PRO-CATEGORIES AND MULTIADJOINT FUNCTORS

WALTER THOLEN

Introduction. For a functor $G: \mathscr{A} \to \mathscr{X}$ and a class \mathfrak{D} of small categories containing the terminal category **1** we form the extension

Pro (\mathfrak{D}, G) : Pro $(\mathfrak{D}, \mathscr{A}) \to \operatorname{Pro}(\mathfrak{D}, \mathscr{X})$

and call G right \mathfrak{D} -pro-adjoint if and only if Pro (\mathfrak{D}, G) is right adjoint. Here Pro $(\mathfrak{D}, \mathscr{A})$ is the completion of \mathscr{A} with respect to \mathfrak{D} ; it coincides with the usual pro-category of \mathscr{A} in case \mathfrak{D} = directed sets. For this \mathfrak{D} a full embedding G is dense in the sense of Mardešić [11] if and only if it is right \mathfrak{D} -pro-adjoint in the above sense; this has been proved recently by Stramaccia [15]. The most important example is the embedding of the homotopy category of pointed CW-complexes into the homotopy category of pointed topological spaces (cf. [2]). In case \mathfrak{D} = all sets (as discrete categories) it turns out that G is right \mathfrak{D} -pro-adjoint if and only if it is right multiadjoint in the sense of Diers [3]. In particular the theory of multi(co)reflective subcategories has been successfully developed by Salicrup [12], [13].

In this note we prove some important facts about both, dense and multireflective subcategories in the more general context of right \mathfrak{D} -pro-adjoint functors. To be able to do so we provide a simple construction of the category Pro $(\mathfrak{D}, \mathscr{A})$ which coincides with the one given by Johnstone and Joyal [9] in case $\mathfrak{D} =$ small filtered categories. All properties which, for that \mathfrak{D} , were first proved by Grothendieck and Verdier [6] hold for all \mathfrak{D} with a certain closedness property under colimits in *Cat*.

The procedure to generalize properties of functors by passing from G to Pro (\mathfrak{D}, G) may be applied to other notions like monadicity and semitopologicity. In Section 4 we briefly mention these notions which, however, are beyond the scope of this paper.

1. Relativized pro-categories. Let \mathfrak{D} be a class of small categories containing the terminal category 1. For a category \mathscr{K} with small hom sets,

Received November 11, 1982 and in revised form June 20, 1983. In memory of Graciela Salicrup.

the category Pro $(\mathfrak{D}, \mathscr{K})$ has as objects all contravariant diagrams in \mathscr{K} of type \mathfrak{D} , and its hom sets are given by the formula

Pro
$$(\mathfrak{D}, \mathscr{K})(\mathbf{X}, \mathbf{Y}) \cong \lim_{j \to i} \operatorname{colim}_{i} \mathscr{K}(X_{i}, Y_{j}).$$

More precisely: objects are all functors $X: \mathscr{I}^{op} \to \mathscr{K}$ with $\mathscr{I} \in \mathfrak{D}$; suggestively, but less correctly, we write

$$\mathbf{X} = (X_i)_{i \in \mathrm{Ob}\mathscr{I}}$$

where X_i is the value of **X** at *i*; the value in \mathscr{K} of a morphism $\nu: i \to i'$ in \mathscr{I} under **X** is again denoted by $\nu: X_{i'} \to X_i$. To define a morphism

$$\mathbf{f}: \mathbf{X} \to \mathbf{Y} = (Y_j)_{j \in \mathrm{Ob} \mathscr{J}}$$

one considers, for each *j*, the smallest equivalence relation \sim_j on $\sum_{i \in Ob \mathscr{I}} \mathscr{K}(X_i, Y_i)$ such that

$$(f, i) \sim_i (f \cdot v, i')$$

for all $\nu: i \to i'$ in \mathscr{I} . A morphism $\mathbf{X} \to \mathbf{Y}$ is a family $\mathbf{f} = (\mathbf{f}_j)_{j \in Ob} \mathscr{J}$ where each \mathbf{f}_j is an equivalence class with respect to \sim_j such that the coherence condition

(1)
$$(f, i) \in \mathbf{f}_{j'} \Rightarrow (\mu \cdot f, i) \in \mathbf{f}_{j}$$

holds for all $\mu: j \to j'$ in \mathscr{J} . If $\mathbf{g}: \mathbf{Y} \to \mathbf{Z} = (Z_n)_{n \in Ob\mathscr{N}}$ is another morphism the composite $\mathbf{g} \cdot \mathbf{f} = \mathbf{h} = (\mathbf{h}_n)_{n \in Ob\mathscr{N}}$ is defined by

