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Abstract – So as to create innovative car silhouettes, we propose in this paper a model based on an
Interactive Genetic Algorithm using an encoding of a design solution by a Fourier analysis approach. This
model permits the designer to browse through generations of car profiles from an initial population of
existing silhouettes. By qualitatively assessing each individual, the designer converges towards solutions
complying with his/her requirements and preferences, possibly creating novelty and generating surprise.
We describe here tests for assessing the efficiency of this innovative design platform. These tests are mainly
based on a similarity index, a similarity measure being the perceived distance between two cars silhouettes.
The results highlight a good convergence toward a satisfactory solution. In addition, this design process
turns out to be very flexible because of the local and intuitive modifications allowed on a given individual
solution at any moment of the design process.

Key words: Interactive genetic algorithm / evolutionary design / shape design / subjective evaluation /
user tests / car profile

1 Introduction

1.1 Sketching in the first phases of a design process

Design is an engineering activity for creating new and
innovative structures and shapes. Finding a new shape
and style for an object can be seen as a profound human
and sometimes artistic refinement process. Indeed, start-
ing from an initial idea, the style designers continuously
refine it through multiple sketches and drawings using
their intuition and perception of their own production in
a reflexive manner. Is it possible to help such style design-
ers in their refinement process by stimulating creativity?
Such an aiding tool should help him or her to explore
more easily and systematically a large space of possible
styles or shapes, and also to converge towards an ideal
shape the designers could have more or less represented
in their mind.

In the field of implementing this creative design pro-
cess, evolutionary computation (EC) has become one of
the primary approaches. A method in EC uses basically
genetic algorithms (GA) [1,2], which were originally used
to find solutions for complex optimization problems. For
example, Poirson et al use GAs to optimize the design of
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brass musical instruments considering mathematical and
perceptual objectives [3]. Taking the evolution in nature
as paradigm, the GAs work on the basis of a population
of individuals, where each individual represents a possi-
ble solution for the initial problem. The structure and the
qualities of each individual are encoded in their genomes.
Through recombination of these genomes the individuals
can reproduce themselves and produce new individuals
(solutions), while by a sort of natural selection the indi-
viduals who are not adapted to the environment (whose
properties do not satisfy the expectations) are not se-
lected for procreation. In this way, the individuals display
better and better qualities over the generations. Interac-
tive Genetic Algorithms (IGA, see [4,5]) represent a spe-
cial class of GAs where a human (here, the style designer)
is a key player embedded within the task of selection of
individuals of a generation. IGAs are then particularly
adapted to situations where it is impossible to explic-
itly express a preference function (the fitting function)
on individuals or even when it is hard to qualify expected
properties. This is typically the case with style designers.

A major difficulty when using GAs in automatic de-
sign systems is the encoding of the genome (see [4]),
which means the way of coding the phenotype (physical
structure) of the individual into the genotype (genome).
Most systems use a direct encoding where geometrical

Article published by EDP Sciences

https://doi.org/10.1051/meca/2013053 Published online by Cambridge University Press

http://dx.doi.org/10.1051/meca/2013053
http://www.mechanics-industry.org
http://www.edpsciences.org
https://doi.org/10.1051/meca/2013053


2 B. Yannou et al.: Mechanics & Industry 14, 1–22 (2013)

Fig. 1. Cheutet models of a car using key lines [12].

dimensions and structures of the design object are di-
rectly represented in the genome (see for example [5]).
When designing a bottle for example [6,7] or finding a de-
sign for cylinder shapes [8] the phenotype is represented in
the genome by a sequence of geometrical parameters like
radii, lengths and part locations. Consequently, the en-
coding is context dependent. Other works use tree struc-
tures [9] or shape grammars [10] to encode the genome.
Kim and Cho [11] have used a set of predefined parts
of clothes to find new designs in fashion by recombining
these parts. But here the space of possible solutions is
limited and we wonder, for all these methods, if an actual
innovation results of these design processes.

In addition, all these systems are conceived for a given
design domain. Implementing these methods in new fields
of design is a difficult and time consuming process. How-
ever, a good design method should be applicable, as much
as possible, on a large spectrum of situations. A direct
change of the shape during the design process is not possi-
ble in other systems. If the designer would like to directly
change an aspect of the shape, by for example stretching
the form or adding a line, this is not possible with the
foregoing systems.

1.2 Automatic car shape design techniques

In this paper, we first propose a method of encoding
a 2D-closed-curve which is supposed to meet a desired
style. This method can be applied to all possible objects
represented by their 2D-silhouettes. For instance a car
silhouette or profile is a primordial style feature of a car.
Indeed, Cheutet [12] has shown that the character of a car
profile is primarily expressed through a series of about ten
lines (see Fig. 1). Five of them: hood line, windshield line,
roof line, wheelbase line and wheel arch, may be merged
into a silhouette closed line. These lines and especially
the silhouette have been proved to have a strong deter-
mining influence on the car perception while embedding

perceptual attributes such as: sportiveness, aggressiveness
or peacefulness, etc. In addition, it has been proved that
the aesthetic aspects of a car amounts for 70% of purchase
intents for customers [12].

