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Homotopy Self-Equivalences of
4-manifolds with Free Fundamental Group

Mehmetcik Pamuk

Abstract. We calculate the group of homotopy classes of homotopy self-equivalences of 4-manifolds

with free fundamental group and obtain a classification of such 4-manifolds up to s-cobordism.

1 Introduction

Let M be a closed, connected, oriented, smooth or topological 4-manifold with a

fixed base point x0 ∈ M. We want to study the group of homotopy classes of ho-

motopy self-equivalences of M, preserving both the given orientation on M and the

base-point. Let Aut•(M) denote the group of homotopy classes of such homotopy

self-equivalences.

Let us start by fixing our notation. The fundamental group π1(M, x0) will be

denoted by π, and the higher homotopy groups πi(M, x0) will be denoted by πi .

Let Λ = Z [π] denote the integral group ring of π. We will mean homology and

cohomology with integral coefficients unless otherwise noted.

Let B denote the 2-type of M; we may construct B by adjoining cells of dimension

at least 4 to kill the homotopy groups in dimensions ≥ 3. The natural map c : M → B

is given by the inclusion of M into B. Hambleton and Kreck [5], defined a thickening

Aut•(M, w2) of Aut•(M) (see Section 3 for the definition) and established a commu-

tative braid of exact sequences, valid for any closed, oriented, smooth or topological

4-manifold. The authors defined

Isom[π, π2, kM , c∗[M]] := {φ ∈ Aut•(B)| φ∗(c∗[M]) = c∗[M]}

and obtained an explicit formula when the fundamental group is finite of odd order.

Theorem (Hambleton-Kreck) Let M4 be a connected, closed, oriented, smooth or

topological manifold of dimension 4. If π has odd order, then

Aut•(M, w2) ∼= KH2(M; Z/2) ⋊ Isom[π, π2, kM , c∗[M]],

where KH2(M; Z/2) := ker(w2 : H2(M; Z/2) → Z/2).

We extend the above result to the case when π is a free group. We are going to

define an extension Isom〈w2〉[π, π2, sM] of Isom[π, π2, kM , c∗[M]] and prove the fol-

lowing result for 4-manifolds with free fundamental group.
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Theorem 1.1 Let M be a connected, closed, oriented, smooth or topological manifold

of dimension 4. If π is a free group, then

Aut•(M, w2) ∼= (KH2(M; Z/2) ⊕ H3(M; Z/2)) ⋊ Isom〈w2〉[π, π2, sM].

The last part of the paper deals with the classification of 4-manifolds up to s-co-

bordism. The geometric classification techniques, surgery, and s-cobordism theorem

are not known to hold for free groups, so the most one can hope for at present is to

obtain a classification up to s-cobordism. Based on the approach of [5], involving

bordism techniques and the modified surgery theory of Kreck [10], we obtain the

following result.

Theorem 1.2 Let M1 and M2 be two closed, connected, oriented, topological 4-man-

ifolds with free fundamental group and have the same Kirby-Siebenmann invariant.

Then they are s-cobordant if and only if they have isometric quadratic 2-types.

Theorem 1.2 is also stated in [3] and [8], but our line of argument is different,

in the sense that our proof is primarily based on understanding homotopy self-

equivalences.

2 Spin Case

For simplicity we start with spin manifolds. Throughout this section let M be a spin

manifold. To study the group Aut•(M), Hambleton and Kreck [5] constructed a

braid of exact sequences

Ω
Spin
5 (M)

ÃÃB
BB

BB
BB

B

%%

H̃(M)

ÃÃB
BB

BB
BB

B

$$

Aut•(B)

β

ÃÃB
BB

BB
BB

B

Ω
Spin
5 (B)

ÃÃB
BB

BB
BB

B

>>||||||||

Aut•(M)

α

ÃÃB
BB

BB
BB

B

>>|||||||||

Ω
Spin
4 (B)

π1(E•(B))

>>||||||||

99
Ω̂

Spin
5 (B, M)

γ
>>||||||||

99
Ω̂

Spin
4 (M)

>>||||||||

that is commutative up to sign. The sub-diagrams are all strictly commutative except

for the two composites ending in Aut•(M), and valid for any closed, oriented, smooth

or topological spin 4-manifold. Throughout this paper we always refer to [5] for the

details of the definitions.

We will fix a lift νM : M → B Spin of the classifying map for the stable normal

bundle of M. The Abelian group Ω
Spin
n (M), with disjoint union as the group oper-

ation, denotes the singular bordism group of spin manifolds with a reference map

to M. By imposing the requirement that the reference maps to M must have degree

zero, we obtain the modified bordism groups Ω̂
Spin
4 (M).
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Proposition 2.1 The relevant spin bordism groups of M are given as follows:

Ω
Spin
4 (M) ∼= Z ⊕ H2(M; Z/2) ⊕ H3(M; Z/2) ⊕ Z,

Ω
Spin
5 (M) ∼= H1(M) ⊕ H3(M; Z/2) ⊕ Z/2.

Proof This follows from the Atiyah–Hirzebruch spectral sequence, whose E2-term is

Hp(M; Ω
Spin
q (∗)). The first differential d2 : E2

p,q → E2
p−2,q+1 is given by the dual of Sq2

(if q = 1) or that dual composed with reduction mod 2 (if q = 0), see [14, p. 751].

We substitute the values

Ω
Spin
q (∗) = Z, Z/2, Z/2, 0, Z, 0 for 0 ≤ q ≤ 5.