(2)
$$\mathbf{h}_n = \{ (h, i) | \exists (g, j) \in \mathbf{g}_n, (f, i') \in \mathbf{f}_j : (h, i) \sim_n (g \cdot f, i') \};$$

in fact, **h** satisfies the coherence condition (1). Sometimes it is more convenient to replace the equivalence class \mathbf{f}_j by a chosen representative (f_j, i_j) ; then, independently from the choice of the representative, (1) and (2) read as

$$(1') \quad (\mu \cdot f_{j'}, i_{j'}) \sim_j (f_j, i_j)$$

$$(2') \quad (h_n, i_n) \sim_n (g_n \cdot f_{j_n}, i_{j_n}).$$

Every \mathscr{K} -object X can be considered as a 1-indexed family. Therefore one has a full embedding $\mathscr{K} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{K})$. A $\operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ -morphism $\mathbf{f}: \mathbf{X} \to$ Y with $Y \in \operatorname{Ob} \mathscr{K}$ is a single equivalence class. Every $\operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ -object $\mathbf{X} = (X_i)_{i \in \operatorname{Ob} \mathscr{I}}$ admits, for every $i \in \operatorname{Ob} \mathscr{I}$, a canonical morphism $\xi_i: \mathbf{X} \to X_i$ which, as an equivalence class, is generated by $(1_{X_i}, i)$. A $\operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ -morphism $\mathbf{g}: Y \to \mathbf{X}$ can be completely described by a family

$$(g_i: Y \to X_i)_{i \in \operatorname{Ob} \mathscr{I}}$$

which is natural in *i*, that is $\nu \cdot g_{i'} = g_i$ for all $\nu: i \to i'$ in \mathscr{I} . So **g** is nothing but a natural transformation or a cone $\Delta Y \to \mathbf{X}$; that is why one trivially has:

1.1. PROPOSITION. \mathcal{K} is a coreflective subcategory of Pro $(\mathfrak{D}, \mathcal{K})$ if and only if \mathcal{K} is \mathfrak{D} -complete, that is, \mathcal{K} is $\mathscr{I}^{\mathrm{op}}$ -complete for every $\mathscr{I} \in \mathfrak{D}$. The coreflector is given by forming the limit in \mathcal{K} .

Hence, if \mathscr{K} is \mathfrak{D} -complete, the embedding $\mathscr{K} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ preserves all colimits. But this can be easily proved even without the assumption of \mathfrak{D} -completeness. We omit the proof since, in the following, we are only interested in the question which limits are preserved. It is well known that, generally, limits of type $\mathscr{I}^{\operatorname{op}}$ with $\mathscr{I} \in \mathfrak{D}$ are not preserved, even in the classical case when \mathfrak{D} is the class of directed sets (cf. [6] p. 81; [14]). The natural limit type which is preserved is as follows (cf. also [19]):

1.2. PROPOSITION. Let \mathscr{D} be a category such that, in Set, limits of type \mathscr{D} commute with colimits of type \mathscr{I} for all $\mathscr{I} \in \mathfrak{D}$. Then the embedding $\mathscr{K} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ preserves limits of type \mathscr{D} .

Proof. Let the limit of $H: \mathcal{D} \to \mathcal{K}$ exist in \mathcal{K} . The following shows that, when considered in Pro $(\mathfrak{D}, \mathcal{K})$, it is preserved by all covariant hom's of Pro $(\mathfrak{D}, \mathcal{K})$, so it is a limit in Pro $(\mathfrak{D}, \mathcal{K})$:

Pro
$$(\mathfrak{D}, \mathscr{K})(\mathbf{X}, \lim H) = \operatorname{colim}_{i} \mathscr{K}(X_{i}, \lim H)$$

 $\cong \operatorname{colim}_{i} \lim_{d} \mathscr{K}(X_{i}, Hd)$
 $\cong \lim_{d} \operatorname{colim}_{i} \mathscr{K}(X_{i}, Hd)$
 $= \lim_{d} \operatorname{Pro}(\mathfrak{D}, \mathscr{K})(\mathbf{X}, Hd).$

Next we will give an explicit construction of limits of type \mathscr{J}^{op} in Pro $(\mathfrak{D}, \mathscr{K})$ for $\mathscr{J} \in \mathfrak{D}$. It generalizes corresponding constructions by Stramaccia [15] in case \mathfrak{D} = directed sets and Johnstone and Joyal [9] in case \mathfrak{D} = small filtered categories. So we consider a diagram

