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PRO-CATEGORIES AND MULTIADJOINT FUNCTORS
WALTER THOLEN

Introduction. For a functor G:&/ — Z and a class © of small categories
containing the terminal category 1 we form the extension

Pro (D, G):Pro (D, &) — Pro (D, %)

and call G right ©-pro-adjoint if and only if Pro (D, G) is right adjoint.
Here Pro (D, &) is the completion of »/with respect to D; it coincides with
the usual pro-category of &/ in case © = directed sets. For this © a full
embedding G is dense in the sense of Mardesic [11] if and only if it is right
D-pro-adjoint in the above sense; this has been proved recently by
Stramaccia [15]. The most important example is the embedding of the
homotopy category of pointed CW-complexes into the homotopy category
of pointed topological spaces (cf. [2] ). In case © = all sets (as discrete
categories) it turns out that G is right D-pro-adjoint if and only if it is

right multiadjoint in the sense of Diers [3]. In particular the theory of
multi(co)reflective subcategories has been successfully developed by
Salicrup [12], [13].

In this note we prove some important facts about both, dense and
multireflective subcategories in the more general context of right
D-pro-adjoint functors. To be able to do so we provide a simple
construction of the category Pro (D, .#/) which coincides with the one given
by Johnstone and Joyal [9] in case © = small filtered categories. All
properties which, for that ©, were first proved by Grothendieck and
Verdier [6] hold for all © with a certain closedness property under colimits
in %at.

The procedure to generalize properties of functors by passing from G to
Pro (®, G) may be applied to other notions like monadicity and
semitopologicity. In Section 4 we briefly mention these notions which,
however, are beyond the scope of this paper.

1. Relativized pro-categories. Let © be a class of small categories
containing the terminal category 1. For a category 2 with small hom sets,
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the category Pro (®, /") has as objects all contravariant diagrams in ¢ of
type D, and its hom sets are given by the formula

Pro (9, 4)(X, Y) = lim colim X#(X;, Y)).
J li

More precisely: objects are all functors X:#°P — ¥ with 4 € D;
suggestively, but less correctly, we write

X = (X)icobs

where X; is the value of X at i; the value in ) of a morphism v:i — ¢ in .#
under X is again denoted by »:X; — X;. To define a morphism

X =Y = (Y))cons
one considers, for each j, the smallest equivalence relation ~; on >icobs
H(X;, Y;) such that

(s D)~ (f v, 1)
for all »:i — /" in £ A morphism X — Y is a family f = (f;);c on ¢ Where

each f; is an equivalence class with respect to ~; such that the coherence
condition

) (L ety=@-fi)ed

holds for all u:j — j in £ If g©Y = Z = (Z,),,cobs 18 another morphism
the composite g - f = h = (h,),, cops1s defined by

(2) hn = {(h7 l) | El(g’]) € 8 (.f’ l,) = f/(h7 I) '\"n(g f; l,) },

in fact, h satisfies the coherence condition (1). Sometimes it is more
convenient to replace the equivalence class f; by a chosen representative
(fj- i;); then, independently from the choice of the representative, (1) and
(2) read as

(1/) (‘U, 'f'" l'j' ~ (fﬂ l/)
) (hp in) ~n (&n 'fj,,, ij,,)-

Every J#object X can be considered as a 1-indexed family. Therefore
one has a full embedding #— Pro (D, X"). A Pro (D, X )-morphism f:X —
Y with Y € Ob Xis a single equivalence class. Every Pro (D, ¢¥")-object X
= (X))icobsadmits, for every i € Ob £ a canonical morphism §:X — X;
which, as an equivalence class, is generated by (ly, i). A Pro (9,
X")-morphism g:Y — X can be completely described by a family

(8:Y = X)icobs
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which is natural in 7, thatis » - g = g; for all »:i — ¢’ in £ So g is nothing
but a natural transformation or a cone AY — X; that is why one trivially
has:

1.1. PROPOSITION. X is a coreflective subcategory of Pro (D, X") if and
only if X'is D-complete, that is, X 'is #°P-complete for every # € D. The
coreflector is given by forming the limit in X.

