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A BERNSTEIN-SCHOENBERG TYPE OPERATOR: 
SHAPE PRESERVING AND LIMITING BEHAVIOUR 

T. N. T. GOODMAN AND A. SHARMA 

ABSTRACT. Using a new 5-spline basis due to Dahmen, Micchelli and Seidel, we 
construct a univariate spline approximation operator of Bernstein-Schoenberg type. We 
show that it shares all the shape preserving properties of the usual Bernstein-Schoenberg 
operator and we derive a Voronovskaya type asymptotic error estimate. 

1. Introduction. In [10] Schoenberg introduced a spline approximation operator 
which generalised the Bernstein polynomial and which we shall refer to as the Bernstein-
Schoenberg operator. Like the Bernstein polynomial, this operator is 'variation diminish­
ing' and therefore has certain 'shape preserving' properties, (see also [4]). The asymp­
totic error estimate for Bernstein polynomials due to Voronovskaya, (see [6]), has also 
been extended to the Bernstein-Schoenberg operator by Lee and the authors [3], extend­
ing work of Marsden and Riemenschneider, ([7], [8], [9]). 

In extending the Bernstein-Schoenberg operator to higher dimensions, using simplex 
splines, Goodman and Lee [2] also generalised the univariate operator. More recently a 
different construction has been proposed [1] for spaces spanned by simplex splines which 
seems more natural and also leads to an approximation operator of Bernstein-Schoenberg 
type. In this paper, we study the univariate case of this operator, which also generalises 
Bernstein polynomials but is distinct from the Bernstein-Schoenberg operator. After 
defining this operator in this section, we shall show in Section 2 that it is variation di­
minishing and shares all the shape preserving properties of the Bernstein-Schoenberg 
operator, while in Section 3 we derive an asymptotic estimate of Voronovskaya type. 

We first specialise to one dimension some of the definitions and results in [1]. Let 
To = {/§, . . . , $ } and T\ — {t\,..., tl

n} be sequences of numbers which we shall call 
clouds of knots. We assume 70 < T\, i.e., ft < tj for all ij = 0 , . . . ,n. We then define 
polynomials Pf of degree k, k — 0 , . . . , n, i = 0 , . . . , k, recursively as follows: 

PQ(X) = 1 and for k = 1, . . . , «, / = 0 , . . . , k, 

(u) ^'wM-^-^w^-r^-
where P^"]1 and P£ -1 are taken to be zero. 

We can extend this recurrence relation to the polar forms pf of/f as follows: 

(1.2) p°0=l 
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and fork=l,...,n,i = 09...9k, 

(1.3) rf(xu.-.9xk)= -£^ 

The polynomials Pk, / = 0 , . . . , k are linearly independent. Given any polynomial P 
of degree k > 1 with polar form/?, then 

0 .4) P=YJaiP
k
i, 

i=0 

where 

0 .5) ai^p(f0,...,tU_iX,...,tx)-

For any /, the #-spline B\ with knots $ , . . . , fk_t, /Q, • • •, tj can be so normalised that it 
coincides with Pk on [max 70, min T\ ]. We call 2?f, / = 0 , . . . , &, the B-splines of degree k 
corresponding to the clouds T0 and T\. 

Now take a sequence of clouds Tt — {t0, ...,tn},i = 0 , . . . , m, with 7}_i < 7i, 
/ = 1, . . . , w, and **J = • • • = /Jj = fl, t% = • • • = 1% = b. For / = 1, . . . , m we denote 
by Bk

tjJ = 0, . . . ,« , the 2?-splines of degree A: corresponding to the clouds Tt-\ and 7}. 
Thus Bk

tj has knots at ^0
_1,..., /j~j, t0,..., tj. The 5-splines ^ , 7 = 0, ...,&, are linearly 

independent on (max 7/_i, min 7,), whereas i?*. vanishes on this interval for/ = 0,...,k 
and I ^ i. Thus the 5-splines Z?*-, i = l,...,m,j = 0 , . . . , k are linearly independent 
and so form a basis for the space of splines of degree k with knots at t, i = 0, . . . , m, 
j — 0 , . . . , k. (When we refer to the space of splines with given knots, we always mean 
those splines which vanish outside the convex hull of the set of knots.) 