The differential for (p, q) = (4, 1) is dual to Sq2 : H2(M; Z/2) → H4(M; Z/2), which

is zero, since M is spin. We have a short exact sequence

0 −→ Ω
Spin
4 (∗) ⊕ H2(M; Z/2) −→ F3,1 −→ H3(M; Ω

Spin
1 (∗)) −→ 0

and V × S1 f ◦ p1
−−−→ F3,1 gives the splitting, where we consider an embedding f : V →

M of a closed spin 3-manifold representing a generator of H3(M; Z/2) ∼= (Z/2)r,

and S1 is equipped with the non-trivial spin structure. Therefore, Ω
Spin
4 (M) ∼= Z ⊕

H2(M; Z/2)⊕H3(M; Z/2)⊕Z. The result for Ω
Spin
5 (M) follows by similar arguments.

In order to calculate the bordism groups of B, we need Hi(B). We use the Serre

spectral sequence of the fibration B̃
p
−→ B −→ K(π, 1), whose E2-term is given by

E2
p,q = Hp(K(π, 1); Hq(B̃)),

the homology of K(π, 1) with local coefficients in the homology of B̃. We need the

homology of B̃, but first recall a theorem of Whitehead.

Theorem 2.2 ([16]) Let X be a CW complex and Γ denote the Whitehead’s quadratic

functor, then there is a functorial Whitehead exact sequence

π4(X̃) // H4(X̃) //
Γ(π2(X̃)) // π3(X̃) // H3(X̃) // 0.

We have H4(B̃) ∼= Γ(π2), since πi(B̃) = 0 for i > 3. Hillman [8] proved that

π2
∼= Λ

β2(M), and by [1, Theorem 5] it follows that Γ(π2) is a free Λ-module whenever

π is a free group.

Let X0 = ∗, X1 = K(Z, 2), . . . , XN = K(ZN , 2), . . . , where ZN is the N-fold

product of Z. Note that π2 is countable and consider the sequence of maps

X0

i0

// X1

i1
// X2

i2
// · · · ,
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where ik’s are inclusions. Observe that B̃ is homotopy equivalent to the mapping

telescope of the above sequence and we have (see [6, p. 312])

Hn(B̃) ∼= lim
→

Hn(Xk),

Hn(B̃; Z/2) ∼= lim
←

Hn(Xk; Z/2).

Proposition 2.3 Let B denote the 2-type of a spin 4-manifold with free fundamental

group. The homology groups of B are given by

Hi(B) ∼=





Hi(M) if i = 0, 1 or 2,

0 if i = 3 or 5,

Z ⊗Λ Γ(π2(M)) if i = 4.

Proof The result follows easily from the the Serre spectral sequence of the fibration

M̃ → M → K(π, 1).

Proposition 2.4 Let Ω
Spin
∗ (B) denote the singular bordism group of spin manifolds

with a reference map to B. We have the following:

Ω
Spin
4 (B) ⊂ H4(B) ⊕ Z and Ω

Spin
5 (B) ∼= H1(B)

Proof We use the same spectral sequence, whose E2-term is Hp(B; Ω
Spin
q (∗)). The

commutative diagram

H2(B̃; Z/2)
Sq2

// H4(B̃; Z/2)

H2(B; Z/2)
Sq2

//

p∗

OO

H4(B; Z/2)

p∗

OO

implies that Sq2 : H2(B; Z/2) → H4(B; Z/2) is injective. Hence d2 : H4(B; Z/2) →
H2(B; Z/2) is surjective. Therefore, on the line p+q = 4, the only groups that survive

to E∞ are Z in the (0, 4) position and a subgroup of H4(B) in the (4, 0) position.

For the line p + q = 5, consider the diagram

H2(B̃; Z/2)
Sq2

// H4(B̃; Z/2)
Sq2

// H6(B̃; Z/2)

H2(B; Z/2)
Sq2

//

p∗

OO

H4(B; Z/2)
Sq2

//

p∗

OO

H6(B; Z/2).

p∗

OO
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Let α ∈ H4(B; Z/2) such that Sq2(α) = 0 and p∗(α) = β. There exists λ ∈
H2(B̃; Z/2) such that Sq2(λ) = β, since the above row is exact. Therefore the se-

quence

H2(B; Z/2)
Sq2

// H4(B; Z/2)
Sq2

// H6(B; Z/2)

is exact. By the surjectivity of H6(B; Z) → H6(B; Z/2), we can conclude that

d2 : H6(B; Z) → H4(B; Z/2) is surjective onto the kernel of the differential

d2 : H4(B; Z/2) → H2(B; Z/2). Thus the only group that survives to E∞ is H1(B) =

H1(M) in the (1, 4) position.

The map α : Aut•(M) → Ω
Spin
4 (M) is defined by α( f ) = [M, f ] − [M, id].

An element (W, F) of Ω̂
Spin
5 (B, M) is a 5-dimensional spin manifold with boundary

(W, ∂W ), equipped with a reference map F : W → B such that F|∂W factors through

the classifying map c : M → B and that F|∂W : ∂W → M has degree zero.

Corollary 2.5 The group Ω̂
Spin
5 (B, M) is isomorphic to H2(M; Z/2) ⊕ H3(M; Z/2)

and it injects into Aut•(M). The image of α is equal to H2(M; Z/2) ⊕ H3(M; Z/2).