Hence, if #’is ©-complete, the embedding #"— Pro (D, ") preserves all
colimits. But this can be easily proved even without the assumption of
D-completeness. We omit the proof since, in the following, we are only
interested in the question which limits are preserved. It is well known that,
generally, limits of type #°P with # € D are not preserved, even in the
classical case when D is the class of directed sets (cf. [6] p. 81; [14] ). The
natural limit type which is preserved is as follows (cf. also [19] ):

1.2. PROPOSITION. Let @ be a category such that, in %, limits of type 9
commute with colimits of type Zfor all # € D. Then the embedding # — Pro
(D, X) preserves limits of type 9.

Proof. Let the limit of H:2 — X exist in . The following shows that,
when considered in Pro (D, '), it is preserved by all covariant hom’s of
Pro (D, X), so it is a limit in Pro (D, X):

Pro (9, #")(X, lim H) = colim X (X}, lim H)

In

colim lim X(X,, Hd)
i d

= lim colim X#(X;, Hd)
d i

lim Pro (D, X" )X, Hd).
d

Next we will give an explicit construction of limits of type £°P in Pro
®, XA') for #F € D. It generalizes corresponding constructions by
Stramaccia [15] in case © = directed sets and Johnstone and Joyal [9] in
case © = small filtered categories. So we consider a diagram

H: #°° — Pro (D, X)) with fe D;
it is given by Pro (D, X')-objects

Hj = X = (X)icobs
and Pro (9D, X")-morphisms
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f* = (f))icons X — X

for all p:;j — " in £ From these data one forms the related category Hof H
as follows: objects are pairs (i, j) with j € Ob_fand i € Ob.%; a morphism
(f, w:(i, j) = (7, j') in H consists of a/morphism pj — j and a
Hmorphism f: X — XJ such that (f, i) € f¥; composition is pointwise.
In case H € © we have the new Pro (D, )")-object

X = (X)) )c0obH

which, as a functor H"'D — 2, maps (f, p) to f. For every j € Ob_£ there is
a functor L;: 4 — H, v (v, 1)), with X - LOp X/. This yields a Pro
(D, X)- morphlsm ApX — X/; each of its components is the equivalence
class of an identity morphlsm It is easy to check that A, is natural in j, so
one has a cone A:AX — H. In fact, it is also easily proved that it is a
limiting cone.

We call © admissible with respect to X'if, for every H:,#°P — Pro (D, X")
with Z € D, the related category H belongs to ©. Using this phrase we

have proved:

1.3. PROPOSITION. If D is admissible with respect to X, then Pro (D, ") is
D-complete, that is, #°P-complete for every # € D.

An immediate consequence of the above construction is:

1.4. CorOLLARY. Every X € Ob Pro (D, X) is the limit of

X
IO — A" — Pro (D, X).

The limit projections are the canonical morphisms &:X — X; (¢f. before
1.1).

One can use 1.3 and 1.4 in order to prove:

1.5. PROPOSITION. Every functor ¥ — Linto a D-complete category Fcan
be extended to a functor Pro (D, X)) — L If D is admissible with respect to
N, it preserves all limits of type #°P, # € D, and is, up to natural equivalence,
uniquely determined by this property.

1.6. Remark. 1. Propositions 1.3 and 1.5 have been proved before in the
dual situation in [18] and [19], but differently; there Pro (9D, ) is realized
by a full representation in [¥, %2/]. Instead of the condition that D is
admissible with respect to " Weberpals [19] assumes © to be “weakly
saturated”, that is:

H1eDd,
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(2) if # — Zis a final functor of small categories with # € D then ¢ €
D,

(3) if H: #— % (= small categories) is a functor with # € © and all Hi
€ ©,i € Ob £ then colim H € D. ,

In fact, one can show that the related category H as constructed above
belongs to © if © is saturated; hence, in that case, © is also admissible
with respect to . For concretely given classes © it seems easier to check
the latter condition directly.