Now take any polynomial P of degree k > 1 with polar form/7. Writing 

(1.6) aij:=p(fr\...A~-\-jÂ>- --,(/-i)> 

consider the function 
m k 

*:=EE«V#,-
i=\j=0 

Then s is a spline function with knots {t• : i = 0 , . . . , m J = 0 , . . . , k} which coincides 
with P on the intervals [max T^u min T(], i= 1 , . . . , m. Now P = E£L, EJU bUB^ f o r 

some coefficients bjj. For each /, 1 < / < m, the Z?-splines 2?*. are linearly independent 
on (max 7/_i, min 7/) and so fty = #y,y = 0 , . . . , k. Thus we have 

m k 

(1.7) P(x) = J2J:aijB*J(x), a<x<b. 

In particular (1.6) and (1.7) give, for k — n, 
m n 

(1.8) 1 = E E W . a<x<b, 
i=\j=0 

m n 

(1.9) * = E E 4 v W , « < * < * > , 
/=l/=0 
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where 

0-10) 6 y : = ^ - I + "-+Ci-y + <o + --• + $-!)• 

We now define an operator S by 

m n 

(111) S / (* ) :=E£ /«v)W> <*<*<b, 
i=\j=0 

for any function/ on [a, b]. 
By (1.8) and (1.9) we have Sf = f for all linear functions/. Clearly S is a positive 

operator, Le.,f > 0 ==> Sf > 0. Since £i,o = <z, £m,« = b, B"-(a) = 0 except for 
/ =j = 0 and #",(&) = 0 except for / = m J = n, we have 

(1.12) W =/(«), Sf{b)=f(b). 

The operator S is similar to the Bernstein-Schoenberg operator but distinct from it, 
coinciding only in the very special case f0 = • • • = in for / = 1, . . . , m — 1, when S 
reduces to disjoint Bernstein operators. 

2. Shape properties of S. 

THEOREM 1. Iff is convex on [a, b\ then Sf>f 

PROOF. Take a < x < b. By (1.9) 

(
m n x m n 

EEWe,<)<EEWrav), 
/=ly=0 y /=ly=0 

using the convexity of/, (1.8) and the fact that B"Xx) > 0, / = 1, . . . , m J = 0, . . . ,« . It 
follows from (1.11) that/(x) < Sf(x). m 

We now consider what happens when we insert an extra cloud of knots. Let 7} = 
{^0,..., fn}, i = 0,1, be clouds of knots and Bj J = 0 , . . . , k, the corresponding 5-splines 
of degree k,k = 0,...,n. We insert a new cloud T = {to,...,/«} with To < T < T\. For 
k = 0, . . . ,« , let 5Q -,7 = 0, . . . , k, be the ^-splines of degree k corresponding to To and 
T, and B\jJ — 0 , . . . , k, the Z?-splines corresponding to 7 and 7i. 

LEMMA 1. For i = 0, . . . , n, 

(2.1) % = t"ijFoj + tPiJ*lj> 
j=0 j=0 

where atj > 0, (3ij > 0, ij — 0 , . . . , n, and 

(2.2) £,<XiJ = i,PiJ = l> 7 = 0,...,/i. 
/=0 /=0 
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PROOF. We have seen that the 5-splines 2??., / = 0, l,y = 0, . . . ,TÎ, form a basis for 
all splines of degree n with knots in 7b, T and T\. Thus (2.1) holds for some unique aZj/, 
/? lV,/j = 0,...,w. 

For / = 0, . . . ,« , we denote by Pn
[9 as before, the polynomial which coincides with B" 

on [max 7b, min T\], The polar form/?" of F} satisfies the recurrence relation (1.2), (1.3). 
Now by (1.4), (1.5) and (2.1) we see that for ij = 0 , . . . , n, 

(2.3) alV = M,..., fin_j_l9to,...,fy_i), 

(2.4) Pij=rf(t09...9tn-j-l9tl...,t}_l). 

