0

)| + K2 a(€})l

1-a(€;)
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and again (3.20) follows. We can similarly deduce (3.20) when i(§;;) = i — 1.
Now define G: [0, m] — [a, b] by G(m) = b and

1—xtv X—V
G(x) = /0 g,,(t)dt+/0 gud, v<x<v+l,v=0,.. ,m—l
Then G is continuous and since
1 X—V

G(x) = /O g,/(t)dt+/0 (g1) —g(1 —D)dt, v<x<v+l,v=0,..,m—1,
we see from (3.10) that G is strictly increasing. Now for x in [a, b),

) 1—a(x) a(x)

G(i—1-a@) = [ gw-@d+ [ gi@de =x,

by (3.11). Thus
(3.21) G ') =i(x)—1+ax), a<x<b.

Since G~! is continuous on [a, b] we can choose § so that |G™'(x) — G™'(y)| < ¢
whenever x, y in [a, b] satisfy |x — y| < §. Now by (3.2) and (3.9),

y-Gli-1+L) = ””{0""g.1,,(t)dt+/ gialt) dt)

n
- / " g () dt— / gi(t)dt,

and so for all large enough n, (3.17) gives

. J
y—o(i-1+L) <s.
Thus fora < x < b, (3.21) gives

ety +ately - i—L| = | e - (i-1+1)| <
Recalling (1.8), we see from (3.20) and (3.16) that

(3.22) {z > BB =S F(x)l < (1 +4K?).
i=1j=0

But F is continuous and so by Theorem 5, lim, ., S,F(x) = F(x). Since £ can be
arbitrarily small, (3.22) implies (3.15) and the proof is complete. u

EXAMPLE. As an example we take m > 2 and suppose that in the limit the elements
of the clouds are in increasing order and uniformly distributed, i.e., we may take for
0<x<1,

gox)=0,g(x)=i—1+x, i=1,....m—1, gu(x)=m—1.
We first calculate from (3.11) the functions i(x) and a(x). If i(x) = 1, then

x a(x 1
x:/:()gl(t)dt:/()()tdtz i(a(x))2
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and so a(x) = V2x,0<x < %
Now suppose that 2 < i(x) <m — 1. Then

x= /Ol_am(i(x) —2+1)dt+ /Oa(x)(i(x) —1+1)dt

and a straightforward calculation gives x + % = i(x) + (a(x))z, Le,i(x) = [x+ %],
a(x)? = {x+%}, I<x<m-—3.
If i(x) = m, then

1—a(x) a(x)
xz./o (m—2+t)dt+[) (m — 1)dt

which gives

a(x) =v2x—2m+3, m—% <x<m-—1.
We now apply (3.13) to find e(x). For 0 <x < %,
e(x) = “« Pdt—x> = 1(a(x))3 —x?
0 3
1
= 320" —x.
Next suppose % <x<m-— % Then
I—a(x) , . 2 a(x) , 2
e = [ (i) —2+0) der [T (i) — 1+0) di - 52
which after some calculation gives
7 2
N2 . : 2
e(x) = i(x)* — 3i(x) + 37 2(a(x))”(ix) — 1) —x°.

If we suppose that j — 3 < x < j+ 1 for an integer j with 1 < j < m — 2, then
i(x) =j+1,a(x) =x+% —j and we get

1 .
W=z — (=
Finally we suppose that m — % <x <m—1.Then

e(x) = /(;
which becomes, on recalling a(x) = v2x — 2m + 3,

1—a(x) a(x)
" (m—2+t)2dt+/0 Cm— 12 dt— X2

o) = %(1 — (2x = 2m+3)1%) —(m — 1 = x).

https://doi.org/10.4153/CJM-1995-050-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-050-8

A BERNSTEIN-SCHOENBERG TYPE OPERATOR 973

REFERENCES

1. W. Dahmen, C. A. Micchelli and H.-P. Seidel, Blossoming begets B-splines built better by B-patches, Math.
Comp. 59(1992), 97-115.

2. T.N. T. Goodman and S. L. Lee, Spline approximation operators of Bernstein-Schoenberg type in one and
two variables, J. Approx. Theory 33(1981), 248-263.

3. T.N. T. Goodman, S. L. Lee and A. Sharma, Asymptotic formula for the Bernstein-Schoenberg operator,
Approx. Theory Appl. 4(1988), 67-88.

4. T.N. T. Goodman and A. Sharma, 4 property of Bernstein-Schoenberg spline operators, Proc. Edinburgh
Math. Soc. 28(1985), 333-340.

5. P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp., (English trans-
lation), 1960.

6. G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.

7. M. J. Marsden, An identity for spline functions with applications to variation-diminishing spline approxi-
mation, J. Approx. Theory 3(1970), 7-49.

8. M. J. Marsden, 4 Voronovskaya theorem for variation diminishing spline approximation, Canad. J. Math.
38(1986), 1081-1093.

9. M. J. Marsden and S. Riemenschneider, Asymptotic formulae for variation diminishing splines, Second
Edmonton Conference on Approximation Theory, CMS/AMS Proceedings 3, (eds. Z. Ditzian et al.), Prov-
idence, 1983, 255-261.

10. I. J. Schoenberg, On spline functions. In: Inequalities, (ed. O. Shisha), Academic Press, New York, 1967,
255-291.

Department of Mathematics and Computer Science
The University

Dundee DDI 4HN

Scotland

Department of Mathematics
University of Alberta
Edmonton, Alberta

T6G 2G1

https://doi.org/10.4153/CJM-1995-050-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-050-8