Proof The map Ω
Spin
5 (M) → Ω

Spin
5 (B), which is composing with our reference map

c : M → B, maps the summand H1(M) isomorphically to H1(B) and H3(M; Z/2) ⊕

H4(M; Z/2) to zero. By the exactness of the braid, the map Ω
Spin
5 (B) → Ω̂

Spin
5 (B, M)

is zero. Therefore

Ω̂
Spin
5 (B, M)) ∼= ker(Ω̂

Spin
4 (M) → Ω

Spin
4 (B))

∼= H2(M; Z/2) ⊕ H3(M; Z/2).

The map Ω̂
Spin
5 (B, M) → Ω̂

Spin
4 (M) is injective, so by the commutativity of the

braid the map π1(E•(B)) → Ω̂
Spin
5 (B, M) is zero. Hence γ : Ω̂

Spin
5 (B, M) → Aut•(M)

is injective.

The natural map Ω
Spin
4 (M) → H0(M) sends a spin 4-manifold to its signa-

ture. It follows that α( f ) ∈ H2(M; Z/2) ⊕ H3(M; Z/2). On the other hand, since

both the map Ω̂
Spin
5 (B, M) → Ω̂

Spin
4 (M) and γ are injective we have H2(M; Z/2) ⊕

H3(M; Z/2) ⊆ im α.

Let Isom[π, π2] be the subgroup of Aut(π) × Aut(π2) consisting of all those pairs

(χ, ψ) for which ψ(ηa) = χ(η)ψ(a) for all η ∈ π, a ∈ π2. We have a split exact

sequence [11, p. 31]

0 // H2(π; π2) // Aut•(B)
(π1,π2)

// Isom[π, π2] //
see

1 .

In particular we have Aut•(B) = H2(π; π2) ⋊ Isom[π, π2]. If π is a free group, then

H2(π; π2) = 0. Hence for π a free group we have

Aut•(B) ∼= Isom[π1, π2].

https://doi.org/10.4153/CJM-2010-061-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-061-4


1392 M. Pamuk

Next, we will look for a relation between c∗[M] and the cohomology intersection

pairing sM on M. Let Her(H2(B; Λ)) be the group of Hermitian pairings on H2(B; Λ).

Hillman [9] defined a homomorphism

Bπ2
: H4(B) → Her(H2(B; Λ))

by Bπ2
(x)(u, v) = v(x∩u) = (u∪v)(x). The image of c∗[M] is the cohomology inter-

section pairing on M. Moreover, by [9, Theorem 7] Bπ2
is an isomorphism whenever

π is a free group. Therefore c∗[M] and sM uniquely determine each other.

Hambleton and Kreck [4] defined the quadratic 2-type of M as the quadruple

[π, π2, kM , sM]. The isometries of the quadratic 2-type of M, which are denoted by

Isom[π, π2, kM , sM], consist of all pairs of isomorphisms

χ : π → π and ψ : π2 → π2 ,

such that ψ(gx) = χ(g)ψ(x) for all g ∈ π and x ∈ π2, which preserve the k-invariant

and the intersection form.

Lemma 2.6 ker(β : Aut•(B) → Ω
Spin
4 (B)) = Isom[π, π2, sM].

Proof If φ ∈ Aut•(B) and c : M → B is the classifying map, then β(φ) := [M, φ◦c]−
[M, c]. The natural map Ω

Spin
4 (B) → H4(B) sends a bordism element to the image of

its fundamental class. The image of β(φ) in H4(B) is zero when φ∗(c∗[M]) = c∗[M].

Hence ker β is contained in the group of the isometries of the quadratic 2-type. On

the other hand an element φ ∈ Isom[π, π2, sM] will be φ ∈ Aut•(B) such that

φ∗(c∗[M]) = c∗[M], then clearly β(φ) = 0.

Lemma 2.7 For each φ ∈ Aut•(B) such that φ∗(c∗[M]) = c∗[M], there is an f ∈
Aut•(M) such that c ◦ f ≃ φ ◦ c.

Proof First, let us assume that H2(M; Q) 6= 0. Since φ∗(c∗[M]) = c∗[M], there

exists an f ∈ Aut•(M), such that c ◦ f ≃ φ ◦ c by [4, Lemma 1.3].

For the case H2(M; Q) = 0, we consider the homotopy equivalence h : M →
♯r(S1 × S3) constructed in [2] which depends on a chosen isomorphism between π
and ∗rZ. Note that π1(φ) induces an automorphism of π. Composing π1(φ) with the

previous isomorphism we get a different isomorphism between π and ∗rZ. The same

construction gives us another homotopy equivalence h ′ : M → ♯r(S1 × S3). Since

h and h ′ are degree 1 maps, we can construct an orientation preserving homotopy

self equivalence of M by f := h ◦ h ′−1 : M → M. Now, it is easy to see that by

construction c ◦ f ≃ φ ◦ c.

Corollary 2.8 The images of Aut•(M) and H̃(M) in Aut•(B) are precisely equal to

Isom[π, π2, sM].

Proof For each [ f ] ∈ Aut•(M), we have a base-point preserving homotopy self-

equivalence φ f : B → B such that c ◦ f = φ f ◦ c. All we have to show is that

(φ f )∗(c∗[M]) = c∗[M]. We have (φ f )∗(c∗[M]) = (φ f ◦ c)∗[M] = (c ◦ f )∗[M] =
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c∗[M] since the fundamental class in H4(M) is preserved by an orientation pre-

serving homotopy equivalence. We see that im(Aut•(M) → Aut•(B)) is con-

tained in Isom[π, π2, sM]. The other inclusion follows from Lemma 2.7. The re-

sult for the image of H̃(M) follows by the exactness of the braid and the fact that

ker(β) = Isom[π, π2, sM].