 $H: \mathscr{J}^{\mathrm{op}} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{K}) \quad \text{with } \mathscr{J} \in \mathfrak{D};$

it is given by Pro $(\mathfrak{D}, \mathscr{K})$ -objects

 $Hj = \mathbf{X}^j = (X_i^j)_{i \in \mathrm{Ob}\,\mathscr{I}_i}$

and Pro $(\mathfrak{D}, \mathscr{K})$ -morphisms

146

$$\mathbf{f}^{\mu} = (\mathbf{f}_{i}^{\mu})_{i \in \mathrm{Ob}\,\mathscr{I}_{i}} : \mathbf{X}^{j'} \to \mathbf{X}^{j}$$

for all $\mu: j \to j'$ in \mathscr{J} . From these data one forms the *related category* \hat{H} of H as follows: objects are pairs (i, j) with $j \in Ob \mathscr{J}$ and $i \in Ob \mathscr{I}_j$; a morphism $(f, \mu): (i, j) \to (i', j')$ in \hat{H} consists of a \mathscr{J} -morphism $\mu: j \to j'$ and a \mathscr{K} -morphism $f: X_{i'}^{j} \to X_{i}^{j}$ such that $(f, i') \in \mathbf{f}_{i}^{\mu}$; composition is pointwise. In case $\hat{H} \in \mathfrak{D}$ we have the new Pro $(\mathfrak{D}, \mathscr{K})$ -object

$$\mathbf{X} = (X'_i)_{(i,j) \in \mathrm{Ob}H}$$

which, as a functor $\hat{H}^{\text{op}} \to \mathscr{K}$, maps (f, μ) to f. For every $j \in \text{Ob}\mathscr{J}$, there is a functor $L_j: \mathscr{I}_j \to \hat{H}, \nu \mapsto (\nu, 1_j)$, with $\mathbf{X} \cdot L_j^{\text{op}} = \mathbf{X}^j$. This yields a Pro $(\mathfrak{D}, \mathscr{K})$ -morphism $\Lambda_j: \mathbf{X} \to \mathbf{X}^j$; each of its components is the equivalence class of an identity morphism. It is easy to check that Λ_j is natural in j, so one has a cone $\Lambda: \Delta \mathbf{X} \to H$. In fact, it is also easily proved that it is a limiting cone.

We call \mathfrak{D} admissible with respect to \mathscr{K} if, for every $H: \mathscr{J}^{\mathrm{op}} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ with $\mathscr{J} \in \mathfrak{D}$, the related category \hat{H} belongs to \mathfrak{D} . Using this phrase we have proved:

1.3. PROPOSITION. If \mathfrak{D} is admissible with respect to \mathscr{K} , then $\operatorname{Pro}(\mathfrak{D}, \mathscr{K})$ is \mathfrak{D} -complete, that is, $\mathscr{I}^{\operatorname{op}}$ -complete for every $\mathscr{I} \in \mathfrak{D}$.

An immediate consequence of the above construction is:

1.4. COROLLARY. Every $\mathbf{X} \in \text{Ob Pro}(\mathfrak{D}, \mathscr{K})$ is the limit of

$$\mathscr{I}^{\mathrm{op}} \xrightarrow{\mathbf{X}} \mathscr{K} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{K}).$$

The limit projections are the canonical morphisms $\xi_i: \mathbf{X} \to X_i$ (cf. before 1.1).

One can use 1.3 and 1.4 in order to prove:

1.5. PROPOSITION. Every functor $\mathcal{K} \to \mathcal{L}$ into a \mathfrak{D} -complete category \mathcal{L} can be extended to a functor $\operatorname{Pro}(\mathfrak{D}, \mathcal{K}) \to \mathcal{L}$. If \mathfrak{D} is admissible with respect to \mathcal{K} , it preserves all limits of type $\mathscr{I}^{\operatorname{op}}, \mathscr{I} \in \mathfrak{D}$, and is, up to natural equivalence, uniquely determined by this property.

1.6. *Remark.* 1. Propositions 1.3 and 1.5 have been proved before in the dual situation in [18] and [19], but differently; there $Pro(\mathfrak{D}, \mathscr{H})$ is realized by a full representation in $[\mathscr{H}, \mathscr{GH}]$. Instead of the condition that \mathfrak{D} is admissible with respect to \mathscr{H} Weberpals [19] assumes \mathfrak{D} to be "weakly saturated", that is:

(1) $\mathbf{1} \in \mathfrak{D}$,

WALTER THOLEN

(2) if $\mathscr{I} \to \mathscr{J}$ is a final functor of small categories with $\mathscr{I} \in \mathfrak{D}$ then $\mathscr{J} \in \mathfrak{D}$,

(3) if $H: \mathcal{I} \to Cat$ (= small categories) is a functor with $\mathcal{I} \in \mathfrak{D}$ and all $Hi \in \mathfrak{D}$, $i \in Ob \mathcal{I}$, then colim $H \in \mathfrak{D}$.