We shall prove by induction on A: that for k = 0 , . . . , «, 

(2.5) pf(/g,...,/2-y_i,fe,...,^-i)>0, / j = 0,...,*. 

If A: = 0, this follows trivially from (1.2). Assume that it is true for k — 1. By (1.3) we 
have for / = 0 , . . . , k,j = 1 , . . . , k9 

Pivo* • • >'it-y+i^o, • • •,*/-i) - 7^—_ j) xA-i Uo> • • • »h-j-i^o, • • •, 9-2) 

(t\ _ /0 \ # <^ ' • • • > '*-y-i > *o>. • •, tj-2). 
"i lk-\-0 

Since 7b < tj-\ < T\ for y = 1, . . . , k9 the induction hypothesis (2.5) for / = 0, . . . , k9 

j — 1 , . . . , k is verified. Now from (1.4) and (1.5) for P = P^ we see that 

pf(/8, . . . ,<2_,) = «*,o 
and so (2.5) also holds for y = 0, / = 0 , . . . , k. 

Thus we have established (2.5) for A: = 0, . . . 9n. Putting k — n and recalling (2.3) 
shows that atj > 0 for ij = 0 , . . . 9n. Similarly we can show that fyj > 0 for ij — 
0,. . . ,n. 

Finally we note from (1.8) and (2.1) that on [max 7b, min T\] 

/=0 7=0 /=0 y'=0 j=0 

But on [max 7b, min 7], £?=0 B
n
QJ = 1 and Bn

{J = 0,y = 0 , . . . , n. Thus E?=0
 aU = l • 

Similarly E ? = 0 A v = 1 - • 

We return now to the sequence of clouds 7/ = {f09..., ?n}9 i = 0 , . . . , m9 and the 
operator S defined by (1.11). For some r, 1 < r < m9 we shall insert a new cloud 
T — {to9..., tn} with Tr-\ <T <Tr. This gives a new sequence of clouds 

[Tu 0 < / < r - l , 
ft =\T9 i = r9 

[Tt-u r + l < / < / w + l. 

We shall denote by S the operator corresponding to S in (1.11) for the sequence 
7b,•••, Tm+\. 
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THEOREM 2. Iff is convex on [a, b\ then Sf < Sf 

PROOF. For / — 1, . . . , m + 1, let B"-J = 0, . . . ,« , be the 5-splines corresponding to 
Ti-\ and ft. Then by Lemma 1, 

Kj = £ «j&t + £ Pj&u, J = 0,...,n, 
k=0 k=0 

where ajJc > 0, pjJc > 0,j,k = 0,...,n, and Zj=0
aj,k = T,j=oPjJc = 1. So for any 

function g on [a, b] we have 

£ gitrjKj = £ Kk £ <*J*8&rj) + £ B%Uk £ Mirj), 
7=0 k=0 y=0 k=0 7=0 

and so 

n n 

(2.6) Sg = £ £ g(iu)Blj + £ B"rJ £ akjg{irJi) + £ S"^. £ flyg^). 
i= 1 y=0 7=0 k=0 7=0 *=0 

Putting g(x) = x and recalling that in this case Sg — g, we have 

m n n n n n 

( 2 . 7 ) x = E E Civ W + E #;(*) E « i t ^ + E ^rf 1,-W E Pkjtrjt, a<x<b. 
/ = l y = 0 7=0 £=0 7=0 £=0 

