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REPELLING INVARIANT CURVES IN PLANAR DISCRETE
DYNAMICAL SYSTEMS

FRANCISCO ESQUEMBRE

Constructive, simple proofs for the existence, regularity, continuous dependence
and dynamical properties of a repelling invariant curve for a discrete dynamical
system of the plane with an attracting fixed point with real eigenvalues are given.
These proofs can be used to generate a numerical algorithm to find these curves
and to compute explicitly the dependence of the curve with respect to the system.

1. INTRODUCTION

A common and useful way to understand the behaviour of the dynamical system
generated by the iteration of a map of Rn (n = 1 or 2) into itself is to find simple
structures in the phase space of the system and to describe the dynamics in terms of
the effect caused by the presence of these structures. Typical structures are fixed and
periodic points and, in dimension two, invariant curves and circles. For these structures
to be of dynamical relevance, a kind of attracting or repelling behaviour is required, and,
usually, a certain regularity is also of interest. Most commonly, changes in parameters
governing the system may cause these curves to change form, behaviour or, simply,
appear or disappear following different kinds of bifurcations.

In this paper we shall study repelling invariant curves coming through fixed (or
periodic) attracting points of a two dimensional map such that the eigenvalues of the
differential of the map at the fixed point are both real and their absolute values are
different and smaller than one. Aronson, Chory, Hall and McGehee made clear in [1]
that the precise determination of the behaviour of orbits near the fixed point (apart
from the obvious convergence to it) is of importance for the description of the changes
in smoothness and even total break of invariant circles born in a Hopf bifurcation. The
results we give in this paper can be used for this determination (see [2]).

As a new aspect, we consider the case where the iterates arc composed of possibly
different maps Tn, while in the classical theory, all the Tn are equal. In this particular
case, many (but not all) of our results can be found in [4]. However, our proofs use
elementary estimates, while in [4] knowledge of manifolds and vector bundles is pre-
supposed. Although the existence has been proved elsewhere (see [3] for the unstable
curve and [5] for the stable one), it has been done in a different context.
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470 F. Esquembre [2]

To our knowledge, the precise determination of the dependence with respect to the
map describing the dynamics that we give in Proposition 4 is new. Also, our proof of
the existence of the unstable curve is constructive and can be used in numerical studies.

The main results are obtained for the case in which the fixed point is the origin
and the principal directions of the linearised model the OX and OY axis. Theorem 6
summarises all the results for the general case.

All through this paper n ^ 0 means that n is a non negative positive integer.
We shall consider families of maps {Tn: R2 —> R2 | n ^ 0} of the plane and denote
T" = Tn o Tn_! o . . . o To, for all n ^ 0. Given any (x0, 2/o) 6 R2, we shall denote
by (zn+i, yn+i) = Tn(x0, yo), for all ra ̂  0. The set {(xn, yn): n G N} (or simply
(xn, 2/n)n) will be called the orbit under the family {Tn: n ^ 0} (or simply (Tn)n)

with initial condition (zo, yo)-

2. EXISTENCE AND PROPERTIES OF A REPELLING INVARIANT CURVE

We shall need the following topological lemma.

LEMMA 1. Let {Tn: R
2 -> R2 | n ̂  0} be a family of continuous maps of the

plane. Let F and K be two subsets ofR2, F closed and K compact, satisfying

(1.1) Tn(R2-F) CR2-F, foralln^O

(1.2) F n Tn(K) ^<D, for all n> 0.

Then, there exists p0 G K such that Tn(p0) e F, for all n ̂  0.