2. Using the same notation as in 1.3 one gets the following diagram in
the 2-category €7 of all categories:

H
FIP— 5 Pro (D, X)
PoP %‘
HOP > X
X

Here P:H — #denotes the projection functor, and A is pointwise a limit
projection as in 1.4. We do not know whether this observation leads to a
2-categorical characterization of H.

2. Pro-adjoint functors. Every functor G:&/ — & trivially induces a
functor Pro (®, G) rendering the diagram

G

N4

}‘é

Pro (D, /) ———— > Pro (D, Z)
Pro (D, G)

commutative. From 1.5 it follows that Pro (D, G) preserves all limits of
type £ for £ € D, if D is admissible with respect to &7

2.1. Definition. G is called right D-pro-adjoint if Pro (D, G) is right
adjoint. If, in addition, G is the inclusion functor of a full subcategory &7is
called D-pro-reflective in % Dually: G is left D-pro-adjoint and </
is ©-pro-coreflective in Z'if GP:o7/°P — &P is right D-pro-adjoint and /°P
is D-pro-reflective in Z°P respectively.
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Since Pro (D, —) is functorial, the composition of right ©-pro-adjoint
functors is right ©-pro-adjoint. Since a right adjoint functor preserves all
limits, a ©-pro-right adjoint functor G preserves those limits of .« which
are preserved by &/ — Pro (D, /). Therefore, from 1.2 one obtains:

2.2. THEOREM. Let @ be a category such that, in S/, limits of type &
commute with colimits of type F for all # € D. Then every right
D-pro-adjoint functor preserves 9-limits.

The following theorem compares the notions of right adjointness and
right ©-pro-adjointness:

2.3. THEOREM. Let o/ be D-complete. Then G:o/ — X is right adjoint if and
only if G is right D-pro-adjoint and preserves limits of type F°P for all
Je D

Proof. To prove that a right adjoint functor is right ®-pro-adjoint is
straightforward (cf. [19], 2.8(c); also 2.5 below). Also it preserves (in
particular) #°P-limits. Vice versa, let us assume that these properties hold
true. Let F be left adjoint to G = Pro (®, G) with unit 7 and counit €. For
every X € Ob % there is a limiting cone

}\X:AFX — FX,

this defines a functor F:% — &/ Since G preserves this limit there is a
unique Z-morphism 7X:X — GFX such that

Ghy - AnX = 7X

(where 7.X is considered as a cone AX — G(FX) = G FX); this defines a
natural transformation

n:1dy — GF.
Finally, one defines a natural transformation e: FG — 1d,, by
Aed = €4 - A4 forall4 € Ob
Immediately from the construction we get
GeAd - 1GA = lgy.
The other equation needed for the adjunction follows from
Ay - AeFX - AFnX = Ay eFX- FnX - Ay
= eFX  FGA\y- FnX- Ay
= eFX - FnX- Ay = Ay
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In the following we give a characterization of right ©-pro-adjointness
which simplifies checking this property in examples. The equivalence (i) <
(ii1) generalizes the main result of [15]:

2.4. THEOREM. Let D be admissible with respect to o/ and let G:2/ — % be
a functor, G = Pro (D, G). The following are equivalent:

(1) G is right D-pro-adjoint.

(i) G has a partial left adjoint relative to the embedding & — Pro
(®, 2).

(iii) For all X € Ob %, there is a Pro (D, «)-object A and a Pro (D,
Z)-morphism e:X — G A such that, for every g:X — GB in Zwith B € Ob &,
there is a unique Pro (D, s7)-morphism h:A — B with Gh - e = h.

(iv) For all X € Ob %, there is a functor A: FP — o/ with # € D and a
cone

e = (¢;X = GA))icobs

such that, for every g:X — GB with B € Ob &/ there are i € Ob Fand h:A;
— B ins/with Gh - e; = g; for any other j € Ob Fand h':A; — B with G’ -
e, = g one has (h, i) ~ (I, j), i, there are finitely many i = i,
Hyooisdyty by = J, h = hg, hy, ... h,—1, h, = h' and F-morphisms

v € Hig—1, ig) U Ay, ik—1), k =1,....n,

such that

commutes.