Now the definition of Sg is of the form 

m n n n 

(2. 8) Sg = £ E J K W , -
 + E^K; + E^rfl^v 

/= ly=0 7=0 7=0 

Putting g(x) = x gives 

m n n n 

(2.9) x = £ £ ev-^w+E M;/*)+E Irf 1^1,-w, « < * < *. 
i=W=0 7=0 7=0 

Comparing (2.7) and (2.9) and recalling the linear independence of the Z?-splines gives 

n n 

hj = E akj£rji, £r+\J = E Pkj£r*> 
k=0 k=0 

Thus iff is a convex function, 

Mrj) < E a*/(£rj0, 
Ar=0 

/(W<E/V^,*)-
it=0 

By (2.6) and (2.8) with g = / we then have Sf < Sf. 
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We now return to the situation of Lemma 1 in which we insert a new cloud T — 
{to,...,tn} between 7b and T\. From (2.1 ) we see that for constants ao9...,a„, 

/=0 1=0 j=0 

Thus 

where 

y=0 /=0 y'=0 z=0 

E ^ = E -̂fiSfI- + E « u ^ 

[flo,o, • •, «o,«, «1,0, • • •,ûi,n]r = A[ao,..., tf„]r, 

where the matrix A = (Ai/jf^1 jL0 is defined by 

V ' J \Pjj-n-U l = W+l , . . . , 2 f l+ l . 

LEMMA 2. 7/7o — • • • = tn, then the matrix A defined by (2.10) is totally positive. 

PROOF. Suppose that to = - • • = tn = t. As in the proof of Lemma 1 we recall 
that the polar forms p", i = 0 , . . . ,« , are given by the recurrence relation (1.2), (1.3). 
Extending (2.3) and (2.4) we define for k = 0 , . . . , n, ij — 0 , . . . , k, 

(2.11) 4=pf(/g,...^-y--i,fe,...,^--i), 
(2.12) ^=^o, . . . , f t -y- i ,4---f / - i ) -

From (1.3), (2.11) and (2.12) we see that for k = 1, . . . , « , / = 0 , . . . , k, 

(2.13) < - = ^ofr1
1

j /-_1+^T_1
1 , y = l , . . . , t , 

(2.14) fij = l'ltf-îj + W, 7 = 0,...,*-l, 

where 

f - / ° 

/ = 0 , . . . , £ - 1. 
t1 — r 

Now for A: = 0, . . . ,« , we define a matrix /T = (^-)/=o y=o by 

djp i = 09...,k, 

#/-*-!> i = * + l , . . . , 2 * + l . 
,4 k 

We shall prove by induction on k that ̂  is totally positive. For k = 0, the 2 x 1 matrix 
v4° has entries equal to 1 and so A0 is totally positive. Take k > 1 and assume that^*-1 

is totally positive. From (2.13) and (2.14) we deduce that 

(2.15) A^ = At{J-ll]+Atij6j9 i=l9...92k,j = 0,...9k9 
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while from (1.4) and (1.5) we deduce that 

(2-16) 4j=Pj(tl.-.A-i) = tj,o, 

(2-17) 4k+ij=Pj(tl-''>tli) = SjMi-

Let B = (bu)^ *=0 be defined by 

[ 0, otherwise. 

Since 7* > 0,6* > 0,5 is totally positive. Now from (2.15), the matrix ( ^ i ^ ï ô 1 *=o 
is equal to Ak~lB and, since Ak~1 is totally positive, Ak~1B is totally positive. From (2.16) 
and (2.17) it follows that ,4* is totally positive, which completes the proof by induction. 

From (2.3), (2.4), (2.11), (2.12), we see that A" = A and thus A is totally positive. • 

LEMMA 3. Let Tt = {fQ9... Jn}, i = 0,1, be clouds with T0 < Tx and let Bn
if 

i = 0, . . . ,«, be the corresponding B-splines. For points T I , . . . ,T> with max To < T\ < 
• - <rr < min T\, the matrix (Z?"(TZ)) w

=0 is totally positive. 

PROOF. For / = 1,. . . , r, define a cloud Ut = {w(),..., ul
n} by wj = 77,7 = 0, . . . , n. 