In fact, one can show that the related category H as constructed above belongs to \mathfrak{D} if \mathfrak{D} is saturated; hence, in that case, \mathfrak{D} is also admissible with respect to \mathscr{K} . For concretely given classes \mathfrak{D} it seems easier to check the latter condition directly.

2. Using the same notation as in 1.3 one gets the following diagram in the 2-category CAT of all categories:

Here $P:\hat{H} \to \mathcal{J}$ denotes the projection functor, and λ is pointwise a limit projection as in 1.4. We do not know whether this observation leads to a 2-categorical characterization of \hat{H} .

2. Pro-adjoint functors. Every functor $G: \mathscr{A} \to \mathscr{X}$ trivially induces a functor Pro (\mathfrak{D}, G) rendering the diagram

commutative. From 1.5 it follows that Pro (\mathfrak{D}, G) preserves all limits of type $\mathscr{I}^{\mathrm{op}}$ for $\mathscr{I} \in \mathfrak{D}$, if \mathfrak{D} is admissible with respect to \mathscr{A} .

2.1. Definition. G is called right \mathfrak{D} -pro-adjoint if Pro (\mathfrak{D}, G) is right adjoint. If, in addition, G is the inclusion functor of a full subcategory \mathscr{A} is called \mathfrak{D} -pro-reflective in \mathscr{X} Dually: G is left \mathfrak{D} -pro-adjoint and \mathscr{A} is \mathfrak{D} -pro-coreflective in \mathscr{X} if $G^{\mathrm{op}}:\mathscr{A}^{\mathrm{op}} \to \mathscr{X}^{\mathrm{op}}$ is right \mathfrak{D} -pro-adjoint and $\mathscr{A}^{\mathrm{op}}$ is \mathfrak{D} -pro-reflective in $\mathscr{X}^{\mathrm{op}}$ respectively.

Since Pro $(\mathfrak{D}, -)$ is functorial, the composition of right \mathfrak{D} -pro-adjoint functors is right \mathfrak{D} -pro-adjoint. Since a right adjoint functor preserves all limits, a \mathfrak{D} -pro-right adjoint functor *G* preserves those limits of \mathscr{A} which are preserved by $\mathscr{A} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{A})$. Therefore, from 1.2 one obtains:

2.2. THEOREM. Let \mathscr{D} be a category such that, in Set, limits of type \mathscr{D} commute with colimits of type \mathscr{I} for all $\mathscr{I} \in \mathfrak{D}$. Then every right \mathfrak{D} -pro-adjoint functor preserves \mathscr{D} -limits.

The following theorem compares the notions of right adjointness and right D-pro-adjointness:

2.3. THEOREM. Let \mathscr{A} be \mathfrak{D} -complete. Then $G: \mathscr{A} \to \mathscr{X}$ is right adjoint if and only if G is right \mathfrak{D} -pro-adjoint and preserves limits of type $\mathscr{I}^{\operatorname{op}}$ for all $\mathscr{I} \in \mathfrak{D}$.

Proof. To prove that a right adjoint functor is right \mathfrak{D} -pro-adjoint is straightforward (cf. [19], 2.8(c); also 2.5 below). Also it preserves (in particular) \mathscr{I}^{op} -limits. Vice versa, let us assume that these properties hold true. Let \overline{F} be left adjoint to $\overline{G} = \text{Pro}(\mathfrak{D}, G)$ with unit $\overline{\eta}$ and counit $\overline{\epsilon}$. For every $X \in \text{Ob } \mathscr{X}$, there is a limiting cone

$$\lambda_X: \Delta FX \to \overline{F}X;$$

this defines a functor $F:\mathscr{X} \to \mathscr{A}$. Since G preserves this limit there is a unique \mathscr{X} -morphism $\eta X: X \to GFX$ such that

$$G\lambda_X \cdot \Delta\eta X = \overline{\eta}X$$

(where $\overline{\eta}X$ is considered as a cone $\Delta X \rightarrow G(\overline{F}X) = \overline{G} \ \overline{F}X$); this defines a natural transformation

$$\eta: \mathrm{Id}_{\mathscr{X}} \to GF.$$

Finally, one defines a natural transformation $\epsilon: FG \to Id_{\mathscr{A}}$ by

 $\Delta \epsilon A = \overline{\epsilon} A \cdot \lambda_{GA} \quad \text{for all } A \in \text{Ob } \mathscr{A}.$