Here are the relevant terms of our braid diagram:

H1(M) ⊕ H3(M; Z/2)
⊕ Z/2

¿¿9
99

99
99

""

H̃(M)

¿¿9
99

99
99

9

!!

Isom[π, π2, sM]

¿¿9
99

99
99

99

H1(M)

0

¾¾7
77

77
77

BB¦¦¦¦¦¦¦¦

Aut•(M)

α

¾¾7
77

77
77

BB¦¦¦¦¦¦¦¦

0

π1(E•(B))

CC̈
¨̈

¨̈
¨̈

¨̈

0
22

H2(M; Z/2)
⊕

H3(M; Z/2)

γ
CC̈

¨̈
¨̈

¨

∼= 66

H2(M; Z/2)
⊕

H3(M; Z/2)

CC̈
¨̈

¨̈
¨̈

Theorem 2.9 Let M be a connected, closed, oriented, smooth or topological spin man-

ifold of dimension 4. If π is a free group of rank r, then

Aut•(M) ∼= (H2(M; Z/2) ⊕ H3(M; Z/2)) ⋊ Isom[π, π2, sM].

Proof From the braid diagram, we have

ker(H̃(M) → Isom[π, π2, sM]) ∼= H1(M),

so Isom[π, π2, sM] ∼= H̃(M)/H1. This gives the splitting of the short exact sequence

0 → K1 → Aut•(M) → Isom[π, π2, sM] → 1,

where K1 := ker(Aut•(M) → Aut•(B)). Hence it follows that

Aut•(M) ∼= K1 ⋊ Isom[π, π2, sM].

We already know that γ is injective (Corollary 2.5). By the commutativity of the

braid to show that it is actually an injective homomorphism, it is enough to show that

α is a homomorphism on the image of γ. Let γ(W, F) = f and γ(W ′, F ′) = g.

Note that α( f ◦ g) = α( f ) + f∗(α(g)). We have to show that f∗(α(g)) = α(g). By

Corollary 2.5, α(g) ∈ H2(M; Z/2)⊕H3(M; Z/2) and any element f in the image of γ
is trivial in Aut•(B). Since H3(M; Z/2) ∼= H1(M; Z/2) and c induces isomorphisms

on H2(M; Z/2) and H1(M; Z/2), f acts as the identity on H2(M; Z/2)⊕H3(M; Z/2).
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Now a diagram chase shows that γ is a homomorphism. Therefore we have a short

exact sequence of groups and homomorphisms

0 −→ (H2(M; Z/2) ⊕ H3(M; Z/2))
γ
−→ Aut•(M) −→ Isom[π, π2, sM] −→ 1.

Moreover, K1 = im γ and K1 is mapped isomorphically onto H2(M; Z/2) ⊕
H3(M; Z/2) by the map α. The conjugation action of Isom[π, π2, sM] on K1 agrees

with the induced action on homology under the identification K1
∼= H2(M; Z/2) ⊕

H3(M; Z/2) via α (see [5]). It follows that

Aut•(M) ∼= (H2(M; Z/2) ⊕ H3(M; Z/2)) ⋊ Isom[π, π2, sM].

Example 2.10 Let M = S1×S3. By the above theorem Aut•(M) ∼= Z/2⊕Z/2. Note

that these are orientation preserving homotopy self-equivalences. Define ϕ : S1 ×
S3 → S1 × S3 by ϕ(x, y) = (−x, y). If we compose orientation preserving self-

equivalences with ϕ we get also the orientation reversing homotopy self-equivalences.

Therefore the based homotopy classes of based self homotopy equivalences of S1 ×S3

are isomorphic to (Z/2)3.

3 The Non-spin Case

When w2(M) 6= 0, the bordism groups must be modified. The class w2 gives a fibra-

tion and we can form the pullback

B〈w2〉
j

//

ξ

²²

B

w2

²²

BSO
w

// K(Z/2, 2).

The map w = w2(γ) pulls back the second Stiefel–Whitney class for the universal

oriented vector bundle γ over BSO. B〈w2〉 is called the normal 2-type of M [10]. Let

Ω∗(B〈w2〉) be bordism classes smooth manifolds equipped with a lift of the normal

bundle. The spectral sequence used to compute Ω∗(B〈w2〉) has the same E2-term as

the one used above for w2 = 0, but the differentials are twisted by w2. In particular,

d2 is the dual of Sq2
w, where Sq2

w(x) := Sq2(x) + x ∪ w2 (see [14, Section 2]).

There is a corresponding non-spin version of Ω
Spin
∗ (M), namely the bordism

groups Ω∗(M〈w2〉). The E2-term of the spectral sequence is unchanged from the

spin case, but the differentials are twisted by w2 with the above formula for Sq2
w. We

choose a particular representative for the map w2 such that w2 = w ◦ νM . Next we

define a suitable “thickening” of Aut•(M) for the non-spin case.
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Definition 3.1 ([5]) Let Aut•(M, w2) denote the set of equivalence classes of maps

f̂ : M → M〈w2〉 such that

(i) f := j ◦ f̂ is a base-point and orientation preserving homotopy equivalence,

and

(ii) ξ ◦ f̂ = νM .