Proof. Trivially (i) = (ii) = (iii). (iv) is just another formulation of (iii)
avoiding the explicit use of pro-categories, so (iii) < (iv).

(1) = (1): For X = (X});cobs € Ob Pro (D, Z) and each i € Ob Fone
has e':X; — GA’ with the universal property described in (iii). By

Hi= A and G(Hv) e =¢€ -»

for »:i — i’ in £ one defines a functor
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H: 5% — Pro (D, &).

By 1.3, there is a limiting cone (A;:A — Ai),-eohjwhich is preserved by G.
The family (e’ - &);cop.s forms a cone AX — GH (where §:X — X; is the
limit presentation of X). Hence there is a unique e rendering the

diagram
e
X, >GA!
0 _
& GA,
e _
), TP H >GA G(Hv)
N GAs
1 —_
X, > GA'
e

commutative for every »:i — i’ in £ We consider a Pro (D, Z)-morphism
g X — GB,B = (B))j e ob gWith limit projections ;:B — B,. For every j €

Ob Zthere are i; € Ob #and g Xi — GB; such that

so there is a unique h;: A% — B; with Gh; - €/ = g. We claim that the

family (h; - A;);eop,¢forms a cone AA — B: for p;j — j in _fone has
(G- g, 1y) ~; (8, j);

without loss of generality we assume that there is

such that the right trapezium of the following diagram commutes:

i

el
— GAII(—————X,'
GAI'/ \ /K
Ghy | NGB
GA G (Hv) v 1 G

G'hjr /vGBjr
7

G A,-J, i a
GAVe——X i ]
eV

Since the middle square and the left triangle (without G) also commute we
obtain from the uniqueness property of h; or hy, that

https://doi.org/10.4153/CJM-1984-010-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-010-2

152 WALTER THOLEN

h/ . Al/ = ,u . hj/ . Ai,"
Hence we obtain a unique h:A — B such that

From the limit property of ((_},BJ),»EObfwe finally obtain Gh - e = g, and
this factorization is obviously unique.

If © c D, then Pro (', &) is a full subcategory of Pro (D, «). From
the characterization 2.4 (iii) we obtain:

2.5. COROLLARY. Every right ®'-pro-adjoint functor is right ©-pro-adjoint
Jorall {1} ¢ ' c D.

In case © = {1} this proves the “only if” part of 2.3.
3. Special classes ©. We consider some special classes D; each of them
is admissible with respect to every category.

3.1. © = {1}. This case gives nothing new: Pro (D, #") = X for every
category X, and right ©-pro-adjointness means right adjointness.

3.2. © = all sets = small discrete categories. Then Pro (D, ") is the
formal product completion of X" objects are small families (X;);c; of
H-objects; a morphism

( o)yer(Xier = (Y))jey
consists of a mapping ¢:J — I and morphisms
JiXeon = Y

The equivalence relations ~; are discrete. This shows that the factoriza-
tion Gh - ¢, = g in 2.4(iv) holds for a unique index / and a unique
morphism 4. Hence right ©-pro-adjointness means right multi-adjointness
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(i.e., existence of a left multi-adjoint) in the sense of Diers [3]. The small
types Z of limits which commute with coproducts (= discrete colimits) in
Set are precisely the small (non-void) connected categories Z. Hence 2.2
means that right multi-adjoint functors preserve (non-void) connected
colimits: this is Theorem 20 in [1] and Proposition 3.5.1 in [3].

3.3. © = all (non-void) directed sets, considered as small (filtered)
categories. Then Pro (D, ") is the usual pro-category of " :Pro (D, ") =
Pro-2#. So here Theorem 2.4 is Stramaccia’s result [15] which tells us that,
for G the embedding of a full subcategory, ®-pro-reflectivity means
density in sense of Mardesic [11]. Since this terminology can be confused
with the usual notion of density in Category Theory I should strongly
suggest to call a right ©-pro-adjoint functor just right pro-adjoint. So a
dense subcategory in the sense of [11], [5], [15] should be called
pro-reflective. Dual notion: pro-coreflective. Since finite products commute
with filtered colimits in % from 2.2 we obtain that a right pro-adjoint
functor preserves finite products. Application of Theorem 2.3 gives us
Giuli’s result [5], Theorem 2.3 for arbitrary functors instead of just
subcategories: if &7has inverse limits, then G:/ — Z'is right adjoint if and
only if it is right pro-adjoint and preserves inverse limits.