Immediately from the construction we get

 $G\epsilon A \cdot \eta GA = \mathbf{1}_{GA}.$

The other equation needed for the adjunction follows from

$$\lambda_X \cdot \Delta \epsilon F X \cdot \Delta F \eta X = \lambda_X \cdot \overline{\epsilon} F X \cdot \overline{F} \eta X \cdot \lambda_X$$
$$= \overline{\epsilon} \overline{F} X \cdot \overline{F} \overline{G} \lambda_X \cdot \overline{F} \eta X \cdot \lambda_X$$
$$= \overline{\epsilon} \overline{F} X \cdot \overline{F} \overline{\eta} X \cdot \lambda_X = \lambda_X.$$

In the following we give a characterization of right \mathfrak{D} -pro-adjointness which simplifies checking this property in examples. The equivalence (i) \Leftrightarrow (iii) generalizes the main result of [15]:

2.4. THEOREM. Let \mathfrak{D} be admissible with respect to \mathscr{A} and let $G: \mathscr{A} \to \mathscr{X}$ be a functor, $\overline{G} = \operatorname{Pro}(\mathfrak{D}, G)$. The following are equivalent:

(i) G is right D-pro-adjoint.

(ii) \overline{G} has a partial left adjoint relative to the embedding $\mathscr{X} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{X})$.

(iii) For all $X \in Ob \mathcal{X}$, there is a Pro $(\mathfrak{D}, \mathscr{A})$ -object **A** and a Pro $(\mathfrak{D}, \mathscr{X})$ -morphism $\mathbf{e}: X \to \overline{G}\mathbf{A}$ such that, for every $g: X \to GB$ in \mathcal{X} with $B \in Ob \mathscr{A}$, there is a unique Pro $(\mathfrak{D}, \mathscr{A})$ -morphism $\mathbf{h}: \mathbf{A} \to B$ with $\overline{G}\mathbf{h} \cdot \mathbf{e} = h$.

(iv) For all $X \in \text{Ob } \mathcal{X}$, there is a functor $\mathbf{A}: \mathscr{I}^{\text{op}} \to \mathscr{A}$ with $\mathscr{I} \in \mathfrak{D}$ and a cone

$$\mathbf{e} = (e_i: X \to GA_i)_{i \in Ob} \mathscr{I}$$

such that, for every $g: X \to GB$ with $B \in Ob \mathscr{A}$, there are $i \in Ob \mathscr{I}$ and $h:A_i \to B$ in \mathscr{A} with $Gh \cdot e_i = g$; for any other $j \in Ob \mathscr{I}$ and $h':A_j \to B$ with $Gh' \cdot e_j = g$ one has $(h, i) \sim (h', j)$, i.e., there are finitely many $i = i_0$, $i_1, \ldots, i_{n-1}, i_n = j$, $h = h_0, h_1, \ldots, h_{n-1}, h_n = h'$ and \mathscr{I} -morphisms

 $\nu_k \in \mathscr{I}(i_{k-1}, i_k) \cup \mathscr{I}(i_k, i_{k-1}), \quad k = 1, \ldots, n,$

such that

commutes.

Proof. Trivially (i) \Rightarrow (ii) \Rightarrow (iii). (iv) is just another formulation of (iii) avoiding the explicit use of pro-categories, so (iii) \Leftrightarrow (iv).

(iii) \Rightarrow (i): For $\mathbf{X} = (X_i)_{i \in \mathrm{Ob}\mathscr{I}} \in \mathrm{Ob} \operatorname{Pro}(\mathfrak{D}, \mathscr{X})$ and each $i \in \mathrm{Ob}\mathscr{I}$ one has $\mathbf{e}^i: X_i \to \overline{G}\mathbf{A}^i$ with the universal property described in (iii). By

 $Hi = \mathbf{A}^i$ and $\overline{G}(H\mathbf{v}) \cdot \mathbf{e}^{i'} = \mathbf{e}^i \cdot \mathbf{v}$

for $\nu: i \to i'$ in \mathscr{I} one defines a functor

 $H: \mathscr{I}^{\mathrm{op}} \to \mathrm{Pro}\ (\mathfrak{D}, \mathscr{A}).$

By 1.3, there is a limiting cone $(\Lambda_i: \mathbf{A} \to \mathbf{A}^i)_{i \in Ob} \mathscr{I}$ which is preserved by \overline{G} . The family $(\mathbf{e}^i \cdot \xi_i)_{i \in Ob} \mathscr{I}$ forms a cone $\Delta \mathbf{X} \to \overline{G}H$ (where $\xi_i: \mathbf{X} \to X_i$ is the limit presentation of \mathbf{X}). Hence there is a unique \mathbf{e} rendering the diagram