Given two maps f̂ , ĝ : M → M〈w2〉 as above, we define

f̂ • ĝ : M → M〈w2〉

as the unique map from M into the pull-back M〈w2〉 defined by the pair f ◦ g : M →
M and νM : M → BSO. It was proved in [5] that Aut•(M, w2) is a group under this

operation and there is a short exact sequence of groups

0 −→ H1(M; Z/2 −→ Aut•(M, w2) −→ Aut•(M) −→ 1.

To define an analogous group Aut•(B, w2) of self-equivalences, we should first

state the following lemma from [5].

Lemma 3.2 Given a base-point preserving map f : M → B, there is a unique exten-

sion (up to base-point preserving homotopy) φ f : B → B such that φ f ◦ c = f . If f is

a 3-equivalence, then φ f is a homotopy equivalence. Moreover, if w2 ◦ f = w2, then

w2 ◦ φ f = w2.

Definition 3.3 ([5]) Let Aut•(B, w2) denote the set of equivalence classes of maps

f̂ : M → B〈w2〉 such that

(i) f := j ◦ f̂ is a base-point preserving 3-equivalence, and

(ii) ξ ◦ f̂ = νM .

Theorem 3.4 ([5]) Let M be a closed, oriented topological 4-manifold. Then there is

a sign-commutative diagram of exact sequences

Ω5(M〈w2〉)

ÃÃA
AA

AA
AA

A

%%

H̃(M, w2)

##GG
GG

GG
GG

G

%%

Aut•(B, w2)

β

ÂÂ>
>>

>>
>>

>

Ω5(B〈w2〉)

""EE
EE

EE
EE

<<yyyyyyyy

Aut•(M, w2)

α

ÃÃA
AA

AA
AA

A

>>}}}}}}}}

Ω4(B〈w2〉)

π1(E•(B, w2))

>>}}}}}}}}

99
Ω̂5(B〈w2〉, M〈w2〉)

γ
;;wwwwwwwww

99
Ω̂4(M〈w2〉)

??¡¡¡¡¡¡¡

such that the two composites ending in Aut•(M, w2) agree up to inversion, and the other

sub-diagrams are strictly commutative.
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Proposition 3.5 Let B〈w2〉 denote the normal 2-type of a 4-manifold M with free

fundamental group. Then we have

Ω4(M〈w2〉) ∼= Z ⊕ H2(M; Z/2) ⊕ H3(M; Z/2) ⊕ Z,

Ω5(M〈w2〉) ∼= H1(M) ⊕ H3(M; Z/2) ⊕ Z/2,

Ω4(B〈w2〉) ⊂ Z ⊕ Z/2 ⊕ H4(B),

Ω5(B〈w2〉) ∼= H1(M).

Proof We only need to compute the d2 differentials. Since M is orientable, w2 is also

the second Wu class of M. We have Sq2
w(x) = 0. Now, everything works exactly the

same as in the spin case.

For the bordism groups of B〈w2〉, first consider the following commutative dia-

gram

H2(B̃; Z/2)
Sq2

w

// H4(B̃; Z/2)

H2(B; Z/2)
Sq2

w

//

p∗

OO

H4(B; Z/2).

p∗

OO

By the commutativity of the diagram, we have

ker(Sq2
w : H2(B; Z/2) → H4(B; Z/2)) ∼= 〈w2〉 ∼= Z/2

∼= coker(d2 : H4(B; Z/2) → H2(B; Z/2)).

Since all the other differentials are zero, this gives the Z/2 in the E∞
2,2 position. To see

that H1(B) ∼= H1(M) is the only group on the line p + q = 5 that survives to E∞, we

use the following commutative diagram:

H2(B̃; Z/2)
Sq2

w

// H4(B̃; Z/2)
Sq2

w

// H6(B̃; Z/2)

H2(B; Z/2)

p∗

OO

Sq2
w

// H4(B; Z/2)

p∗

OO

Sq2
w

// H6(B; Z/2).

p∗

OO

We are going to show that the bottom row is exact. It is easy to see that

H2(Xk; Z/2)
Sq2

w

// H4(Xk; Z/2)
Sq2

w

// H6(Xk; Z/2)

is exact. We have {H2(Xk; Z/2), i∗k}, {H4(Xk; Z/2), i∗k}, and {H6(Xk; Z/2), i∗k}, an

inverse system of modules, where ik : Xk−1 → Xk is the inclusion map. Consider the
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commutative diagram with exact rows

H2(Xk; Z/2)
Sq2

w

//

i∗k

²²

H4(Xk; Z/2)
Sq2

w

//

i∗k

²²

H6(Xk; Z/2)

i∗k

²²

H2(Xk−1; Z/2)
Sq2

w

// H4(Xk−1; Z/2)
Sq2

w

// H6(Xk−1; Z/2).

Then the sequence

lim
←

H2(Xk; Z/2)
Sq2

w

// lim
←

H4(Xk; Z/2)
Sq2

w

// lim
←

H6(Xk; Z/2)

is exact. Let a ∈ H2(B; Z/2), then Sq2
w(a2 +a∪w2) = 0. Now, let b ∈ H4(B; Z/2) such

that Sq2
w(b) = 0 and let p∗(b) = y, then Sq2

w(y) = 0. There exists a z ∈ H2(B̃; Z/2)

such that Sq2
w(z) = y. Then we also have a c ∈ H2(B; Z/2) such that p∗(c) = z and

Sq2
w(c) = b. Therefore the sequence

H2(B; Z/2)
Sq2

w

// H4(B; Z/2)
Sq2

w

// H6(B; Z/2)

is exact. Note also that H6(B) → H6(B; Z/2) is surjective, hence d2 : H6(B) →
H4(B; Z/2) is onto the kernel of d2 : H4(B; Z/2) → H2(B; Z/2).

