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PRO-CATEGORIES AND MULTIADJOINT FUNCTORS 

WALTER THOLEN 

Introduction. For a functor G\stf^ ^Tand a class 2) of small categories 
containing the terminal category 1 we form the extension 

Pro (®, G):Pro (®, s/) -» Pro (2), 2) 

and call G right SD-pro-adjoint if and only if Pro (2), G) is right adjoint. 
Here Pro (®, J / ) is the completion of j/with respect to 25; it coincides with 
the usual pro-category of j / i n case 2) = directed sets. For this 2) a full 
embedding G is dense in the sense of Mardesic [11] if and only if it is right 
®-pro-adjoint in the above sense; this has been proved recently by 
Stramaccia [15]. The most important example is the embedding of the 
homotopy category of pointed CW-complexes into the homotopy category 
of pointed topological spaces (cf. [2] ). In case 2) = all sets (as discrete 
categories) it turns out that G is right 3)-pro-adjoint if and only if it is 
right multiadjoint in the sense of Diers [3]. In particular the theory of 
multi(co)reflective subcategories has been successfully developed by 
Salicrup [12], [13]. 

In this note we prove some important facts about both, dense and 
multireflective subcategories in the more general context of right 
2)-pro-adjoint functors. To be able to do so we provide a simple 
construction of the category Pro (2), sf) which coincides with the one given 
by Johnstone and Joyal [9] in case 2) = small filtered categories. All 
properties which, for that 2), were first proved by Grothendieck and 
Verdier [6] hold for all 2) with a certain closedness property under colimits 
in <&d. 

The procedure to generalize properties of functors by passing from G to 
Pro (2), G) may be applied to other notions like monadicity and 
semitopologicity. In Section 4 we briefly mention these notions which, 
however, are beyond the scope of this paper. 

1. Relativized pro-categories. Let 2) be a class of small categories 
containing the terminal category 1. For a category J f with small horn sets, 
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PRO-CATEGORIES 145 

the category Pro (2), J f ) has as objects all contravariant diagrams in Jf of 
type ®, and its horn sets are given by the formula 

Pro (®, Jf)(X, Y) = lim colim jf(Xh Yj). 
J i 

More precisely: objects are all functors X:J^op —> JT with J e 2); 
suggestively, but less correctly, we write 

where Xt is the value of X at /; the value in J f of a morphism *>:/—» /' in J^ 

under X is again denoted by v.X^ —> Xz. To define a morphism 

f : X - » Y = (y y ) 7 - e O V 

one considers, for each y, the smallest equivalence relation ~j on 2/eob. / 
JT(^, Yy) such that 

(/,0~;(/-",O 
for all *>:*' —> /' in J. A morphism X —> Y is a family f = (f,)j•«=0b,/where 
each fy is an equivalence class with respect to ~j such that the coherence 
condition 

(1) (/, i) G tf=*(p-f, i) G f7 

holds for all /x:y —»/ i n ^ If g:Y —» Z = (Z^)„G Ob^i s another morphism 
the composite g • f = h = (hw)wGQtvris defined by 

(2) h„ = {(h, i) | 3{g,j) G g„, (/, /') G tj-.(h, /) ~„(g •/, / ' ) } ; 

in fact, h satisfies the coherence condition (1). Sometimes it is more 
convenient to replace the equivalence class fy by a chosen representative 
(fp ij)\ then, independently from the choice of the representative, (1) and 
(2) read as 

(10 (p-fj>,ij>)~jUj,ij) 

(2') (hn, in) ~n (g„ -fjn9 ijn). 

Every J f object X can be considered as a 1-indexed family. Therefore 
one has a full embedding J f ^ Pro (£), J f ). A Pro (®, J f )-morphism f :X --> 
Y with Y e Ob J f is a single equivalence class. Every Pro (®, Jf)-object X 
= (Xz) / e ob./admits, for every /' e Ob J^ a canonical morphism £Z:X —> X, 
which, as an equivalence class, is generated by (1^ /). A Pro (®, 
Jf )-morphism g: y —» X can be completely described by a family 

(gi'-Y —» ^ ) z - G O b y 
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146 WALTER THOLEN 

which is natural in /, that is v • gy = gl for all *>:/—> /' in J2; So g is nothing 
but a natural transformation or a cone A F —> X; that is why one trivially 
has: 

1.1. PROPOSITION. Jfis a coreflective subcategory of Pro (2), J f ) if and 
only if Jfis 3) -complete, that is, Jfis J°v-complete for every / E 5). 77ze 
coreflector is given by forming the limit in Jf. 