commutative for every $\nu: i \to i'$ in \mathscr{I} . We consider a Pro $(\mathfrak{D}, \mathscr{X})$ -morphism $\mathbf{g}: \mathbf{X} \to \overline{G} \mathbf{B}, \mathbf{B} = (B_j)_{j \in Ob} \mathscr{J}$ with limit projections $\beta_j: \mathbf{B} \to B_j$. For every $j \in Ob \mathscr{J}$ there are $i_j \in Ob \mathscr{J}$ and $g_j: X_{i_j} \to GB_j$ such that

$$g_i \cdot \xi_{i_i} = \bar{\mathbf{G}} \beta_i \cdot \mathbf{g},$$

so there is a unique $\mathbf{h}_j: \mathbf{A}^{i_j} \to B_j$ with $\overline{G}\mathbf{h}_j \cdot \mathbf{e}^{i_j} = g_j$. We claim that the family $(\mathbf{h}_j \cdot \Lambda_{i_j})_{j \in Ob} \mathscr{J}$ forms a cone $\Delta \mathbf{A} \to \mathbf{B}$: for $\mu: j \to j'$ in \mathscr{J} one has

 $(G\mu \cdot g_{i'}, i_{i'}) \sim_i (g_i, i_i);$

without loss of generality we assume that there is

 $\nu \in \mathscr{I}(i_j, i_{j'}) \cup \mathscr{I}(i_{j'}, i_j)$

such that the right trapezium of the following diagram commutes:

Since the middle square and the left triangle (without \overline{G}) also commute we obtain from the uniqueness property of \mathbf{h}_i or $\mathbf{h}_{i'}$, that

 $\mathbf{h}_{j} \cdot \Lambda_{i_{i}} = \boldsymbol{\mu} \cdot \mathbf{h}_{j'} \cdot \Lambda_{i_{i'}}.$

Hence we obtain a unique $h: A \rightarrow B$ such that

 $\beta_j \cdot \mathbf{h} = \mathbf{h}_j \cdot \Lambda_{i_i}$

From the limit property of $(\overline{G}\beta_j)_{j \in Ob} \mathscr{J}$ we finally obtain $\overline{G}\mathbf{h} \cdot \mathbf{e} = \mathbf{g}$, and this factorization is obviously unique.

If $\mathfrak{D}' \subset \mathfrak{D}$, then Pro $(\mathfrak{D}', \mathscr{A})$ is a full subcategory of Pro $(\mathfrak{D}, \mathscr{A})$. From the characterization 2.4 (iii) we obtain:

2.5. COROLLARY. Every right \mathfrak{D}' -pro-adjoint functor is right \mathfrak{D} -pro-adjoint for all $\{1\} \subset \mathfrak{D}' \subset \mathfrak{D}$.

In case $\mathfrak{D}' = \{1\}$ this proves the "only if" part of 2.3.

3. Special classes \mathfrak{D} . We consider some special classes \mathfrak{D} ; each of them is admissible with respect to every category.

3.1. $\mathfrak{D} = \{1\}$. This case gives nothing new: Pro $(\mathfrak{D}, \mathscr{K}) = \mathscr{K}$ for every category \mathscr{K} , and right \mathfrak{D} -pro-adjointness means right adjointness.

3.2. \mathfrak{D} = all sets = small discrete categories. Then Pro $(\mathfrak{D}, \mathscr{K})$ is the formal product completion of \mathscr{K} : objects are small families $(X_i)_{i \in I}$ of \mathscr{K} -objects; a morphism

 $(f_j, \varphi)_{j \in J} : (X_i)_{i \in I} \to (Y_j)_{j \in J}$

consists of a mapping $\varphi: J \to I$ and morphisms

 $f_j: X_{\varphi(j)} \to Y_j.$

The equivalence relations \sim_j are discrete. This shows that the factorization $Gh \cdot e_i = g$ in 2.4(iv) holds for a unique index *i* and a unique morphism *h*. Hence right \mathfrak{D} -pro-adjointness means right multi-adjointness

(i.e., existence of a left multi-adjoint) in the sense of Diers [3]. The small types \mathscr{D} of limits which commute with coproducts (= discrete colimits) in $\mathscr{S}t$ are precisely the small (non-void) connected categories \mathscr{D} . Hence 2.2 means that right multi-adjoint functors preserve (non-void) connected colimits: this is Theorem 20 in [1] and Proposition 3.5.1 in [3].