Let ĉ : M → B〈w2〉 denote the map defined by the pair (c : M → B, νM : M →
BSO). Consider the diagram

M〈w2〉
c◦ j

//

ξ

²²

B

w2

²²

BSO
w

// K(Z/2, 2).

We have (w2 ◦ c) ◦ j = w2 ◦ j and since the pullback satisfies the universal property,

there exists a map c : M〈w2〉 → B〈w2〉. Let îd : M → M〈w2〉 denote the map defined

by the pair (idM : M → M, νM : M → BSO). Given [ f̂ ] ∈ Aut•(M, w2), we define

α : Aut•(M, w2) → Ω̂4(M〈w2〉) by α( f̂ ) = [M, f̂ ] − [M, îdM], where the modified

bordism groups are defined by letting the degree of a reference map ĝ : N4 → M〈w2〉
be the ordinary degree of g = j ◦ ĝ. An element (W, F̂) of Ω̂5(B〈w2〉, M〈w2〉) is a

5-dimensional manifold with boundary (W, ∂W ), equipped with a reference map

F̂ : W → B〈w2〉 such that F̂|∂W factors through c.
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Corollary 3.6 The group

Ω̂5(B〈w2〉, M〈w2〉) ∼= KH2(M; Z/2) ⊕ H3(M; Z/2)

and it injects into Aut•(M, w2). The image of α is

im α = KH2(M; Z/2) ⊕ H3(M; Z/2).

Proof As in the proof of Corollary 2.5, Ω5(M〈w2〉) → Ω5(B〈w2〉) is onto, and, by

the exactness of the braid Ω5(B〈w2〉) → Ω̂5(B〈w2〉, M〈w2〉) is zero. Thus,

Ω̂5(B〈w2〉, M〈w2〉) ∼= ker
(
Ω̂4(M〈w2〉) → Ω4(B〈w2〉)

)

∼= KH2(M; Z/2) ⊕ H3(M; Z/2).

The map π1(E•(B, w2)) → Ω̂5(B〈w2〉, M〈w2〉) is zero by the commutativity of the

braid. Therefore

γ : Ω̂5(B〈w2〉, M〈w2〉) → Aut•(M, w2)

is injective. The natural map Ω4(M〈w2〉) → H0(M) sends a 4-manifold to its signa-

ture. Since the class w2 ∈ H2(M; Z/2) is a characteristic element for the cup prod-

uct form (mod 2), it is preserved by the induced map of a self-homotopy equiva-

lence of M. Therefore, the image of Aut•(M, w2) in Ω4(M〈w2〉) lies in the subgroup

KH2(M; Z/2) ⊕ H3(M; Z/2). Since the map γ is injective, we also have

KH2(M; Z/2) ⊕ H3(M; Z/2) ⊆ im α.

Next, we are going to define a homomorphism

ĵ : Aut•(B, w2) → Aut•(B).

For any f̂ ∈ Aut•(B, w2), f := j ◦ f̂ : M → B is a 3-equivalence. There is a unique

homotopy equivalence φ f : B → B such that φ f ◦ c ≃ f . We define ĵ( f̂ ) := φ f . Let ĝ

be another element of Aut•(B, w2), then f̂ • ĝ is defined by the pair (φ f ◦ φg ◦ c, νM).

Therefore ĵ( f̂ • ĝ) = φ f ◦ φg . Let

Isom〈w2〉[π, π2, sM] := { f̂ ∈ Aut•(B, w2) |φ f ∈ Isom[π, π2, sM]}.

Lemma 3.7 ([12]) There is a short exact sequence of groups

0 −→ H1(M; Z/2) −→ Isom〈w2〉[π, π2, sM]
bj

−→ Isom[π, π2, sM] −→ 1.

Corollary 3.8 The image of Aut•(M, w2) in Aut•(B, w2) is precisely equal to

Isom〈w2〉[π, π2, sM].
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Proof Let f̂ ∈ Aut•(M, w2) and φbf
denote the image of f̂ in Aut•(B, w2). Then

ĵ(φbf
) = φ f satisfies φ f ◦ c = c ◦ f and φ f preserves c∗[M]. Hence

φ f ∈ Isom[π, π2, sM].

Now suppose that φ ∈ Isom[π, π2, sM], then there exists f ∈ Aut•(M) such that φ ◦
f ≃ c ◦ f (Lemma 2.7). We may assume that f̂ = ( f , νM) ∈ Aut•(M, w2) [5, Lemma

3.1]. Let φbf
∈ Aut•(B, w2) denote the image of f̂ ; then we have ĵ(φbf

) = φ.

Lemma 3.9 We have ker(β : Aut•(B, w2) → Ω4(B〈w2〉)) = Isom〈w2〉[π, π2, sM],

and the image of H̃(M, w2) in Aut•(B, w2) is equal to Isom〈w2〉[π, π2, sM].

Proof In the non-spin case, the map β : Aut•(B, w2) → Ω4(B〈w2〉) is defined by

β( f̂ ) = [M, f̂ ] − [M, ĉ]. Let f̂ ∈ Aut•(B, w2) and suppose first that f̂ ∈ ker β, then

( j ◦ f̂ )∗[M] = c∗[M]. But since ( j ◦ f̂ ) is a 3-equivalence, there exists φ ∈ Aut•(B)

with φ◦c = j◦ f̂ . So, φ∗(c∗[M]) = c∗[M], which means ĵ( f̂ ) = φ ∈ Isom[π, π2, sM].