Other approaches consider car shape design in a tool
for assisting the designer. Petiot and Dagher [13] propose
a tool to evaluate car front-end designs thanks to semantic
attributes (see Fig. 2).

Osborn et al. [10] use shape grammars to assist the
user in the design of new car profiles (see Fig. 3). Kelly
et al. [5] describe a car silhouette with 12 points (8 fixed
points and 4 varying points) and use an IGA to find new
designs (see Fig. 4). These four approaches are synthe-
sized in Table 1 according to their modeling technique,
their level of interactivity, the need of an initial popula-
tion and the needed knowledge level of the user to param-
eterize or start to use the design engine.

It comes up in Table 1 that no existing approach to
design a car shape cumulates a high interactivity and no
knowledge prerequisite to parameterize the design plat-
form and further use the design system.

We propose in this paper to detail a principle for en-
coding the genes of a car silhouette after a Fourier decom-
position. Next, an Interactive GA (IGA) has been devel-
oped in defining a crossing-over operation between genes.
The interactivity consists in letting a style designer qual-
itatively assessing individuals at each generation. In this
manner, new innovative designs are expected to emerge
by a balanced collaboration between an automatic pro-
cess of design space exploration and the interaction of a
designer. Finally, we provide measures and user tests for
proving that innovation and surprise may emerge from
this process in an effective way. Indeed, we show that the
initial population of individuals contains a sufficient rich-
ness of genes so as to be able to quickly converge towards a
desired silhouette which is not an individual of this initial
population. Moreover we propose a sketching functional-
ity to permit the direct modifications of car silhouettes
by the users.
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Fig. 2. Perceptual evaluation of car front-end designs by Petiot and Dagher [13].

Fig. 3. Some stages of the building of a Ford Focus using the shape grammars defined by Osborn et al. [10].

https://doi.org/10.1051/meca/2013053 Published online by Cambridge University Press

https://doi.org/10.1051/meca/2013053


4 B. Yannou et al.: Mechanics & Industry 14, 1–22 (2013)

Table 1. Comparison of some interactive car shape design approaches.

Approach Modelling Level of Need of an Knowledge level
technique interactivity initial population of the user

Petiot and Dagher [13] Design of experiment + Moderate: evaluation of Yes, based on existing Low: no
Pairwise comparisons the car profiles car front-ends prerequisites needed

Cheutet [12] Shape grammars + High: curves manipulation No Expert
NURBS curves through shape grammars

Kelly et al. [5] IGA + 12 points Moderate: evaluation No Low: no
of the car profiles prerequisites needed

Osborn et al. [10] Shape grammars High: curves manipulation No Expert
through shape grammars

Proposed IGA + Fourier High: evaluation of the Yes, based on Low: no
approach decomposition car profiles and possibilities existing car profiles prerequisites needed

of direct modifications

Fig. 4. Car silhouette modelling from Kelly et al. [5]. Location
of points 4, 5, 6 and 7 varies in vertical and horizontal plane.
The other points are fixed.

In this way, innovative and new concepts are expected
from the collaboration between an automatic process of
design space exploration and the interaction of a designer.
The main characteristics and advantages of this method
appear in Table 1. This system is really open and does
not need any knowledge or know-how prerequisite to pa-
rameterize the design quest nor formalized objectives –
the designer may keep them for him or her –. But vali-
dations are necessary to prove that our system turns out
to be relevant. That is why we have proposed to define a
similarity index to quantify the resemblance between two
individuals (car profiles) and to use it in a series of tests
to answer to the following questions:

– Are the users satisfied by our model?
– Are the results better with our model than without?
– Does our model really create novelty?
– Are the results different from a user to another?

We first propose an automatic test to ensure the ability
of our algorithm to converge. But user tests are also es-
sential to prove that innovation and surprise may emerge
from this process. Thus we perform a subjective evalu-
ation workshop to collect user data. Then the results of
two main tests and four post-processing tests using the
similarity index are established. They show a satisfactory
behavior of the model in terms of convergence, diversity,
dependence to the initial population, but they also show
interesting results about the user perception.

The paper presents in Section 2 the process of the In-
teractive Genetic Algorithm with the different operations

required for encoding a car profile, generating an initial
population and combining the genomes. In Section 3, a
similarity index is proposed to measure the perceived dis-
tance between two individuals. Section 4 deals with user
and post-processing tests to ensure the validation of the
model. Finally, Section 5 concludes on some forthcoming
perspectives. More details are given previous conference
papers [14, 15].