PROOF: Consider the family of closed subsets of K given by
Gn = {Tn)~l{F fi Tn{K)) C\K. Then, Gn ^ 0, Gn is compact and Gn+1 C (?„, since
if x e Gn+i, then Tn+1(a!) = rn + 1(Tn(s)) 6 FnTn+1(K); hence Tn(x) £ FnTn(K)

and x e Gn. Take now p0 6 f) Gn (^ 0), then Tn(p0) £ F, for all n ̂  0. D
n^0

PROPOSITION 2 . Let {Tn: R2 -^ R2 | n ̂  0} be a family of C1 maps that can

be written in the form Tn(x, y) = (ax + fn(x, y), by + gn{x, y)), and such that

(2.1) / n(0, 0) = gn(0, 0) = 0, for all n ̂  0 (the origin is a fixed point of Tn),

(2.2) given any fixed n and x0> the mapping a: R —> R, a(y) = yn (where

{xn, Vn) = rn~1(a;o, y)), has at least one zero,

(2.3) there exists 0 < e < (|6| - |a|)/2 such that \\Dfn(x, y)\\ < e and

\\Dgn{x, y)\\ ^ e, for every (x, y) G R2 and every n > 0.

Tien, if we denote by F the closed set {(x, y) G R2 | |y| < |z |} , t ie following state-

ments hold,

(2.a) if {(xn, yn)}n20 Q F, then \yn\ < |xn| < (|o| + e)n \xo\, for aUn^O,
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(2.b) if, on the contrary, there exists no such that (!„„, yno) d°es n o * belong to
F, then \yn\ ̂  fc(|6| - e)n, tor every n^n0, with k a positive constant,

(2.c) for every i j G l , there exists y0, |j/o| ^ \xo\, such that { ( x n + i , y n + i ) =
Tn(x0,y0)}n>0CF.

Notice that (2.3) implies \a\ < \b\.

PROOF: We note that for every (x, y) G R2 the following inequalities hold,

(2.i) \by + 9n{x, y)\ 2 \b\ \y\ - \gn{x, y) - gn(Q, 0)|

>\h\\v\-e\\{x,y)\\,

for some ||(6, 6)IK IK*, v)\\ - a n d

F is a closed set such that Tn(R2 - F) C R2-F since, if (x, y) <£ F, then \y\ > \x\

and, since \by + gn(x, y)\ Js (|6| - e) | |(x, y) | | and \ax + fn(x, y)\ < (\a\ + e) \\{x, y)\\,

\a\ + e < |6| - e yields Tn(x, y) <£ .F.

Given zo > we define K{XQ) — {(xo, y) G R2 | \y\ ̂  |*o|}- Ko is a compact set
satisfying JP D Tn(K(xo)) ^ 0, for all n ^ 0, since for every n and xo, (2.2) gives
the existence of y0 G R such that Tn(x0 , y0) = ( x n + i , 0 ) 6 ^ . Moreover, |yo| ^ |xo|
or, equivalently, (x0, y0) G K(x0), since |yo| > |xo| means (x0, y0) ^ F and then
Tn(x0, y0) $ F.

Using Lemma 1 with {Tn)n, F and K(x0) we obtain the existence of p0 =

{xo, y0) £ K{x0) such that T"(x0, y0) G -F, for all n ^ 0. This gives (2.c).

To prove (2.a) we only need to notice that (xn , yn) G F, for all n ^ 0, implies

HOB*. yn)\\ = \xn\ and, by (2.ii), | x n + i | = |oxn + fn(xn, yn)\ ^ (|o| + e) |x B | . By

iterating this argument, |xn | ^ {\a\ + e)n \XQ\-

Now, if (xno, yno) $. F, then (xn, yn) ^ F for every n ^ n0 and | |(xn, yn) | | = \yn\

for every n ^ no. Hence, by (2.i) |yn+i| ^ {\b\ — e)|yn| and, by iterating this up to

n = no,

| y n | ^ ( | o | - e ) lynol = (|o| - e ) /i6i _ e ) " o -

Taking fc = (|yno|)/((|6| - e)"0) , we obtain (2.b). D

We denote by hu the map defined from R into R by /iu(x0) = y0, where y0 is a
number such that T"(x0, yo) G F, for every n ^ 0. This map exists thanks to (2.c)
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and verifies that the orbits under the family (Tn)n of points of its graph remain in the
cone F.