Therefore ker(β) ⊆ Isom〈w2〉[π, π2, sM]. It is easy to see the other inclusion from the

commutativity of the braid. The result about the image of H̃(M, w2) follows from the

exactness of the braid [5, Lemma 2.7] and the fact that ker(β) = Isom〈w2〉[π, π2, sM].

The relevant terms of our braid are now

H1(M) ⊕ H3(M; Z/2)
⊕ Z/2

¿¿8
88

88
88

""

H̃(M, w2)

¿¿8
88

88
88

8

!!

Isom〈w2〉[π, π2, sM]

0

¿¿8
88

88
88

8

H1(M)

0

¾¾7
77

77
77

BB§§§§§§§§
Aut•(M, w2)

α

¾¾7
77

77
77

BB§§§§§§§§

0

π1(E•(B))

CC̈
¨̈

¨̈
¨̈

¨̈

0 66

KH2(M; Z/2)
⊕

H3(M; Z/2)

γ
CC̈

¨̈
¨̈

¨

∼= <<

KH2(M; Z/2)
⊕

H3(M; Z/2)

CC̈
¨̈

¨̈
¨̈

Proof of Theorem 1.1 We have a split short exact sequence

0 // K̂1
// Aut•(M, w2) // Isom〈w2〉[π, π2, sM] // 1,

where K̂1 = ker(Aut•(M, w2) → Aut•(B, w2)). Any element f̂ will act as an identity

on im(α) = KH2(M; Z/2) ⊕ H3(M; Z/2), so λ is a homomorphism. Also K̂1
∼=

KH2(M; Z/2)⊕H3(M; Z/2), and the rest of the proof follows as in the spin case.
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Remark 3.10 We have

H2(M; Z/2) ∼= H0(π; H2(M̃; Z/2)) ∼= (π2 ⊗ Z/2) ⊗Λ Z.

Therefore any element of H2(M; Z/2) can be represented by a map S2 → M. Let

0 6= x ∈ KH2(M; Z/2) and α : S2 → M corresponds to x via the above isomorphism.

Choose an embedding D4 →֒ M and shrink ∂D4 to a point, to get a map M → M∨S4.

Now let η : S3 → S2 be the Hopf map, Sη : S4 → S3 its suspension, and η2 : S4 → S2

the composition η2
= η ◦ Sη. Let f be the composite map

M // M ∨ S4
id ∨η2

// M ∨ S2
id ∨α

// M

f induces identities on π1 and on Hi(M̃), so f is homologous to the idM , and hence

it is a homotopy equivalence, but it is not homotopic to the identity, for γ is injective.

To realize H3(M; Z/2) as homotopy equivalences, first observe that H3(M) ∼=
H3(M̃) ⊗Λ Z and reduction mod 2 is onto, so by Hurewicz’s theorem for any ele-

ment of H3(M; Z/2), there exists a map β : S3 → M. Now the following composite

map

M // M ∨ S4
id ∨Sη

// M ∨ S3
id ∨β

// M

is again a homotopy-equivalence.

4 S-Cobordism

In this section we are going to show that the quadratic 2-type with the Kirby–Sie-

benmann invariant determines a classification of topological 4-manifolds with free

fundamental group, up to s-cobordism. Before we state our result, let us first recall

that

Ω
STOP
4 (K(π, 1)) ∼= Ω

STOP
4 (∗) ∼= Z ⊕ Z/2

where π ∼= ∗rZ. The isomorphism can be given by associating the pair (σ(M), ks(M))

with M, where ks(M) is the Kirby–Siebenmann invariant of M. The latter invariant

σ(M) is the signature of the 4-manifold M. Recall that the signature of a closed,

oriented 4-manifold M, σ(M) is given by the signature of the usual intersection form

sZ
M : H2(M) ⊗ H2(M) → Z.

Note that, when π is a free group we have H2(M) ∼= H2(M; Λ) ⊗Λ Z and

sM ⊗Λ Z : (H2(M; Λ) ⊗Λ Z) ⊗ (H2(M; Λ) ⊗Λ Z) → Λ ⊗Λ Z ∼= Z

is the integral intersection form sZ
M , since H2(M; Λ) ⊗Λ Z is the largest quotient of

H2(M; Λ) on which π acts trivially. Therefore the signature of M is determined by

the formula

σ(M) = σ(sZ
M) = σ(sM ⊗Λ Z).

Here is our main result for this section.
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Theorem 4.1 Let M1 and M2 be two closed, connected, oriented, topological 4-mani-

folds with free fundamental group and have the same Kirby-Siebenmann invariant.

Then they are s-cobordant if and only if they have isometric quadratic 2-types.

The proof of Theorem 1.2 If M1 and M2 are s-cobordant, then the inclusion of M1

into an s-cobordism between M1 and M2 and the homotopy inverse of the inclusion

from M2 is an orientation preserving homotopy equivalence and thus induces an

isometry between the intersection forms. So, M1 and M2 have isometric quadratic

2-types. Suppose now that M1 and M2 have isometric quadratic 2-types. Then M1

and M2 have isomorphic equivariant intersection forms, and by the above arguments

σ(M1) = σ(M2). The hypotheses imply that we have a cobordism W between M1

and M2 over K(π, 1). We may assume that W is connected.

Choose a handle decomposition of W . We can cancel all 0- and 5-handles. Fur-

ther, we may assume, by low-dimensional surgery, M1 →֒ W is a 2 equivalence. So we

can trade all 1-handles for 3-handles, and upside-down, all 4-handles for 2-handles.