2 Model description

2.1 The genome

Concerning the encoding of a 2D-closed-curve,
McGarva [16] has proposed its development into a Fourier
series as a method for coding its phenotype. We have
personally already used this theory in reference [17] for
encoding 2D-closed-curves into the five first Fourier har-
monics of this decomposition. In that way, we have been
able to build an Artificial Neural Network for synthesizing
four-bar linkage mechanisms following targeted trajecto-
ries. This approach is not as preassigned as the approach
of parameterization for multiple reasons:
– This encoding is supposed to embrace a much vaster

space of possible 2D-closed-curves – or 2D-silhouettes
– than by a parameterization approach.

– All kind of shapes may be represented even with small
details, which can be of the highest importance for
provoking feelings and emotions.

– The encoding may be performed through a constant
length of genotype, which simplifies a lot crucial GA
stages such as the cross-over operation between parent
individuals.

– Finally, the genes in our solution have proved to be
closely associated to apparent characteristics, which
is primordial to converge after several generations to
the ideal 2D shapes.

The Mac Garva’s theory of Fourier decomposition of a
closed curve [16] considers that the position of each point
belonging to this curve can be expressed by a complex
function in the complex plane (see Eq. (1)).

z(t) = x(t) + iy(t) (1)

https://doi.org/10.1051/meca/2013053 Published online by Cambridge University Press

https://doi.org/10.1051/meca/2013053


B. Yannou et al.: Mechanics & Industry 14, 1–22 (2013) 5

As z(t) is a closed curve, its function is periodic. The
period is normalized with: z(t + 1) = z(t). This func-
tion z(t) can be developed into a Fourier series given in
Formula (2).

z(t) =
∞∑

m=−∞
am exp (2πimt) (2)

where the complex Fourier coefficients can be calculated
by Formula (3).

am =
∫ 1

0

z(t) exp (−2πimt)dt (3)

Coefficient a0 is called fundamental, a1 and a−1 represent
the first harmonic, a2 and a−2 the second harmonic, etc.

As we will see later, function z(t) is not known as an
explicit function from the beginning. Instead, we assume
that the curve has been initially defined by a set of succes-
sive points zk (k = 0, . . . , N) which belong to the curve.
So, in order to calculate am coefficients we need a numeric
approximation. We obtain this approximation by dividing
the curve into N segments connecting each point with its
successor. We call tk the length of the curve between the
first point z0 and point zk. Under these conditions, the in-
tegral can be calculated by the trapezium Formula given
in Formula (4).

am =
N∑

k=0

( tk+1 − tk
2

(zk+1 exp(−2πimtk+1)

+ zk exp(−2πimtk)
)

(4)

while z is a periodic function, (zN+1 = z0).
The value of tk is the ratio of the length of the curve to

point k, namely Lk, and the total length of the curve L.
Lk and L are given by Formula (5), knowing that the
periodicity imposes xN+1 = x0 and yN+1 = y0.

tk =
Lk

L
, L =

N∑
i=0

√
(xi − xi+1)2 + (yi − yi+1)2 and

Lk =
k−1∑
i=0

√
(xi − xi+1)2 + (yi − yi+1)2 (5)

To construct the genome of an object, we develop its sil-
houette into a Fourier series and define the fundamental
(the coefficient a0) as gene number zero. The first har-
monic (a1, a−1) is called the first gene, the second har-
monic the second gene, etc.

On the basis of the genome, the original shape of the
individual can be reconstructed. Every point Pk, with co-
ordinates (xk, yk) on curve z∗ which approximates the
silhouette of the car, can be calculated by Formula (6).

z∗(tk) = xk + iyk =
p∑

m=−p

am exp (2πimtk) (6)

Fig. 5. Decoding of a genome of a Smart car with different
precisions.

where tk (0 ≤ tk ≤ 1) is the position on the curve and p
fixes the number of harmonics used for the decoding.
When p equals 1 for example, we use one harmonic to re-
construct the silhouette of the car. The more harmonics
used for the decoding the more precise the approximation
to the original curve is (as seen in Fig. 5). We call p the
“precision” of decoding.

It can be easily proved that the fundamental (the sole
complex coefficient a0) represents the coordinates of the
centre of gravity of the curve in a complex plane. The
second gene (a1 and a−1) contains the information defin-
ing an ellipse. The influence of the other genes cannot be
illustrated easily. But we can say that the first genes influ-
ence the very basic structure and shape of the silhouette
while the higher genes bring in the details of the shape.

2.2 The process of the interactive genetic algorithm

The process of finding new design solutions can be di-
vided into two phases (see Fig. 6). During phase 1 an ini-
tial population of individuals is created. Phase 2 consists
of a loop where the user evaluates the current population
and a genetic algorithm evolves the population respecting
the evaluation of the user.