Writing UQ — To, Ur+\ = T\, we let Bf;j = 0, . . . , n be the Z?-splines associated with 
Ui-\ and t//, for / = 1, . . . , r + 1. For any constants ao9...9an we can write 

n r+\ n 

E^; = EE^> 
y=o /=iy=o 

where by repeated application of Lemma 2, 

(2. 18) [«l,0,...'fll,"»a2,0, •••,tf2,«,---,tfr+l,0,---,<ZrH,«] = Q # 0 , • • • , #«] , 

where the matrix C = ( C ^ ) ^ 1 ^ 0 ?=0
 i s totally positive. Now for / = 1, . . . , r, Bn

in has 
a knot of multiplicity n + 1 at 77 and thus 

y=o 

Comparing with (2.18) shows that 

£"(77) = C / („+ iy , 1 = 1 , . . . , r, j = 0 , . . . , /i, 

so the matrix (BJ(TJ)\ J=0 is a sub-matrix of C and so is totally positive. • 

THEOREM 3. Take a sequence of clouds Tt — {f0,..., fn}, i — 0 , . . . , m, with 7} < 7} 
for 0 < / <j <m. For i = 1, . . . , m, j — 0 , . . . , n, let Z?". be the corresponding B-splines 
and write B^j =: B^_{^n+^+j. Then for any numbers TO < • • • < rp^\ for any p > 1, the 

matrix (#/(7/))/=0 LO W totally positive. 

PROOF. It is sufficient to prove that f o r 0 < r < r + / ? — 1 < m(n + 1) — 1 and 
T0 < ••• < V _ i , 

(2.19) d e t ^ r y C j j - J ^ O -
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Suppose that r = (ii - 1 )(n +1 ) +/i and r +p - 1 = (i2 - 1 ){n +1 ) +/2. Thus Bn
r = Bn

ix jx 

and B^p_x = Z??^. Then {Z?^ : / = 0,...,/?— 1} span the space of splines with knots 
at ^ ~ \ . . . , ^ . j , # , . . . , / j 2

2 and ^ for/i < / < i2 andy = 0, . . . ,« . Suppose that this 
set of knots is {so, • • .,£/?+«}, where so < s\ < • • - < sp+n. By the Schoenberg-Whitney 
theorem we know that the determinant in (2.19) is non-zero if and only if 

(2.20) si < v < si+n+u / = 0 , . . . , / ? - 1. 

Thus it is sufficient to prove (2.19) under the assumption (2.20). Now we can vary the 
numbers TO,...,TP-\ continuously so that (2.20) always holds until we have 7} < 77 < 
Tj+\ whenever B^ has knots from 7} and 7}+i. Since the determinant in (2.19) varies 
continuously and is never zero, it is sufficient to show that (2.19) holds for this new 
choice of TO, . . . ,TP-\. But in this case the matrix in (2.19) comprises diagonal blocks: 

(5?i+€,i(r(«+i)^-yi+y))/|/=0' ^ = 1> • • •, *2 - M - 1, 

By Lemma 3, each of these blocks has positive determinants and so (2.19) holds. • 

In the standard manner we can deduce from Theorem 3 variation diminishing prop­
erties of the operator S. Given a sequence ao,...,ar of real numbers, we denote by 
S~(ao,... ,a r) the number of strict sign changes in the sequence. For a function/ on 
an interval [a, b] we write V(f) — sup S~ (f(xo),... ,f(xr)\ where the supremum is taken 
over all a < XQ < • • • < xr < b, for all r > 1. 

THEOREM 4. V(Sf) < V(f). 

PROOF. It is well-known that for any totally positive matrix A, we have S~(Aa) < 
S~(a) for any vector a. It follows from (1.11) and Theorem 3 that whenever a < x0 < 
" - < xr < b, 

(2 21) ^ ( ^ o ) , . . . , ^ , ) ) 
< S-{f(Uo), • • • MlJMlfl), • • • ,Ail,n\ • • • Mm,*), • • • Mm*))-

Since 7b < Tx < • • • < Tm, we have £i,0 < • • • < £i,« < Ç2,o < • • • < 6,« < • • • < 
Çm,o < • • • < im,n, and so 

(2. 22) S - ( A £ l , 0 ) , . . . Mun), • • • Mmfi), • • • Mm*)) < V(f). 