Hence, if Jfis ©-complete, the embedding J f ^ Pro (3), J f ) preserves all 
colimits. But this can be easily proved even without the assumption of 
©-completeness. We omit the proof since, in the following, we are only 
interested in the question which limits are preserved. It is well known that, 
generally, limits of type J°v with J e 3) are not preserved, even in the 
classical case when 3) is the class of directed sets (cf. [6] p. 81; [14] ). The 
natural limit type which is preserved is as follows (cf. also [19] ): 

1.2. PROPOSITION. Let 3) be a category such that, in S/ei^ limits of type 3 
commute with colimits of type J for all Je 3). Then the embedding Jf—» Pro 
(3), Jf) preserves limits of type 3). 

Proof. Let the limit of H\2 -» J f exist in X The following shows that, 
when considered in Pro (®, J f ), it is preserved by all covariant horn's of 
Pro (3), JT), SO it is a limit in Pro (3), JT): 

Pro (3), J f )(X, lim # ) = colim J f ( ^ , lim H) 
i 

= colim lim Jf (X,, /W) 

= lim colim jf(Xh Hd) 
d 

= lim Pro (3), JT)(X, 7M). 

Next we will give an explicit construction of limits of t y p e ^ o p in Pro 
(3), J f ) for fl G 3). It generalizes corresponding constructions by 
Stramaccia [15] in case 3) = directed sets and Johnstone and Joyal [9] in 
case 3) = small filtered categories. So we consider a diagram 

H:f°v -> Pro (3), JT) w i t h / G 3); 

it is given by Pro (3), Jf)-objects 

# / = X7 = (^O/GObJj 

and Pro (3), J f )-morphisms 
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f = (f^-eoboç:»' -> X> 

for all jLtiy* —>/ i n ^ From these data one forms the related category 77 of 77 
as follows: objects are pairs (ij) withy e O b / a n d /' G Ob J^; a morphism 
( / /x):(z, 7) —» (/', / ) in 77 consists of a ^/-morphism p-J —» f and a 
J^morphism/:X^ —> Â  such that ( / /') e f •*; composition is pointwise. 
In case 77 e S) we have the new Pro (®, J f )-object 

X = (^z )(/,./)eOb// 

which, as a functor 77op —> X m a p s ( / ju) to / . For every j e Ob^X there is 
a functor Ly-:^ -> 77, v H> (J/, ly), with X • Ly

op - X7. This yields a Pro 
(®, Jf)-morphism Ay:X —» X7'; each of its components is the equivalence 
class of an identity morphism. It is easy to check that A7 is natural in 7", so 
one has a cone A:AX —» 77. In fact, it is also easily proved that it is a 
limiting cone. 

We call 3) admissible with respect to J f if, for every H\f°v -» Pro (3), J f ) 
w i t h ^ e ®, the related category 77 belongs to ®. Using this phrase we 
have proved: 

1.3. PROPOSITION. 7/*® w admissible with respect to JÇ then Pro (®, J f ) /s 
^-complete, that is, J'op-complete for every J e ®. 

An immediate consequence of the above construction is: 

1.4. COROLLARY. Every X G Ob Pro (®, J f ) w fAe /w«7 0/ 

jOV _^ X_^ p r o (£^ jfy 

The limit projections are the canonical morphisms £Z:X —» A7 ( ( / before 
1.1). 

One can use 1.3 and 1.4 in order to prove: 

1.5. PROPOSITION. Every functor Jf—> 5£into a ^-complete category & can 
be extended to a functor Pro (2), J f ) —» JS? 7/"® w admissible with respect to 
J^ it preserves all limits oj type Jr°F', . / G S), <2«<7 w, wp to natural equivalence, 
uniquely determined by this property. 

1.6. Remark. 1. Propositions 1.3 and 1.5 have been proved before in the 
dual situation in [18] and [19], but differently; there Pro (3), J f ) is realized 
by a full representation in [% £%/]. Instead of the condition that 3) is 
admissible with respect to J f Weberpals [19] assumes 2) to be "weakly 
saturated", that is: 

(1) 1 e ©, 
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(2) if./—> t/is a final functor of small categories wi th . / e ® t h e n c e 
®, 

(3) if //:»/—> (&d(= small categories) is a functor with J^ G ® and all /// 
G ®, / G Ob J2; then colim A G B . 

In fact, one can show that the related category / / as constructed above 
belongs to SD if SD is saturated; hence, in that case, 2) is also admissible 
with respect to X. For concretely given classes 2) it seems easier to check 
the latter condition directly. 