3.3. $\mathfrak{D} =$ all (non-void) directed sets, considered as small (filtered) categories. Then Pro $(\mathfrak{D}, \mathscr{K})$ is the usual pro-category of \mathscr{K} : Pro $(\mathfrak{D}, \mathscr{K}) =$ Pro- \mathscr{K} . So here Theorem 2.4 is Stramaccia's result [15] which tells us that, for G the embedding of a full subcategory, \mathfrak{D} -pro-reflectivity means density in sense of Mardešić [11]. Since this terminology can be confused with the usual notion of density in Category Theory I should strongly suggest to call a right \mathfrak{D} -pro-adjoint functor just *right pro-adjoint*. So a dense subcategory in the sense of [11], [5], [15] should be called *pro-reflective*. Dual notion: *pro-coreflective*. Since finite products commute with filtered colimits in \mathscr{Set} , from 2.2 we obtain that a right pro-adjoint functor preserves finite products. Application of Theorem 2.3 gives us Giuli's result [5], Theorem 2.3 for arbitrary functors instead of just subcategories: if \mathscr{A} has inverse limits, then $G: \mathscr{A} \to \mathscr{X}$ is right adjoint if and only if it is right pro-adjoint and preserves inverse limits.

3.4. \mathfrak{D} = all small categories. Then Pro $(\mathfrak{D}, \mathscr{K})$ is the usual completion of \mathscr{K} with respect to all small limits (cf. [10]). According to 2.5 for this \mathfrak{D} we get the weakest notion of right pro-adjointness. From the characterization 2.4(iv) it is clear that a right \mathfrak{D} -pro-adjoint functor satisfies the Solution Set Condition of Freyd's Adjoint Functor Theorem. The converse assertion is not true, as is demonstrated by the following example:

Let \mathscr{A} consist of (pairwise different) objects A, B, C_{α} and (non-identical) morphisms $a_{\alpha}: A \to C_{\alpha}$, $b_{\alpha}: B \to C_{\alpha}$ where α runs through a proper class Ω ; let \mathscr{X} consist of objects X, U, V, Z_{α} and morphisms

$$u: X \to U, v: X \to V, u_{\alpha}: U \to Z_{\alpha}, v_{\alpha}: V \to Z_{\alpha}$$

and

$$x_{\alpha} = u_{\alpha} \cdot u = v_{\alpha} \cdot v : X \to Z_{\alpha}, \quad \alpha \in \Omega.$$

The functor $G: \mathscr{A} \to \mathscr{X}$ with $Ga_{\alpha} = u_{\alpha}$, $Gb_{\alpha} = v_{\alpha}$ obviously satisfies the solution set condition. But condition 2.4 (iv) does not hold true for $X \in$ Ob \mathscr{X} ; otherwise a cone **e** with the property 2.4 (iv) must contain u, v, but, from smallness reasons, it cannot contain all the x_{α} 's, and these admit two different factorizations through **e** which cannot be connected.

Since \mathfrak{D} -pro-adjointness is slightly stronger than the solution set condition the assertion of Theorem 2.3 is slightly weaker than Freyd's Adjoint Functor Theorem in case $\mathfrak{D} =$ all small categories. But $\mathfrak{D} = \{1\}$ shows that Theorem 2.3 cannot be sharpened in this general form.

4. Remarks on further developments. It seems worth to generalize other notions than adjointness like we did in Section 2: if \mathscr{E} is a property of functors, then we say that $G: \mathscr{A} \to \mathscr{X}$ has the property \mathfrak{D} -pro- \mathscr{E} if and only if Pro (\mathfrak{D}, G) has the property \mathscr{E} . This procedure leads to known notions at least in case $\mathfrak{D} =$ all sets.

For instance, in [4] Diers has introduced the notion of a multimonadic functor and gives the following characterization ([4], Theorem 3.1): $G: \mathcal{A} \to \mathcal{X}$ is *multimonadic* if and only if G has a left multiadjoint, reflects isomorphisms, and those pairs of parallel morphism of \mathcal{A} whose image by G has a split coequalizer have a coequalizer preserved by G. Straightforward computation shows that this is equivalent to the following properties:

 \overline{G} = Pro (\mathfrak{D} , G) (with \mathfrak{D} = all sets) has a left adjoint, reflects isomorphisms, and those pairs of parallel morphisms of Pro (\mathfrak{D} , \mathscr{A}) whose image by \overline{G} has a split coequalizer have a coequalizer preserved by \overline{G} . This proves:

4.1. THEOREM. G is multimonadic in the sense of Diers if and only if G is \mathfrak{D} -pro-monadic for $\mathfrak{D} = all$ sets.