2.2.1 Phase 1: Creating an initial population

The genetic algorithm needs an initial population of
individuals and their genetic code to start working. This
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Fig. 6. Diagrammatic plan of the IGA process.

initial population consists of silhouettes of 30 already ex-
isting car bodies. In order to easily sketch these silhou-
ettes we programmed an interface in Java which allows to
draw curves on a plain and code them into a genome. To
border a silhouette we display the image of an existing car
in the background of the screen and draw a contour-chart
around the car on the image by clicking on the screen.
The result is a closed curve representing the silhouette
of an existing car-body (see Fig. 7). During bordering, a
sufficient amount of points must be used to represent as
much as possible the peculiar aspects of the contour. In
practice, we often result in 30 to 50 points per silhouette
but these points are unevenly distributed.

However this amount M of 30 to 50 points unevenly
distributed is not sufficient to calculate a genome which
is precise enough to allow a highly detailed decoding into
the phenotype because the series of points are generally
densified in the regions of details and not added in regions
of straight lines. Consequently we need to increase the
number of points on the curve by smooth interpolations.
The curve produced by interpolation must be very close
to the original curve and must be continuously derivable
at each point. If the curve is not continuously derivable,
the decoding from the genotype into the phenotype pro-
duces high-frequency oscillations and is therefore useless.
We solve this problem with bicubic splines linking three
successive points (see Fig. 8), because this method pro-
vides a curve much close to the original one and without
producing oscillations (as it is the case when using poly-
nomial interpolations like Lagrange’s interpolation For-
mula). With bicubic splines, the tangent of the spline at
point i is parallel to the line passing by points i − 1 and

Fig. 7. After bordering we obtain a closed curve representing
the car silhouette of an existing car.

i + 1. Within each spline, a given number of points is in-
terpolated, leading to a total number of N points with
N > M .

Taking care of the quality of the encoding amounts
to find a satisfactory balance between the number N of
points on the curve used for coding and the number p of
harmonics used when decoding the genome into a curve.
The number p of harmonics used for decoding has an
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Fig. 8. Definition of bicubic splines upon the initial point set
for further interpolation.

influence on the production of details. The more harmon-
ics used for the decoding the more precise the approxi-
mation of the original curve. The number N of points on
the curve used for coding the genome has also an influ-
ence on the precision of the Fourier coefficients. This is
due to the fact that we use the trapezium Formula in (4)
to approximate the integral during the calculation of the
coefficients. We achieved numerous trials of (1) bordering
a silhouette, (2) interpolating with N points, (3) encod-
ing with p harmonics, (4) decoding, for finally comparing
the initial and the resulting silhouettes (see Fig. 9). A
full factorial design of experiments has been carried out
(see Fig. 9 and Tab. 2) with N varying from 80 to 2000
and p varying from 5 to 200. This process has been re-
peated on a series of ten different car profiles. This is
why Table 2 provides qualitative results of comparisons.
Apart very smooth profiles where p = 20 would be suffi-
cient, p = 70 is needed to have recover perfect shapes.We
clearly noticed that if p is too small, the coding-decoding
sequence visually fails to accurately represent the initial
silhouette. In addition, for a given number p, there is a
minimal number of points N beyond which the recon-
structed curve displays strong oscillations (see Fig. 9 for
some examples). In definitive, we found out that a sat-
isfactory choice was achieved with a genome size of 71
(p = 70 due to the first gene numbered zero) and a num-
ber N of approximately 1500 points for the interpolation
since both initial and resulting silhouettes were visually
identical (see Tab. 2). This design of experiments in Ta-
ble 2 probably illustrates the Shannon theorem linking
the sampling frequency with the maximum frequency of
the curve like in sounds sampling. But a theoretical proof
is beyond the scope of the paper.

A last operation of normalization is necessary to the
genomes so that the phenotypes – silhouettes – be inde-
pendent of homothetical transformations, i.e. from a par-
ticular location, size or rotation so as to only be compared
in terms of their shape. Coefficient a0 is simply set to 0
to fix the centre of gravity of all individuals at the origin
of the representation plane. The invariance by rotation
is useless because car silhouettes of the initial population

Table 2. The design of experiments carried out for finding
an ideal (p, N) couple. Initial and reconstructed silhouettes
are visually compared to result in subjective assessments: I –
inaccurate, O – oscillations, SO – strong oscillations, G – Good
result, GG – very good result, GGG – optimal results.

p\N 80 100 200 500 700 1000 1200 1500 2000
5 I I I I I I I I I
7 I I I I I I I I I
10 SO I I I I I I I I
15 SO I I I I I I I I
20 SO O G G G G G G G
30 SO O G G G G G G G
40 SO SO O O GG GG GG GG GG
50 SO SO O O GG GG GG GG GG
55 SO SO SO O O GG GG GG GG
60 SO SO SO SO O O GG GG GG
70 SO SO SO SO O O O GGG GG
80 SO SO SO SO O O O GG GG
90 SO SO SO SO SO O O O GG
100 SO SO SO SO SO O O O GG
120 SO SO SO SO SO O O O GG
140 SO SO SO SO SO O O O GG
170 O GG
200 O GG

are sketched horizontally and, consequently,the next gen-
erations of cars tend to stay horizontal. Mc Garva [16]
proposes to normalize the size of the curve in setting to 1
the small axis of the ellipse defined by harmonics 2. It
would amount in our case to fix to a constant height the
car silhouettes which is not fair for short cars. We prefer
to get a constant or normalized surface area instead. The
calculus is then a bit more sophisticated but simply con-
sists in dividing all coefficients am by a function of |a1|
and |a−1| (Formula and proof not provided here).