2. Using the same notation as in 1.3 one gets the following diagram in 
the 2-category ^stf^Toi all categories: 

H 

pop 

->Pro ($ , J f ) 

=7 

/ / o p . -»Jf 
X 

Here P:H —^/'denotes the projection functor, and X is pointwise a limit 
projection as in 1.4. We do not know whether this observation leads to a 
2-categorical characterization of H. 

2. Pro-adjoint functors. Every functor G.stf 
functor Pro (SD, G) rendering the diagram 

2£ trivially induces a 

sf~ 

Pro ( ® , J O -

Pro (2), G) 

-># 

->Pro (©, # ) 

commutative. From 1.5 it follows that Pro (©, (7) preserves all limits of 
type J°v for J e ®, if ® is admissible with respect to s/. 

2.1. Definition. G is called n'g/tf &-pro-adjoint if Pro (®, G) is right 
adjoint. If, in addition, G is the inclusion functor of a full subcategory j / i s 
called ^-pro-reflective in £ Dually: G is left Q-pro-adjoint and J ^ 
is %-pro-coreflective in #*if G ° P : J / ° P -> ^ ° p is right £)-pro-adjoint and j ^ o p 

is ^-pro-reflective in S^p respectively. 
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Since Pro (®, — ) is functorial, the composition of right ®-pro-adjoint 
functors is right ®-pro-adjoint. Since a right adjoint functor preserves all 
limits, a ®-pro-right adjoint functor G preserves those limits of s/which 
are preserved b y j / ^ Pro (®, J / ) . Therefore, from 1.2 one obtains: 

2.2. THEOREM. Let Q) be a category such that, in S/tt, limits of type Q) 
commute with colimits of type J for all J e ®. Then every right 
%-pro-adjoint functor preserves ^-limits. 

The following theorem compares the notions of right adjointness and 
right ®-pro-adjointness: 

2.3. THEOREM. Let ^ be ^-complete. Then G:s/^> 9Cis right adjoint if and 
only if G is right ^-pro-adjoint and preserves limits of type J^op for all 
J ^ ®. 

Proof. To prove that a right adjoint functor is right ®-pro-adjoint is 
straightforward (cf. [19], 2.8(c); also 2.5 below). Also it preserves (in 
particular) J^op-limits. Vice versa, let us assume that these properties hold 
true. Let F be left adjoint to G = Pro (2), G) with unit rj and counit 7. For 
every X e Ob % there is a limiting cone 

XXAFX^FX\ 

this defines a functor FM —» J ^ Since G preserves this limit there is a 
unique ^morphism i\X\X —» GFX such that 

GXX • AT]X = rjX 

(where rjX is considered as a cone AX —> G(FX) = G FX)\ this defines a 
natural transformation 

?7:Id^ —> GF. 

Finally, one defines a natural transformation c.FG —> Id^by 

Ac4 = 74 • XGi4 for all A e Ob J ^ 

Immediately from the construction we get 

Gc4 • rjG l̂ = \GA. 

The other equation needed for the adjunction follows from 

Xx • AeFX • AFi)X = Xx • iFX • FT/X • Ax 

= ZFX • FGXX • F77* • Xx 

= eFX • FTJX • Xx = X* 
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In the following we give a characterization of right ®-pro-adjointness 
which simplifies checking this property in examples. The equivalence (i) <̂> 
(hi) generalizes the main result of [15]: 

2.4. THEOREM. Let ® be admissible with respect to J^ and let G:J/—» 3Cbe 
a functor, G = Pro (®, G). The following are equivalent: 

(i) G is right % -pro -adjoint. 
(ii) G has a partial left adjoint relative to the embedding 9£ —> Pro 

(iii) For all l e O b ^ there is a Pro (®, sf)-object A and a Pro (2), 
&)-morphism e:X^> G A such that, for every g:X^> GB in SCwith B G Ob J ^ 
///ere /s # unique Pro (®, s/)-morphism h:A —> 5 w///z G h • e = A. 