We end up with a handle decomposition of W that only contains 2- and 3-handles,

and view W as

W = M1 × [0, 1] ∪ {2-handles} ∪ {3-handles} ∪ M2 × [−1, 0],

which we split into two halves: on one side, M1 and the 2-handles, on the other,

M2 and the 3-handles. Let 3/2 be the level in W that appears immediately after all

2-handles have been attached but before any 3-handle is attached.

We will cut W into two halves, then glue them back after sticking in an h-cobor-

dism of M3/2. This cut and reglue procedure will create a new cobordism from M1

to M2. If we choose the right h-cobordism, then the 3-handles from the upper half

will cancel the 2-handles from the lower half. This means that the newly created

cobordism between M1 and M2 will have no homology relative to its boundaries, and

so it will indeed be an h-cobordism from M1 to M2. Finally, note that the Whitehead

group W h(π) is trivial for π ∼= ∗rZ ([13]), hence in this case being s-cobordant is

equivalent to being h-cobordant.

From the lower half of W we have M3/2 ≈ M1♯m(S2 × S2), while from the upper

half we have M3/2 ≈ M2♯m(S2 × S2), see for example [10, Corollary 3]. Hence we

have a homeomorphism

ζ : M2♯m(S2 × S2)
≈

// M1♯m(S2 × S2).

Let B(Mi) denote the 2-types of Mi and ci : Mi → B(Mi) corresponding 3-equi-

valences for i = 1, 2. Since M1 and M2 have isometric quadratic 2-types, we have the

following isomorphisms

χ : π1(M1) → π1(M2) and ψ : π2(M1) → π2(M2)

such that

sM2
(ψ(x), ψ(y)) = χ∗(sM1

(x, y)).
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We can construct a homotopy equivalence θ : B(M1) → B(M2) such that π2(θ) ◦
π2(c1) = π2(c2) ◦ ψ and θ♯(sM2

) = sM1
. Now let

M := M1♯m(S2 × S2) and M ′ := M2♯m(S2 × S2)

such that the quadratic 2-type of M is

[π, π2, sM] := [π1(M1), π2(M1) ⊕ Λ
2m, sM1

⊕ H(Λm)],

where H(Λm) is the hyperbolic form on Λ
m ⊕ (Λm)∗. Next, note that

(π1(ζ) ◦ χ, π2(ζ) ◦ (ψ ⊕ id)) = (id, π2(ζ) ◦ (ψ ⊕ id))

gives us an element in Isom[π, π2, sM] since it is the composition of isometries. Let

B := B(M) denote the 2-type of M. Remember that we have Aut•(B) ∼= Isom[π, π2].

Therefore we can find a φ ∈ Aut•(B) such that

π1(φ) = id and π2(φ) = π2(ζ) ◦ (ψ ⊕ id).

We can choose, by Lemma 3.7, f̂ ∈ Isom〈w2〉[π, π2, sM] such that ĵ( f̂ ) = φ. There

exists (W, F̂) ∈ H̃(M, w2) that maps to f̂ , i.e., F̂ : W → B〈w2〉 and F|∂2W = f̂ . We

have a commutative diagram of exact sequences (see [5, Lemma 4.1])

L̃6(Z[π1])

²²

L̃6(Z[π1])

²²
S(M × I, ∂) //

²²

H(M) //

²²

Aut•(M, w2)

T(M × I, ∂) //

²²

H̃(M, w2) // //

²²

Isom〈w2〉[π, π2, sM]

L5(Z[π1]) L5(Z[π1]),

where the left-hand vertical sequence is from Wall’s surgery exact sequence [15,

Chapter 10]. To obtain the right-hand vertical sequence we use the modified surgery

theory of [10].

The group H(M) consists of oriented h-cobordisms W 5 from M to M, under the

equivalence relation induced by h-cobordism relative to the boundary. The group

structure on T(M × I, ∂) is defined as for H̃(M, w2). The map T(M × I, ∂) →
H̃(M, w2) takes F : (W, ∂W ) → (M× I, ∂) to (W, F̂) ∈ H̃(M, w2), where F̂ = p̂1 ◦F.

Let σ5 ∈ L5(Z[π1]) be the image of (W, F̂), the map T(M× I, ∂) → L5(Z[π1]) is onto
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[7, Lemma 6.9]. Let (W ′, F ′) ∈ T(M×I, ∂) maps to σ5 and let (W ′, F̂ ′) ∈ H̃(M, w2)

be the image of (W ′, F ′). Consider the difference of these elements in H̃(M, w2),

(W ′ ′, F̂ ′′) := (W ′, F̂ ′) • (−W, f̂ −1 • F̂) ∈ H̃(M, w2).

The element (W ′ ′, F̂ ′ ′) ∈ H̃(M, w2) maps to 0 ∈ L5(Z[π1]). By the exactness of

the right-hand vertical sequence there exists an h-cobordism T of M which maps to

(W ′ ′, F̂ ′ ′). Let f denote the induced homotopy self equivalence of M. By construc-

tion we have c ◦ f ≃ φ ◦ c where c ◦ f = j ◦ f̂ . Note that π2(ζ−1 ◦ f ) = ψ ⊕ id

and also ζ−1 ◦ f gives us a self-equivalence of M3/2. Now, if we put the s-cobordism

T in between two halves of W , then the 3-handles from the upper half cancel the

2-handles from the lower half.
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