2.2.2 Phase 2: Evolution of the population

We use an interactive genetic algorithm to evolve the
population and create innovation. As Kelly et al. [5] say:
“by using IGAs we hope to allow designers to enhance
their creativity through design space exploration”. The
individuals (car profiles) of a generation can reproduce
among themselves and produce in this manner new solu-
tions (see Fig. 10 for example).

In our case the genetic algorithm handles a population
of individuals where each individual represents a possible
design for a car body silhouette. A fitness value is as-
signed to each individual by the user. Consequently the
fitness value f is a number between 0 and 6 according to
the grade given by the user via an interface. The inter-
face developed (see Fig. 11) displays six individuals at a
time and the user can browse through all the individu-
als of a population. The user is supposed to evaluate all
the individuals of a population on a scale from 0 to 6,
where 0 is the worst and six the best evaluation. This
fitness decides if an individual has a good chance to re-
produce and generate children. Furthermore it influences
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Fig. 9. Comparison of silhouettes after interpolation with N points, encoding with p harmonics and decoding.

the chance of an individual to survive and to live on in the
next generation. This development is reached by applying
the following genetic operators to the population:

– Selection: decides which individuals will reproduce
and create children.

– Crossover : builds a child’s genome from two parent
genomes.

– Mutation: changes in a random way a genome after
the crossover.

– Killing: decides which individuals from the parents’
population survive in the new generation.

We have decided to adopt some conventional choices in
term of selection and killing operators and to propose
an original crossover operator. First, apart the initial
population of 30 individuals, we have fixed the number

of individuals to 100 at each generation. We choose a
turnover rate of 0.7, meaning that, for a coming gener-
ation, 30 individuals are kept from the previous one and
70 children are generated. In this way we do not lose po-
tential good design solutions. The probability for an in-
dividual to be selected to be a parent is proportional to
its fitness value (between 0 and 6). After choosing two
individuals from the parents’ population, their genomes
are combined into the genome of a child by applying the
crossover and the mutation operators. Afterwards the two
individuals are re-put into the parents’ population. In-
deed, an individual can be selected more than once by
the selection operator.

We have considered several possibilities to crossover
the two genomes of parents into the one of the child. For
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Fig. 10. Example of IGA interface applied on car silhouettes, taken from [5].

Fig. 11. The User Interface for the designer evaluation showing 6 individuals of a larger population. The designer can browse
the individuals by clicking on the arrow buttons.

instance, we envisaged a “Two-Part-Crossover”-method
which seemed promising at the beginning. It consists in
randomly choosing a crossover point X , where X is a
number between 2 and 69. The child’s genome was built
by the first X genes from the genome of parent A and
the last (70-X) genes from the genome of parent B. This
method has produced innovative designs for car silhou-
ettes and few useless forms. However the method didn’t
produce stable results over the generations, i.e. shapes
that can be assigned to car contours in a realistic man-
ner. For instance, after some generations the car silhou-
ettes were useless because they had lost the tires or began
to have oscillating contours.

The best choice is to operate a weighted average be-
tween the gene values of the two parents to build the
genome of the child. A crossover weight W is chosen ran-
domly between 0 and 100. A new gene g∗ is obtained by
calculating the weighted average of the genes gm,1 and
gm,2 of the parents after Formula (7).

g∗m =
Wgm,1 + (100 − W )gm,2

100
(7)

In function of the weight W we obtain different new design
solutions which continuously interpolate a silhouette be-
tween the two parents’ silhouettes (see Figs. 12 and 13).
The advantage of this method is the fact that a child
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Parent no 1 : Mercedes CLS

Parent no 2 : Smart

Fig. 12. Two parent individuals.

resembles a lot to its parents and that it produces almost
no useless – or ill – car solutions (the tires keep their
rounded shapes). The disadvantage is to stay within the
convex hull of the gene space. As a consequence, the pop-
ulation of design solutions may have a tendency to quite
rapidly converge. To enlarge the space of possible solu-
tions and create novelty, we apply a mutation operator in
a second stage in modifying a given gene – randomly cho-
sen – within a defined range – but with a random value –.

The killing operator is applied to the original popula-
tion and kills at first all the individuals who have a fitness
of 0. These individuals are considered totally useless or
totally non-satisfactory and shall no more contribute to
the evolution of the population. All the other individuals
have a chance to survive. The individuals to be killed are
chosen by an inverse roulette wheel method. That means
that the probability pki for an individual to be killed can
be expressed by Formula (8).

pki =
(7 − fi)∑N

j=1 (7 − fj)
(8)

where fi is the fitness of individual i and N∗ is the num-
ber of individuals in the population who have not been
evaluated with a fitness of 0.