(iv) For a// X e O b ^ ; zTzm* is a functor K\J°V -> J^IVZ7/I . / G © f̂A7̂/ (2 
cone 

e - fa:*-» G^/)/Gob^ 

such that, for every g:X —> G2? vv/7/z 5 G O b j ^ //zere are / G Ob J and h\At 

—» 5 /« stfwith Gh • ej = g; /or ûwy other j G Ob */awd /z ' :^ —> 5 w/z7z G/z' • 
ey = g owe /z&s (//, /) ~ (A', 7), z.e., //zere «re finitely many i = /Q, 
/'1, . . . ,/'w-i, /„ = 7, h = ho, h\, . . . ,hn-\, hn = W and J>-morphisms 

vk G S(ik-h ik) U J(ik, ik_x\ k = 1, . . . ,n, 

swc/z //z#/ 

^ = ^/. ^,, = ^/ 

Proof. Trivially (i) =̂> (ii) => (iii). (iv) is just another formulation of (iii) 
avoiding the explicit use of pro-categories, so (iii) <=> (iv). 

(iii) => (i): For X = {Xi)i^0hJ G Ob Pro (5D, # ) and each z G Ob . /one 
has el:Xt —» GAZ with the universal property described in (iii). By 

Hi = Az and G(Hv) • ez" = e'' • ? 

for v\i —» /' in . /one defines a functor 
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/ / : y ° P ^ P r o ( ® , j / ) . 

By 1.3, there is a limiting cone (AZ:A —> Xl)iGOhJfwhich is preserved by G. 
The family (el • èi)i&obJforms a cone AX -» G/f (where £,:X —> X,- is the 
limit presentation of X). Hence there is a unique e rendering the 
diagram 

*GAZ 

G(//*>) 

*GA' 

commutative for every *>:z —» /' in J25! We consider a Pro (SD, ^)-morphism 
g:X —» GB, B = (57)y Gob/with limit projections /?y:B —» Bj. For every7 e 
Ob,/there are zy G Ob </and g7:Xz -> G£7 such that 

so there is a unique hy: A^ —* i?y with Ghy • e*> = gy. We claim that the 

family (hy • A;.)7•<=ob/forms a cone AA —» B: for /i:y —»/ i n t o n e has 

(G/x • g / , /7) ~ y (gy, 1)); 

without loss of generality we assume that there is 

v e J(ip if) U J ^ , i)) 

such that the right trapezium of the following diagram commutes: 

GJU 

Since the middle square and the left triangle (without G) also commute we 
obtain from the uniqueness property of h7 or ly, that 
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h, • A,. = ix • h, • A,.,. 

Hence we obtain a unique h:A —» B such that 

/?, • h = h, • A,. 

From the limit property of ( G / ^ e o b / w e finally obtain Gh e = g, and 
this factorization is obviously unique. 

^ G B 

If 2)' c % then Pro (©', sf) is a full subcategory of Pro (®, J / ) . From 
the characterization 2.4 (iii) we obtain: 

2.5. COROLLARY. £Very n'g/z/ ^ -pro-adjoint functor is right T)-pro-adjoint 
for all {1} c 2)' c ®. 

In case 2)' = {1} this proves the "only if" part of 2.3. 

3. Special classes 2). We consider some special classes ®; each of them 
is admissible with respect to every category. 

3.1. 2) = {1}. This case gives nothing new: Pro (2), J f ) = JfTor every 
category J^ and right SD-pro-adjointness means right adjointness. 

3.2. 2) = all sets = small discrete categories. Then Pro (2), J f ) is the 
formal product completion of Jf: objects are small families {Xj)i&1 of 
J^objects; a morphism 

(fr <p)j<=j'(Xi)jei -^ (Yj)j^J 

consists of a mapping yj -> I and morphisms 

ffX<p(j) ~* YJ-

The equivalence relations ~y are discrete. This shows that the factoriza
tion G/z ' et = g in 2.4(iv) holds for a unique index / and a unique 
morphism h. Hence right 2)-pro-adjointness means right multi-adjointness 
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(i.e., existence of a left multi-adjoint) in the sense of Diers [3]. The small 
types 2 of limits which commute with coproducts ( = discrete colimits) in 
&d are precisely the small (non-void) connected categories 3). Hence 2.2 
means that right multi-adjoint functors preserve (non-void) connected 
colimits: this is Theorem 20 in [1] and Proposition 3.5.1 in [3]. 

3.3. 3) = all (non-void) directed sets, considered as small (filtered) 
categories. Then Pro (®, Jf) is the usual pro-category of Jf:Pro (2), JT) = 
Pro-X So here Theorem 2.4 is Stramaccia's result [15] which tells us that, 
for G the embedding of a full subcategory, £)-pro-reflectivity means 
density in sense of Mardesic [11]. Since this terminology can be confused 
with the usual notion of density in Category Theory I should strongly 
suggest to call a right ®-pro-adjoint functor just right pro-adjoint. So a 
dense subcategory in the sense of [11], [5], [15] should be called 
pro-reflective. Dual notion: pro-coreflective. Since finite products commute 
with filtered colimits in &M, from 2.2 we obtain that a right pro-adjoint 
functor preserves finite products. Application of Theorem 2.3 gives us 
Giuli's result [5], Theorem 2.3 for arbitrary functors instead of just 
subcategories: if j / h a s inverse limits, then G\stf^> ^Tis right adjoint if and 
only if it is right pro-adjoint and preserves inverse limits. 