Since the linearised behaviour of any orbit would be analogous to (anxo, bny0),

and since \a\ < |6|, this property is far from being trivial. The next result shows that,
in fact, this property yields the uniqueness of hu, and therefore the invariance of its
graph under the action of the family {Tn)n and the global Lipschitz condition (with
constant smaller than or equal to one) and thus continuity. Moreover, it is also proved
that the curve is repelling in the sense of (3.b) below.

PROPOSITION 3 . Let (Tn)n>0 be a family as in Proposition 2 and let (zj,, 2/i)n

and {x^, Vn)n ^
e ^wo orbits under the family contained in F. Then,

(3.a) \y2
n - yB| ^ |*n - *n | < (\a\ + e)n \x2

0 - *J|, for all n > 0.

In particular, this yields the uniqueness of hu. Let (xn, yn)n be an orbit under the

family such that j/o ^ hu(xo) , then

(3.b) \yn - hn(xn)\ ^ (|&| - 2ef \y0 - M*o)| >0, foralln^ 0.

PROOF: Given (Tn)n and (aij,, Vn)n, we consider the family of maps (ATn)n,

derived from the given one and defined for n ^ 0 by the formula

ATn(u, v) = {au + Afn{u, v), bv + Agn(u, v))

= (au + fn(u + a i , v+yi)- fn(x\, y1
n),bv+ gn(u + x\, v + yl

n)

(ATn)n is of class C1 and shares some of the properties if (Tn)n- More precisely,

(3.i) ATn(R
2-F) CR2-F

(3.ii) if (uno, vno) i F then |t»B| ^ Jb(|6| - e)n , for all n > n0.

This is true since A/n(0, 0) = A5n(0, 0) = 0, ||U(A/B)(«, v)|| = \\Dfn (u + xl,

« +»n) | | < £ . a n d \\D(Agn)(u, v)\\ ^ e. Hence, if («„, »„) £ F,

\un+1\ = \aun + Afn(un, vn)\ ^ |o| |«n | + e \\(un, vn)\\ = (\a\ + e) |vn|

K + i | = \bvn + Agn(un, vn)\ 2 \b\ \vn\ - e ||(ttB, »B)|| = (|6| - e) \vn\

and then, ( u ^ j , fn+i) ^ F • From here, we obtain (3.ii) as in the proof of Proposition

2.

Consider now the orbit with initial condition (ug, VQ) = (XQ — x\, y\ — J/Q) •

It is easy to see that then ATn(x
2
n - x\, y\ - y^) = {x2

n+l - x\+1, yl+l - yx
n+1)
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and, hence, (un, vn) = (x2 - x\, y2 - yj,), for all n ^ 0. Thus, if we sup-

Pose | y ^ - < | > K , - * i o | , we obtain that « , - < , , y^ - y i j $ F im-
plies |y2-yi | > Jfe(|6|-e)n, for all n ^ 0. On the other hand, (2.a) implies

\vl-vi\ ^ \vl\ + |»i| < | 4 | + K\ < (H + 0n(|*S| + KD- F r o m b° t h i n e i u a l -
ities we would obtain (the case |xj | + \xl\ — 0 being trivial), ((|6| — e)/(|a| + e))n ^
fc/(|sj| + \xl|) , for all n > 0, which is impossible because of (\b\ — e)/(|o| + e) > i .
Thus, | y £ - y i | < | z ^ - ^ | , for all n ^ 0. Now, if \vn\ ̂  |«n | , for all n ^ 0, we
have t ha t | u B + 1 | ^ (\a\ + e) \un\ ^ (\a\ + e ) n | u o | , and \x2

n - x^\ ^ (\a\ + e)n [x2, -x\\.