2.3 Enhanced interactivity and mutation role

2.3.1 Direct modifications of the car silhouettes by the users

The model previously presented in this paper is inter-
active in the sense that the user has the possibility to drive
the algorithm process thanks to his or her perception and
expectations of car profiles. But we believe that this level
of interactivity, which is assessed in the next parts of the
paper, is greatly improved when concurrently permitting
direct graphical modifications by the users. The idea con-
sists in offering to the designer the ability to select an
appealing silhouette from the current population and to
modify it graphically in an interactive manner. We pro-
pose the following scenario (see Fig. 14):

1. The user drives the IGA through several generations.

2. At generation n, he/she remarks an interesting pro-
file but which would merit to be modified at different
locations.

3. The given profile is then picked up from the given
generation and put into a graphical editor.

4. Starting from the gene code of the chosen individual, a
limited number of points (about 30) is generated along
the profile so as to provide the user salient points to
grasp and stretch. Then modifications are operated by
the designer.

5. After the modifications, the new gene code is recom-
puted and re-normalized as well.

6. Then the new modified profile is reinjected in the cur-
rent individual population in the place of the chosen
one and the IGA process continues.

2.3.2 Some thoughts about the mutation operator

The mutation is the phenomenon that changes the
genome of an individual randomly, without taking the
genome of the parents into account. In this respect, it
brings surprise to the evolution process. And like Kelly
et al., we consider the mutation as “a way of introduc-
ing new variable values into the population, as well as
exposing potential exciting design spaces” [5].

But it is crucial, however, that the mutation be care-
fully tuned, or “managed”. In order to reveal its full po-
tential, the mutation must ideally be unconstrained, i.e. it
might affect all the aspects of the genome representation.

But this freedom has to be moderated by the need for
“reliability”: we must also avoid “degenerated” individu-
als who do not resemble to what an individual is supposed
to be. Even if we would like to introduce variety and orig-
inality, the generation of new individuals still has to be
constrained within some acceptable bounds, so that the
generated shape will attract the eye of the designer.

The fact that our interactive genetic algorithm in-
volves user interaction for the evaluation of every indi-
viduals of a generation necessarily limits the number of
individuals that can be proposed for evaluation at each
iteration, and also the number of generations that can be
processed in a reasonable time. The designer being at the
heart of the process, we must then limit the number of
unacceptable shapes that will always be rejected, at the
expense of freedom.

The mutation, as it is currently implemented, is based
on the fact that “key” genes numbered 2 to 10 are the
most influential code parts of the vehicle contour. The
degree of mutation change, which is the probability that
each individual mutates consists in equally choosing be-
tween one of the 9 key genes and to multiply its current
value by an element of the set [−2,−0.5]∪ [0.5, 2] (with a
uniform probability distribution).

The current Fourier method for encoding the genome
of a shape is such that changing one and only one gene
at a time when an individual mutates may generate an
odd geometric transformation. Whereas such alterations
may be acceptable in the case of an automated genetic al-
gorithm, this phenomenon makes the implementation of
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Fig. 13. Results of a weighted average crossover between the genes of the two parents of Figure 12, using different weights W .

1

3 4

5

Fig. 14. Direct modification of a car silhouette by the user.
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mutation in an interactive genetic algorithm prohibitive.
Actually the designer will not accept any deformity, and
straightforwardly eliminate the mutant individual from
the current population, even though it exhibits other in-
teresting features and create positive surprise.

It is therefore possible to make some propositions to
improve the mutation operator. A solution that stems di-
rectly from the aforementioned remarks could be to iden-
tify the main features that the user usually recognizes
in a class of shapes (e.g. for a car, the location of the
wheels, or the flat shape of the floor), and then reshape
these features automatically after the mutation. However,
such a method may be complex to implement in practice
because, given the choice of the genome representation,
it would require some back and forth trips between the
genome space and the geometrical space. From our work,
other methods of mutation are possible and seem more
interesting:
– A first method could be a combination of genes; since

the mutation of a single gene causes most of the time
a very noticeable geometric distortion, a combination
of several genes in a single mutation step could reduce
the number of unacceptable mutations.

– A second method could be to gather dynamic statis-
tics about the designer’s choices: the mutation algo-
rithm could collect the history of the changes it has
carried out in all the generations before the current
one, and the evaluation of these changes given by the
user. Hence, we would statistically favor mutations
that please the user, to the detriment of mutations
that would never have been accepted in the first place.
Although it would seem attractive in the first place,
this method would have two main drawbacks. Firstly,
it would discard any chance of “invisible” mutations
happening, i.e. mutant individuals included in a gen-
eration’s population but not shown to the user, even
though these individuals could be subsequently com-
bined in perfectly viable shapes; and secondly, it re-
quires a large number of samples (records of changes
and corresponding evaluation) to be able to provide
relevant statistics. However, an interactive genetic al-
gorithm is commonly evaluated on only a few gener-
ations, while the user is making his or her choices.
A solution could be that statistics be built on a com-
mon database, enriched by different users. But besides
the technical difficulty of such an implementation, we
may “dilute” the specific preference of each user which
may vary depending on what he/she is looking for at
a particular moment in time.