3.4. D = all small categories. Then Pro (D, ") is the usual completion
of X"with respect to all small limits (cf. [10] ). According to 2.5 for this D
we get the weakest notion of right pro-adjointness. From the characteriza-
tion 2.4(iv) it is clear that a right D-pro-adjoint functor satisfies the
Solution Set Condition of Freyd’s Adjoint Functor Theorem. The
converse assertion is not true, as is demonstrated by the following
example:

Let &7 consist of (pairwise different) objects A4, B, C, and (non-identical)
morphisms a,:A — C,, by:B — C, where a runs through a proper class ;
let Z consist of objects X, U, V, Z, and morphisms

uX 2> U viX—=>V u:U— Zy, vV — Z,
and
Xog = Uy U = Vo VX —>Z, a€

The functor G:&/ — % with Ga, = u,, Gb, = v, obviously satisfies the
solution set condition. But condition 2.4 (iv) does not hold true for X €
Ob %; otherwise a cone e with the property 2.4 (iv) must contain u, v, but,
from smallness reasons, it cannot contain all the x,’s, and these admit two
different factorizations through e which cannot be connected.
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Since D-pro-adjointness is slightly stronger than the solution set
condition the assertion of Theorem 2.3 is slightly weaker than Freyd’s
Adjoint Functor Theorem in case © = all small categories. But © = {1}
shows that Theorem 2.3 cannot be sharpened in this general form.

4. Remarks on further developments. It seems worth to generalize other
notions than adjointness like we did in Section 2: if & is a property of
functors, then we say that G:o/— % has the property D-pro-¢’if and only if
Pro (D, G) has the property &. This procedure leads to known notions at
least in case ® = all sets.

For instance, in [4] Diers has introduced the notion of a multimonadic
functor and gives the following characterization ([4], Theorem 3.1):
G: o4 — Z'is multimonadic if and only if G has a left multiadjoint, reflects
isomorphisms, and those pairs of parallel morphism of &/ whose image by
G has a split coequalizer have a coequalizer preserved by G. Straightfor-
ward computation shows that this is equivalent to the following
properties:

G = Pro (D, G) (with ® = all sets) has a left adjoint, reflects
isomorphisms, and those pairs of parallel morphisms of Pro (®, &) whose

image by G has a split coequalizer have a coequalizer preserved by G. This
proves:

4.1. THEOREM. G is multimonadic in the sense of Diers if and only if G is
D-pro-monadic for © = all sets.

Monadicity is understood in the weak sense that the comparison functor
is an equivalence rather than an isomorphism.

A corresponding observation holds for semitopologicity (cf. [16] ). In
[17] the author introduced the notion of a localizing semitopological
functor and gave several characterization theorems. One of them ([17],
Proposition 6.1) precisely means that G is a localizing semitopological
functor if and only if G is D-pro-semitopological with © = all sets. So the
best name of those functors now seems to be multi-semitopological. The
main result of [17] (multi-semitopological functors are precisely the
restrictions of topological functors to multi-reflective subcategories) can
be proved for all classes © which are admissible with respect to «:

4.2. THEOREM. G:/ — Z'is D-pro-semitopological if and only if there is a
topological functor T:B — & and a full ©-pro-reflective embedding E:of — &
with G = TE.

Proof. The procedure is the same as in [17]: G = Pro (D, G) is
semitopological, hence there is a topological functor T:% — Pro (D, %)
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and a full reflective embedding E:Pro (D, ) — 3. The pullback of T
along Z — Pro (D, Z) is a topological functor 7:% — %, and the induced
functor E:o/ = % is a full ©-pro-reflective embedding by Theorem 2.4.

4.3. COROLLARY. Every D-pro-semitopological functor admits a Mac-

Neille completion (cf. [8]).
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