From both, (3.a) follows.
To show (3.b), given (xn+i, yn+i) = Tn(a;o, Vo) such that y0 ^ hu(xQ), consider

the orbit of (z0, hu(x0)), denote it by (xj,, yi) and construct the family (ATn)n

as above. For the initial condition (u0, v0) = (0, y0 - hu(x0)) £ F, we obtain |«i| ^
(|6| -e) |«o | , with »i - b(y0 - hv(xo))+go(xo, yo)-go{xo, hn(x0)) =y1-hu(x\); hence
|yi — ^tt(i"i)| ^ d'l "" £) \y° ~ 'l«(zo)l> with x\ — axo + fo(xo, hu(x0)). On the other

hand, |yi — fe«(xi)| ^ |yi - fe»(xi)| - |Att(xJ) - ft,,(xi)| ^ (|6| - e) |y0 - hn(x0)\ -

lajj — asi | and, since x\ = ax0 + fo{xo, Vo), |xi — xj | ^ e \yo — hu(xo)\. From both

inequalities, \yx — / i u (ai) | ^ (|6| — 2e) |yo — hu(xo)\ > 0. By iterating this argument,

we obtain the desired result. U

3. DEPENDENCE OF THE CURVE WITH RESPECT TO THE DYANMICS

An important aspect of this curve is its dependence with respect to the family of
maps (Tn)n. The next proposition shows an explicit relationship between differences
in the families of maps and the corresponding curves. This result will also allow us to
study the regularity of the curve in the case \a\ + e ^ 1.

PROPOSITION 4. Let (l*(x, y) = (o* + /£(*, y), &'y + gfa, y)))n^0>
i = J>2'

be two families of maps satisfying the hypotheses of Proposition 2, with e > 0 satisfying
(2.3) for both families at the same time. Given any xo GR,we denote yj = /i^(xo) the
unique real number such that T?{XQ, yj) £ F, for every n ^ 0 and i = 1, 2. Tiien, if
\\Dfl(x, y) - Dfl{x, y)\\ ^ 6, and \\D&{x, y) - Dg\{x, y)\\ ^ 6, for every n ^ 0 and
every (x, y) £ R 2 , and if for instance |aJ | ^ | a 2 | , we obtain

PROOF: We shall show by induction that if
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was true, then we would also have, for every n ^ 0,

where (a;^, yj,) is the orbit under {T^)n with initial condition (xo, yl) •

For n = 0, (4.i) is true by hypothesis, and (4.ii) holds trivially. Suppose that both

inequalities are true for a given n. Then,

Therefore, proceeding similarly for x,

Since | | K , ^ H = |«; | < (|«*| +e)"|«S| and | | (» i—i , y»-yi ) | | = |y»-y»|
(this because of (4.ii) for n ) , we obtain

and

(4.iii) l^+i-yi+il^d^l-OI^-

Thus, (4.ii) for n + 1 is obtained from

which is equivalent to (2* + \a2 - a1 \ + \b2 - b1 DQa1 \ + e ) " \xo\

< (|621 - \a21 - 2e) \y% - y\\, and this, equivalent to (4.i) for n.
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Now,

and property (4.i) for n + 1 follows from

which is equivalent to

(2*+ |a2 - a 1 ! + |62 - V\){\V\ - e) - (6 + \b2 - b1])^2] - \a2\ - 2e)

and this is equivalent to (£ + \a? — a11) (|fc21 — |a21 — 2e) ^ 0, which is true by hypoth-

esis (2.3).

Once we have proved that |y2 - y11 ^ (26+ \a2 -a1] + |62 - 61 | ) / ( |62 | - |o2 | - 2e)

implies (4.i) and (4.ii), notice that by iterating (4.iii) we obtain

-vi+il > m - 0 n + 1 \yl-ylH6+ W -*\)\**\{\*\ - O "

)
oo ,

The series ^3 ((|f t l | + e)/( | ' 21 ~ £)) *s a convergent geometric series of positive terms
t = i

and its sum is ((a1! +e)/( |fc2 | — |a.11 — 2e) , hence

- 2 / o | -^ |62|_|a 2 |_2 e J > 0.