Applying (2.21) and (2.22) and taking the supremum over all (JCO, . . . ,xr) with a < 
xo < - - <xr <b gives the result. • 

COROLLARY 1. For any linear function I, V(Sf — I) < V(f — I). 

PROOF. This follows on applying Theorem 4 to the function/ — I and recalling that 
Sl = L m 
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COROLLARY 2. Iff is an increasing (or decreasing) function, then so is Sf. 

PROOF. If / is increasing, then for any constant function c, Corollary 1 gives 
V(Sf-c) <V(f-c)<l. So Sf is monotonie. Also by (1.12), Sf(a) =f(a) <f(b) = 
Sf(b) and so Sf is increasing. The result follows similarly iff is decreasing. • 

COROLLARY 3. Iff is convex, then so is Sf 

PROOF. Suppose that/ is convex. By Corollary 1, V(Sf - f) < V(f - I) < 2 for 
linear function L So Sf is convex or concave. Choosing £ with £(a) =f(a), £(b) = f(b), 
we have/ - I < 0 on [a9b]. Thus Sf(a) = f(a) = 1(a), Sf(b) = f(b) = £(b), and 
Sf-l = S(f- £) < 0. So ̂ i s convex. • 

3. Convergence properties of S. For n — 1,2,..., we take clouds 7^ < • • • < 7^, 
where77 = { 4 „ , . . . , 4 J , / = 0, . . . ,mand 
For i = 1, . . . , m, B"jj = 0 , . . . , «, denote the 5-splines of degree n corresponding to the 
clouds 77-i a n d 77. As in (1.11) we define the operator Sn by 

m n 

(3-1) V W - E E / ( ^ ( 4 a<x<b, 
i=\j=0 

for any function/ on [a, b], where 

(3-2) ï!j-=-nY,{f-t£T7jh 

where 

(3- 3) 7 -̂ := {^ „ , . . . , tn_x_jn, i0n,..., 9-i,w|-

We are interested in the convergence properties of Sn as n —> 00. 
Now (1.6) and (1.7) give 

m n 

(3.4) *2 = E E ^ / * ) . « < * < * , 
i=ly=0 

where 

(3.5) ^ : = _ ^ E { , / : ^ G 7 r . , , ^ } . 

So from (3.1) we have 

m n 

(3.6) SI»(^X*)-^ = E £ < J W > °<*<b, 
i'=i 7=0 

where 

< = ( ^ ) 2 - ^ 
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which after some simplification gives 

THEOREM 5. Iff is continuous on [a, b], then Srf converges uniformly tof on [a, b] 
as n —> oo. 

PROOF. By the Bohman-Korovkin theorem (see [5]), it is sufficient to verily the 
result for the functions/(x) = l,/(x) = x and/(x) = x2. Since Srf = / for all linear 
functions/, it is sufficient to consider/(x) = x2. All sets 7]* have entries lying in [a,b] 
and so, by (3.7) there is a constant C, independent of if and n with \d\\ < C/n. Thus 
by (3.6), for x G [a,b], 

C m n C 

\Srfix) ~f(x)\ < - E E W = -> 
n i=\j=o n 

by (1.8), which completes the proof. • 

LEMMA 4. There is a constant C such that for any n > 4, and x G [a, b], for the 
function fx{i) — (t — xf, we have 

Srfx(x)<^-

PROOF. Let Bn denote the Bernstein operator of degree n on [a, b]y i.e.,Bn — Sn, for 
m = 1. Since/ is convex, repeated application of Theorem 2 gives Srfx < Brfx. But 
direct calculation shows that Brfx{x) = O(^), which gives the result. • 

Now for x in [a, b], write 

(3.8) En(x):=Sn{t1){x)-x2. 

THEOREM 6. Suppose thatf is a bounded, measurable function on [a, b] and has a 
second derivative at x in [a,b\ If "lim„^00 nEn{x) =: e{x), then 

Urn n(Snf(x)-f(x)) = ^f"(x)e(x). 