Monadicity is understood in the weak sense that the comparison functor is an equivalence rather than an isomorphism.

A corresponding observation holds for semitopologicity (cf. [16]). In [17] the author introduced the notion of a localizing semitopological functor and gave several characterization theorems. One of them ([17], Proposition 6.1) precisely means that G is a localizing semitopological functor if and only if G is \mathfrak{D} -pro-semitopological with \mathfrak{D} = all sets. So the best name of those functors now seems to be multi-semitopological. The main result of [17] (multi-semitopological functors are precisely the restrictions of topological functors to multi-reflective subcategories) can be proved for all classes \mathfrak{D} which are admissible with respect to \mathscr{A} :

4.2. THEOREM. $G: \mathcal{A} \to \mathcal{X}$ is \mathfrak{D} -pro-semitopological if and only if there is a topological functor $T: \mathcal{B} \to \mathcal{X}$ and a full \mathfrak{D} -pro-reflective embedding $E: \mathcal{A} \to \mathcal{B}$ with G = TE.

Proof. The procedure is the same as in [17]: $\overline{G} = \operatorname{Pro}(\mathfrak{D}, G)$ is semitopological, hence there is a topological functor $\widehat{T}: \mathscr{B} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{X})$

and a full reflective embedding \hat{E} : Pro $(\mathfrak{D}, \mathscr{A}) \to \hat{\mathscr{B}}$. The pullback of \hat{T} along $\mathscr{A} \to \operatorname{Pro}(\mathfrak{D}, \mathscr{X})$ is a topological functor $T: \mathscr{B} \to \mathscr{X}$, and the induced functor $E: \mathscr{A} \to \mathscr{B}$ is a full \mathfrak{D} -pro-reflective embedding by Theorem 2.4.

4.3. COROLLARY. Every \mathfrak{D} -pro-semitopological functor admits a Mac-Neille completion (cf. [8]).

REFERENCES

- 1. R. Börger and W. Tholen, *Abschwächungen des Adjunktionsbegriffs*, Manuscripta Math. 19 (1976), 19-45.
- 2. K. Borsuk and J. Dydak, *What is the theory of shape*?, Bull. Austral. Math. Soc. 22 (1980), 161-198.
- 3. Y. Diers, Familles universelles de morphismes, Ann. Soc. Sci. Bruxelles 93 (1979), 175-195.
- 4. Multimonads and multimonadic categories, J. Pure Appl. Algebra 17 (1980), 153-170.
- 5. E. Giuli, Relations between reflective subcategories and shape theory, Glasnik Mat. 16 (1981), 205-210.
- A. Grothendieck and J. L. Verdier, *Prefaisceaux*, in: *Théorie des topos et cohomologie etale des schemas* (Séminaire de Géometrie Algébrique du Bois Marie 1963/64, SGA 4), Lecture Notes in Math. 269 (Springer, Berlin, 1972), 1-217.
- 7. R. Guitart and C. Lair, Calcul syntaxique des modèles et calcul de formules internes, Diagrammes 4 (1980), 1-106.
- 8. H. Herrlich, Initial completions, Math. Z. 150 (1976), 101-110.
- 9. P. Johnstone and A. Joyal, *Continuous categories and exponentiable toposes*, J. Pure Appl. Algebra 25 (1982), 255-296.
- 10. J. Lambek, Completions of categories, Lecture Notes in Math. 24 (Springer, Berlin, 1966).
- 11. S. Mardešić, Foundations of shape theory, University of Kentucky, (1978).
- G. Salicrup, Local monocoreflectivity in topological categories, Lecture Notes in Math. 915 (Springer, Berlin, 1982), 293-309.
- 13. —— Multiepireflective subcategories, Topology Appl. 13 (1982), 191-200.
- 14. H. B. Stauffer, On an embedding of a category into its completion, J. Indian Math. Soc. 42 (1978), 263-266.
- 15. L. Stramaccia, *Reflective subcategories and dense subcategories*, Rend. Sem. Mat. Univ. Padova 67 (1982), 191-198.
- 16. W. Tholen, Semi-topological functors I, J. Pure Appl. Algebra 15 (1979), 53-73.
- 17. MacNeille completion of concrete categories with local properties, Comment. Math. Univ. St. Pauli 28 (1978), 179-202.
- Completions of categories and shape theory, in: Proceedings of the Fifth Prague Topological Symposium 1981 (Heldermann-Verlag, Berlin, 1983), 593-607.
- H. Weberpals, Über einen Satz von Gabriel zur Charakterisierung regulärer Colimites, Math. Z. 161 (1978), 47-67.

York University, Downsview, Ontario