(This is because of (4.i) for n — 0 and because |62| - [a1! - 2e > |62| - |a2 | - 2e.)
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On the other hand,

From both inequalities we obtain,

for all n ^ 0, which is not possible. This ends the proof. U

REMARK. Since the solution for the linear case Tn(x, y) = (ax, by) is the line y — 0,
we obtain, in particular, that |/iu(a;)| ^ 0(e) \x\, where O(e) goes to zero as e goes to

4. REGULARITY OF THE INVARIANT REPELLING CURVE

PROPOSITIOH 5 . Let (Tn(x, y) = (ax + fn(x, y), by + gn(x, y)))n, n > 0 be

a family of C1 maps of the plane satisfying the hypotheses of Proposition 2. If, addi-

tionally, |a| + e ^ 1 and (DTn)n is equicontinuous at every point, then hu defined as

above is of class C1 at every point.

PROOF: Given any x\ £ K and given x\ ^ x\ any point close to x\, consider the
sequences of points given by (xl

n, y^) — Tn(x'o, yj) and j/J = hu(x
l
0) , i = 1, 2. Let us

construct the following families of maps,

S^u, v) = (an + £>i/n(xi, y1
n)u + 2?2/n(x^, y^v, bv

+D2gn(x
1
n, y^v) ,

Sl(u, v) = (an + A/n(6(n), y^u + D2fn(xi, (2(n))v,

bv + Dign((3(n), y^u + D2gn(xl, U(n))v) ,

where £j(n), j — 1, 2, 3, 4, are real numbers satisfying for every n ^ 0,

|fc(n) - xi\ ^ \x2
n - xl\, j = l, 3,

Un)-yi\^\yl-yi\(^\x2
n-xl\), j = 2, 4,

M*l, vl) -/nK, vl) = 2>i/»(6(»), yx
n)K-<)

https://doi.org/10.1017/S0004972700016579 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016579


[9] Planar discrete dynamical systems 477

( 5 ^ ) n , i — 1, 2, are two families of linear mappings that, since \a\ -f- e ^ 1, are close

to each other, if x\ is close enough to x j . More precisely, if we set 6{x\, x^) the

supremum of the quantities

\D,fn{x, t/i) - D,fn{x\, 2/i)|, \D2fn(x2
n, y) - D2fn{xl

n, y^,

\Di9n(x, yi) - Dl9n{x\, y\)\ and \D2gn(x2
n, y) - D2gn{x\, y^)],

for every n > 0, |x — x^\ ^ \x2
n — xj,| and \y — y\\ ^ \y\ — y^\, then, because of the

uniform equicontinuity of (DTn)n in the compact set B(0, |xj| + |XQ|), and because

Ixil + IXQI , this supremum is finite and lim £(xj., x^) = 0.

Thus, the conditions of the previous proposition are satisfied. Take uo = 1, for
(S£) the sequence ((x^ — x^)/(xo — xj), (y^ — 2/i)/(xo — ^o)),, ^s *^e unique invari-
ant sequence (un, vn) satisfying \vn\ ^ |«n|- Let Ug be the corresponding initial
condition for (S^) , then, according to Proposition 4,

Wo —Wo .
ft t C r - \a\ - 2e

Then, the limit lim (J/Q — y o ) / ( z o ~ x o ) exists and it equals uj . Hence hu has a
xo~*To

derivative at x j .

Set now, for all n ^ 0 , Sjt(u, i») = (aw + I > i / n ( a £ , » i ) u + D2jn{x\, y2
n)v, bv

+D1gn(x
2
l, yl)u + D2gn(x

2
n, y2

n)v) . {S^)n and ( 5 ^ ) n are two families of linear map-

pings satisfying the conditions of Proposition 4, with 6 tending to zero if x\ tends

to x j . In this situation, the initial condition ( l , UQ) a n ( i (l> vo) satisfy \v% — -UQ j <

(26)/{\b\ - \a\ - 2 e ) , but we have jus t proved tha t VQ = / ^ ( x j ) and uj = h'u(x\).