PROOF. This follows by expanding f by Taylor's formula about x and applying 
Lemma 4, exactly as in the proof of Theorem 1 of [3]. • 

We would expect the limit lim^oo nEn{x) to exist only if the clouds 77, / = 0 , . . . , m, 
have some form of limiting distribution as n —» 00. For / = 0 , . . . , m, we describe the 
distribution of T]2 by the function gitn on [0,1) defined by 

(3-9) gUx) = h, -^<X<J-^A-
7' n + 1 n + 1 
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We shall assume that as n —» oo, git„ converges almost everywhere on [0,1 ] to a 
function gt. Clearly g0 = a, gm = b and for / = 1,. . . , m ess supg/_i < ess inf gt. We 
shall need the additional assumption that 

(3.10) gt(x) >g/- i ( l -x) a.e. in [0,1], i = l , . . . ,m. 

THEOREM 7. Suppose thatf is a bounded, measurable function on [a,b] and has 
a second derivative at x in (a, b). Let a(x) in [0,1) and i(x) G { 1 , . . . , m} be the unique 
values satisfying 

r\ -a(x) ra(x) 

(3.11) Jo gi(x)^(t)dt + jo gi(x){f)dt = x. 

Then 

(3.12) lim n(SJ(x) - / (* ) ) = \f'(x)e(x), 

where 
r\-a(x) 0 ra{x) . 0 

(3.13) e(x) = jo £to_x(t)dt +h ^(tjdt-x2. 

PROOF. By Theorem 6, it is sufficient to prove that 

lim nEn(x) = e(x), 
n—>oo 

where e{x) is given by (3.13). Now by (3.8) and (3.6), 

m n 

£«(*) = £E</*y(*)> 
/= 17=0 

where the coefficients a"- are given by (3.7). So by (3.7), 

m n y% 

nEn(x) = £ £ bïjffljix) TSn(f)(x)9 
i=\j=0 n ~ l 

where 

0. i4) = - î - {" i f (C1)2 + XX«)2} 

by (3.9). Since, by Theorem 5, limw_,oo j~^Sn(t
2)(x) = x2, it is sufficient to show that 

m n r\-a{x) - ra{x) 0 

(3.15) ^YJYJb
n

uB1j{x)= gf(x)-l(t)dt+ gfM(t)dt. 
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We denote the right hand side of (3.15) by F(x) and consider 
m n m n 

(3.16) E E W * > - S"F^ = £ E(*y - m^Bljix). 
i=lj=0 i=lj=0 

First note that the functions g^n are uniformly bounded, since \git„\ < K := 
max{|a|, |6|}, / = 1, . . . , m, n — 1,2, By the bounded convergence theorem, 

(3.17) lim / \gUn - # 1 = 0 , i = 1, . . . , m, 

and for/' = l,...,/w, 

j f l4« -gf\<2KJ^ \gu„ - g / | -> 0 as « -» oo. 

Take any 6, 0 < e < 1. Then for all large enough n, (3.14) gives 

1̂  _ C «?-• W* - /o" ^W*l < £' 
and so, by definition of F, 

(3.18) | ^ . - F ( ^ . | < £ + //, 

where 

* == |/0 ê-M*+/; «?(o* - /0 " 4c»,)-.(o* - /0 ^ , ( o * 
We shall show that 

(3.19) 

implies 

(3.20) \b^-F(^)\<e(l+4K2). 

Suppose that (3.19) holds. Since e < 1 and | a ( ^ ) - {| < 1, we have \i(ffj) - i\ < 1. 
I f i ( ^ ) = i,then 

< 2 ^ 2 | ^ - a ( ^ . ) | 

< 2A:2
£, 

and (3.20) follows from (3.18). Next suppose that /(£?,.) = / + 1. Then a ( ^ ) < e and 

1 — •£ < e and so 

H < I f1 "̂ g?_,(oA|+1 /" g?(oAI+1 r^sâf-)W^' 
< K 2 ( I - ^ ) + K 2 | ^ - i + f l (^) | +/:2|«(^)l 

< AK2e, 

KO + 'GV-i-Z <e 
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and again (3.20) follows. We can similarly deduce (3.20) when /(£,;/) = / — 1. 
Now define G: [0, m] —• [a, b] by G(m) = b and 

A-x+u rl—X+U rX—V 

G(x) = / gv(f)dt + / gv+\(t)dt, v <x <v+l, i/ = 0,...,m— I. 