3.4. ® = all small categories. Then Pro (®, Jf ) is the usual completion 
of Jf with respect to all small limits (cf. [10] ). According to 2.5 for this ® 
we get the weakest notion of right pro-adjointness. From the characteriza
tion 2.4(iv) it is clear that a right ®-pro-adjoint functor satisfies the 
Solution Set Condition of Freyd's Adjoint Functor Theorem. The 
converse assertion is not true, as is demonstrated by the following 
example: 

Let j/consist of (pairwise different) objects A, B, Ca and (non-identical) 
morphisms aa:A —> Ca, ba\B —» Ca where a runs through a proper class 12; 
let ^consist of objects X, U, V, Za and morphisms 

u:X -> U, v:X -> V, ua\ U -> Z a , va: V -> Za 

and 

xa = ua • u = va - v:X —» Za, a G 12. 

The functor G.s/ —» ^wi th Gaa = ua, Gba = va obviously satisfies the 
solution set condition. But condition 2.4 (iv) does not hold true for X G 
Ob $C\ otherwise a cone e with the property 2.4 (iv) must contain u, v, but, 
from smallness reasons, it cannot contain all the xa 's, and these admit two 
different factorizations through e which cannot be connected. 
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Since ®-pro-adjointness is slightly stronger than the solution set 
condition the assertion of Theorem 2.3 is slightly weaker than Freyd's 
Adjoint Functor Theorem in case ® = all small categories. But ® = {1} 
shows that Theorem 2.3 cannot be sharpened in this general form. 

4. Remarks on further developments. It seems worth to generalize other 
notions than adjointness like we did in Section 2: if <f is a property of 
functors, then we say that G:s/^> .fhas the property ®-pro-<f if and only if 
Pro (®, G) has the property i. This procedure leads to known notions at 
least in case ® = all sets. 

For instance, in [4] Diers has introduced the notion of a multimonadic 
functor and gives the following characterization ([4], Theorem 3.1): 
G:s/—> ^ i s multimonadic if and only if G has a left multiadjoint, reflects 
isomorphisms, and those pairs of parallel morphism of se whose image by 
G has a split coequalizer have a coequalizer preserved by G. Straightfor
ward computation shows that this is equivalent to the following 
properties: 

G = Pro (2), G) (with ® = all sets) has a left adjoint, reflects 
isomorphisms, and those pairs of parallel morphisms of Pro (®, sf) whose 
image by G has a split coequalizer have a coequalizer preserved by G. This 
proves: 

4.1. THEOREM. G is multimonadic in the sense of Diers if and only if G is 
3) -pro-monadic for ® = all sets. 

Monadicity is understood in the weak sense that the comparison functor 
is an equivalence rather than an isomorphism. 

A corresponding observation holds for semitopologicity (cf. [16] ). In 
[17] the author introduced the notion of a localizing semi topological 
functor and gave several characterization theorems. One of them ( [17], 
Proposition 6.1) precisely means that G is a localizing semitopological 
functor if and only if G is SD-pro-semitopological with SD = all sets. So the 
best name of those functors now seems to be multi-semitopological. The 
main result of [17] (multi-semitopological functors are precisely the 
restrictions of topological functors to multi-reflective subcategories) can 
be proved for all classes % which are admissible with respect to stf: 

4.2. THEOREM. G:S/—» %is %-pro-semitopological if and only if there is a 
topological functor T\& —» % and a full ^-pro-reflective embedding E'.stf-^ 38 
with G = TE. 

Proof. The procedure is the same as in [17]: G = Pro (®, G) is 
semitopological, hence there is a topological functor T\& —> Pro (2), 9T) 
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A A A 

and a full reflective embedding £:Pro (3), se) -> Se. The pullback of T 
along $F—> Pro (®, #) is a topological functor T:&-> % and the induced 
functor £:J/—> ^ is a full ®-pro-reflective embedding by Theorem 2.4. 

4.3. COROLLARY. £very %-pro-sernitopolopcal functor admits a Mac-
Neille completion {cf. [8] ). 
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