2.3.3 Synthesis

Combining the classical IGA scheme, a pertinent mu-
tation operator and direct modifications functionality en-
sure at the same time the mastering of the process by the
user and the possibility to create surprise and novelty.
The convergence speed can be adjusted by increasing or
decreasing the mutation rate and/or by letting the user
make more or less direct modifications.

However and even if those two functionalities are avail-
able, we propose in the next parts of the paper to validate
the model relevance using only the classical IGA scheme.
We choose hererafter to consider a fixed mutation rate
and not to propose to the user the direct modification
tool. This permits to show that the basic model in itself
is already better in terms of quality and quantity than a
manual sketching method.

Section 3 describes the similarity index built to mea-
sure the perceived distance between two car profiles and
to validate the model.

3 Similarity index

Is our system really capable to produce innovation and
novelty? Is it possible for a user to design with the help
of our system a new car body silhouette which is not part
of the initial population?

To answer these questions, it is useful to have a way to
automatically measure the perceived similarity between
two car silhouettes. So we propose to automate a sim-
ilarity index from two gene vectors coding car silhou-
ettes. This similarity index must be based onto human
appraisals of car contour discrepancies; it is not important
in itself to contribute to the method but conversely this is
an essential point to prove that our method is successful
for creating surprise and converging efficiently towards a
high quality design solution.

The authors have been working in the area of path
generator linkage optimization (see [17]), i.e. optimizing
planar mechanism on the basis of a given target closed
curve to be described by a point linked to a linkage bar.
Here, different solutions exist to compare the distance be-
tween two closed curves (the target one and the synthe-
sized one), supposed to be resembling (see [18], pp. 88–92,
and [19, 20]). These solutions are conventionally to com-
pare the distance between two sets of NURBS curves. This
solution can here also be used for calculating a similarity
index and further a fitness rate, but it has not been inves-
tigated. In addition, there is an active community working
in the more general area of shape similarity index.

We propose hereafter a description of the process to
get this similarity index.

3.1 Mathematical expression

We first define D(k, l) the distance between two
genomes Gk and Gl. As only the modifications on the ten
first genes are significant (modifications on other genes do
not change anything on the car profile visual perception),
the sum only considers those ten genes. And D(k, l) is
given by Formula (9).

D(k, l) =
10∑

m=1

α(m)||gk,m − gl,m||2 (9)

The factor α(m) is a weighting factor which should give
more importance to some genes according to their partic-
ipation in the modification of the silhouettes. Here gk,m is
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Fig. 15. Choice of the similarity index type.

gene number m from genome k and gl,m is gene number
m from genome l. One gene consists of two harmonics,
called am and a−m, which are complex numbers. So they
can be written as: am = um + ivm.

Then we define the square distance between two genes
of the same index by Formula (10).

||gk,m − gl,m||2 =
(uk,m − ul,m)2

(umax,m − umin,m)2

+
(uk,−m − ul,−m)2

(umax,−m − umin,−m)2

+
(vk,m − vl,m)2

(vmax,m − vmin,m)2

+
(vk,−m − vl,−m)2

(vmax,−m − vmin,−m)2
(10)

where umax,k and umin,k (respectively vmax,k and vmin,k)
are the maximal and the minimal values of uk and vk on
the whole initial population.

And we finally define the similarity index between two
genomes k and l in Formula (11):

SimInd(k, l) =
100

1 + D(k, l)
%

=
100

1 +
∑10

m=1 α(m)||gk,m − gl,m||2 % (11)

So with this definition, the similarity index is naturally
comprised between 0 and 100%, where 100% means that
the two individuals are identical.

We now have to define the factor series α(m). Two dif-
ferent types of functions have been investigated. The first
is based on an exponential form. The second one is based
on independent weights associated to each value of m.
To find out the best version of the similarity index, we
performed the tests described in Figure 15. 30 car silhou-
ettes are used to build the two possible forms of similarity
indexes. After that, in both procedures the same 20 car
silhouettes are used to validate it and permit to choose
the best one. We obtain 2 similarity matrices, and we
ask the users to assess those 20 profiles in a third ma-
trix. These three matrices permit to calculate the RMSE
(Root Mean Square Error) associated to the two calcula-
tion approaches for the similarity index.

We obtain with the exponential form of the index an
average RMSE of 7.04, and the value is 31.82 with the
independent weights form. In addition we obtain with the
exponential form a Mean Absolute Error (MAE) of 4.51.
As the evaluation scale spans between 0% and 100%, the
normalized NRMSE and NMAE are 7.04% and 4.51% for
the exponential form, which shows a good precision of
the model. We have conducted ten times this test with
different sets of car silhouettes, the results obtained have
been very similar. So we have chosen the exponential form
for the similarity index. Its obtaining is detailed in the
next paragraph.