Thus , we obtain the continuity of h'u. U

5. APPLICATION TO THE GENERAL CASE

In order to apply the results obtained, conditions (2.1) to (2.3) must be satisfied.
The first condition is natural, and the last one can be obtained locally in an easy way.
We shall see now how (2.2) can also be obtained. We state and prove here our results
for the general case.

THEOREM 6. Let T: U C R2 -> U be a. C1 map with a fixed point p e Int(U).
Let a and b be the eigenvalues, both real, of DT(p), and let them satisfy \a\ < \b\.

EXISTENCE. Tie map T has a locally invariant continuous curve coming through the
point p that can be described as the graph y = htt(x) of a Lipschitz function with
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constant smaller than or equal to one. For this purpose, an affine change of co-ordinates,
a r ( i , y), has to be applied. This change of co-ordinates associates p to the origin and
the principal directions of a and 6 to the OX and OY axis, respectively. This curve
is locally repelHng in the sense of (3.b).

DIFFERENTIABILITY. If, additionally, |o| < 1, then there exists a curve satisfying the
conditions described that is of class C1 and tangent at p to the principal direction
associated to a, that is, hu has a derivative, this derivative is continuous, and h'u(0) =
0.

DEPENDENCE WITH RESPECT TO T. The curve depends continuously on p and DT
in the following terms,

(6.a) tie affine change of co-ordinates can be written in the form OLT(X, y) =
LT((X, y) — p), where LT is a linear mapping depending continuously on
DT(P).

(6.b) given any other C1 map, S:UCR2->U, with a fixed point p' £ Int(U)
satisfying the existence conditions, if there exist ft > 0 and K C U, K a
compact set containing both p and p' in its interior, such that \p — p'\ ^ /?
and \\DT(x, y) - DS(x, y)\\ ^ (3, for every (a;, y) G K, then for every
bounded I C R,

lim{sup |hUT(z) - AUs(a;)| : x £ 7} = 0.
p—o

PROOF.

EXISTENCE, using an affine change of co-ordinates like the one described and that
depends continuously on p and DT(jp), we can make our fixed point be the origin and
the matrix associated to the differential of the resulting map at it be diag(a, b). Denote
the new map To = a T o T o a ^ 1 , and define (f(x, y), g(x, y)) - T0(x, y) - (ax, by). f
and g are two C1 maps defined on a neighbourhood of the origin satisfying /(0, 0) =
g{0, 0) = 0 and Df(0, 0) = Dg(0, 0) = 0 (e L(R2, R)).

Let r : R -» [0, 1] be a C°° function such that r(x) = 0, for every \x\ > 1 (hence,
r'(x) = 0, for \x\ ^ 1) and r(x) = 1, for every \x\ < 1/2, and set k = sup{|r'(a;)| : x £
R}< +oo.

Since Df and Dg are continuous at (0, 0), given any e' > 0, there exists S(e') > 0
such that \\{x,y)\\ ^ 6 implies ||£>/(z, y)|| ^ e' and \\Dg{x,y)\\ < e'. In particu-
lar, | |(x,y)|| < 6 implies ||/(x, y)|| = ||/(«, y) - /(0, 0)|| < |D / (6 , 6)11|(*. »)ll ^
e' \\(x, y)\\, for some ||(6, 6)11 < IK*, »)ll, and \\g(x, y)\\ < e' \\(x, y)\\.
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Consider the new map, also of class C 1 , defined all through R2 by

(6.i) T(as, y) = (ax + f(x, y), by + g(x, y))

This new map coincides locally with To. Our goal is to find a curve invariant for T,

which will be locally invariant for To.

Under the conditions described,

and we obtain,

if ||(ic, y)\\ > 6, then x2 + y2 > S2 and Dxf{x, y) = 0

Thus,

if IK*, y) | | ^ 6, then Dj(x, y) < 2fe^£'l l( iC> y)l1 + e' < e'(l + 2k).
6 0

Dxf(x, y) ^ e'(l +2fc), for every (x, y) £ R2, and similarly for D2J{x, y),

D{g{x, y) and D2g{x, y). Given 0 < e < (\b\ - |a|)/2, consider e' = e/(l + 2fc) > 0.