Then G is continuous and since 

G(x) = jf gv{t)dt + J* "(gv+iit) - gv(\ - 0) dt, I / < X < I / + 1 , i/ = 0 , . . . , w - l , 

we see from (3.10) that G is strictly increasing. Now for x in [a, 6), 

G(i(x) - 1 - *(*)) = jf gi{X)-i(t)dt + j f " gi{x)(t)dt = x, 

by (3.11). Thus 

(3.21) G~\x) = i(x) - 1 + a(x), a<x<b. 

Since G~l is continuous on [a,b] we can choose 6 so that |G-1(x) — G~l(y)\ < e 
whenever x,y in [a, b] satisfy \x — y\ < 5. Now by (3.2) and (3.9), 

w+1 

*< - G('"-'+i) = V i t ' ^ » « > ^ r &.«>*} 
-j£ "gi-i(t)dt-Jo" gi(t)dt, 

and so for all large enough «, (3.17) gives 

Thus for a < x < b, (3.21) gives 

»(&)+«(ft)-'-

!('-'+f) <«. 

^ ( ^ - ( , - - 1 + ^ ) < e . 

Recalling (1.8), we see from (3.20) and (3.16) that 

(3.22) <£(l+4K2). 

But F is continuous and so by Theorem 5, lim„_oo SnF(x) — F(x). Since e can be 
arbitrarily small, (3.22) implies (3.15) and the proof is complete. • 

EXAMPLE. AS an example we take m > 2 and suppose that in the limit the elements 
of the clouds are in increasing order and uniformly distributed, i.e., we may take for 
0 < J C < 1, 

go(x) = 0, gi(x) = i - 1 + JC, i = 1, . . . , m - 1, gm(x) = m - 1. 

We first calculate from (3.11) the functions i(x) and a(x). lfi(x) = 1, then 

x = [X g\{t)dt = J"* tdt = ^(a(x))2 
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and so a{x) — \/2x, 0 < x < \. 
Now suppose that 2 < i(x) <m—\. Then 

r\-a(x) . v ra(x) , x 

x=l [i(x)-2 + t)dt + I [i{x)-\+t)dt 

and a straightforward calculation gives x + \ — i(x) + (a(x)) , i.e., i(x) = [x + | ] , 
a(x)2 = {x+§}, j <x <m- \. 

If/(x) = m, then 

/•l-a(x) ra(x) 

x= (m-2 + t)dt + (m-\)dt 

which gives 

a(x) — \/2x — 2m + 3, m — - < x < w — 1 . 

We now apply (3.13) to find e(x). For 0 < x < ^, 

e(x) = f t2 dt-x2 = -(a(x)) -x2 

= I(2x)3/2-*2. 

Next suppose \ < x < m — | . Then 

e(x) = Jo ( I ( J C ) - 2 + /) €//+jf ( i ( j t ) - l+ f ) d f - x 2 

which after some calculation gives 

e(x) - i{xf - 3/(JC) + ^ + 2(a(x))2(/(x) - l) - x2. 

If we suppose that j — ^ < x < j + ^ for an integer j with 1 < j < m — 2, then 
z(x) =7 + 1, tf(x)2 =x+ j—j and we get 

e ( x ) = ^ - ( x - y ) 2 . 

Finally we suppose that m — \<x <m — 1. Then 

e(x) = y (m-2 + tfdt + j (m-lfdt-x2 

which becomes, on recalling a(x) = \/2x — 2m + 3, 

e(x) = i ( l - (2x - 2m + 3)3/2) - (m - 1 - x)2. 
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