Taking f as in (6.i), with 6 = «(e'), then ||l>/(a:, y)|| ^ e and ||£>»(z, y)\\ ^ e, for

every (a;, i / )eR2 , and /(z, y) = g(x, y) = 0, for every ||(z, y)\\ > 6.

Finally, the fact that / and 'g are zero for ||(a;, y)|| ^ 6 gives (2.2). To see this,
for fixed n and XQ , the mapping a: R —> R with a(y) = II2 o Tn~1(xo,y) (where
II2 denotes the projection on the second coordinate) is continuous and, if |y| is large
enough, linear, since if \y\ ^ K — max{|6|~n, 1}6, then

T{x0, y) = (ax0 + f(x0, y), by + g(x0, y)j = {ax0, y),

T^ao, y) = f(ax0, by) — (a2x0 + f{ax0, by), by2 + §(ax0, by))

= (a2x0, b2y),

f""1^, V) - (aB*o, bny),

due to l^yl > 8, for every 1 ^ j < n. Thus, \y\ > K implies a(y) = bny.
From this we conclude that a(K)a(—K) = —b2nK2 ^ 0 and, hence, there exists

c G [-K, K) such that a(c) = 0.

Therefore, the family (Tn)n — iTj satisfies the hypotheses of Propositions 3 and

4. This gives the existence of hu.
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DIFFERENTIABILITY. Also, if \a\ < 1 we can choose e > 0 such that |o| + e < 1

and, since Tn = T for all n ^ 0, the hypotheses of Proposition 5 hold, which yields

the differentiability of hu and the continuity of h'u. Moreover, since hu satisfies

hu (ax + f(x, hu(x))) = bhu(x) + g*(x, hu(x)), then

h'u(ax + f{x, M*))) (« + Dj(x, />„(*))) + D2f(x, hu{x))h'u{x)

= bhu(x) + Drfix, hu(x)) + D2g(x, hu{x))h'u(x).

Thus, for x = 0, (a - b)h'u{0) = 0, hence h'u(0) = 0.

DEPENDENCE WITH RESPECT TO T. The proof of (6.a) is straightforward. Take now
5 satisfying the described conditions; consider T1 = T as above and set T2 = S,

where So and S are constructed similarly to To and T. Thanks to Proposition 4
we only need to show that there is an upper bound M = M(/3) for the quatities
\\Df2(x,y)-Dp(x,y)\\, \\Dg*(x,y)-Dg1{x, y)\\, l^-a^ and \b2 - b1] (at least
for \\(x, y)\\ ~̂ 7, 7 a small enough positive number such that B((0, 0), 7) C ar ( i f ) PI
as(K)), and that

lim M{0) = 0.

Denoting L(a, b)(x, y) = (ax, by), LT = L(a, b) and Ls = L(a', b') we have
that, max{|a2 -a>\,\V- b1]} < \\DS(p') - DT{p)\\ < \\DS(jt) - DT(p')\\ + \\DTtf)

-DT(p)\\ and,if | | ( a ; ,3 / ) | |<7,

\\(Df(x, y), Dg2(x, y)) - (Dp(x, y), Dg*(x, y))\\

= \\DS0(x, y)-Ls- DT0(x, y) + LT\\ ^ \\DS0(x, y) - DT0(x, y)\\ + \\LS - LT\\

and

\\DS0(x, y) - DT0(x, y)\\ = \LT O DT(a^{x, y)) o L?1 - Ls o DS(as\x, y)) o Lf ||

^\\LT-Ls\\\\DT(a^(x,y))\\\\L^\\

+ ||is|| \\DT(a?(x, y)) - DT^x, y))\\ \\L?\\

\\Ls\\ \\DT(asHx, y)) -

Using the uniform continuity of DT in K, the continuity of the norm, (6.a) and

the hypotheses of (6.b), we obtain the desired upper bound. u
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