3.2 Identification of the parameters

In this section we assume that α(m) can be written as
an exponential expression which gives more importance
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to the first genes than to higher order genes, because a
modification of the first genes impacts more the car sil-
houette than a modification of the last ones. So α(m) is
obtained after Formula (12).

α(m) = a ebm (12)

where a and b are two constant terms. So D(k, l) becomes
in Formula (13):

D(k, l) =
10∑

m=1

aebm||gk,m − gl,m||2

= a ×
10∑

m=1

ebm||gk,m − gl,m||2 (13)

But now we need to find significant values of a and b.
We propose the following process to measure b:

– Choose a genome, which is copied 3 times: G0, G1,
G2.

– Choose a gene i in G1 (better with a low weight to be
significant): g1i.

– Choose a gene j (i �= j) in G2 (better with a low
weight to be significant): g2j.

– Modify gene g1i of G1 in an arbitrary way.
– Modify gene g2j of G2 in such a way that there is an

iso-similarity (defined below) between G0 and G1 on
the one hand, and G0 and G2 on the other hand.

Two couples of car silhouettes are iso-similar if the per-
ceived level of similarity is the same for the two couples.
For example, it would mean here that the level of simi-
larity is the same between G0 and G1, and between G0
and G2. Practically, it means that the user must modify
gene g2j until the level of perceived dissimilarity becomes
the same between G0 and G1 as between G0 and G2. In
that way, G2 and G1 are not identical, but their level of
similarity according to G0 is the same.

From the mentioned principle, we can derive For-
mula (14) linking distances between genes.

α(i) × ||g0i − g1i||2 = α(j) × ||g0j − g2j||2 (14)

with b given by Formula (15).

b =
1

(j − i)
ln

||g0i − g1i||2
||g0j − g2j||2 (15)

By making n times these tests with different car profiles
and different users, we get n different b values. The final
value of b adopted is the average.

The next step consists in measuring a. We propose
the following process: for each of the previous comparison
(between G0, G1 and G2), the user defines the qualitative
level of similarity (“the similarity between G0 and G1 on
the one hand and G0 and G2 on the other hand is 70%”
for example). As it is very hard to express such a value,
we propose to work with a 7 degrees qualitative scale; the
user just chooses the level of similarity x% from Table 3
levels.

Table 3. Scale of similarity for user assessments.

Level of similarity Value of similarity index
0 5%
1 30%
2 50%
3 65%
4 80%
5 90%
6 100%

Equation (16) provides then the expression of x%.

x% =
100

1 + a
∑70

m=1 ebm||g0m − g1m||2 (16)

where b is the averaged value obtained by the previ-
ous tests. The second constant a is then obtained by
Formula (17).

a =
1∑70

m=1 ebm||g0m − g1m||2 ×
(

100
x%

− 1
)

(17)

We also obtain 2n different a values. The calculation of
the similarity index is now completed, using average val-
ues for a and b. In practice, n = 8 respondents likes in
the user tests. a and b values vary significantly within
+/–50% around the average value. Finally adopting the
average values is may be not the ideal solution but further
results with this formula proved that the predictive preci-
sion of the similarity index formula is satisfactory. Prac-
tically, we use a Java interface (see Fig. 16) that permits
to implement the processes described above by loading a
population of different contours.

We can now perform user tests to validate our model
thanks to this similarity index.

4 Validation tests

To validate our model we first performed simple user
tests without the similarity index, based on Kim and Cho
works [11].

4.1 First tests

4.1.1 Tests construction

Kim and Cho worked in 2000 on fashion design with
an Interactive Genetic Algorithm [11]. They proposed a
model to create innovative dresses from a catalogue of
components. The main difference between our model and
Kim and Cho’s one is the space of possible solutions. As
Kim and Cho worked with a set of predefined parts, which
is a finite and discrete set, this space is limited, whereas
our possible solution space is infinite and continuous.

To validate their model, Kim and Cho performed two
different tests:

– The first test is called convergence test. It permits to
ensure that the average fitness value according to each
generation of the Genetic Algorithm increases with the
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Fig. 16. Java interface to carry out human appraisals leading to parameters a and b of the similarity index.

generations. They performed this test along 10 gener-
ations composed of 8 dresses. They used a panel of
10 users, working on two semantic attributes (splen-
did and cool-looking). It means that they asked the
users to evaluate 10 generations of dresses according
to the first attribute, and then to do the same pro-
cess with the second attribute. The results showed a
significant increase of the fitness.

– The second test is called subjective test. Its goal is
to show that the results obtained with the model
are better than without. Kim asked 3 users to find
the 10 best dresses according to the two semantic at-
tributes (splendid and cool-looking) among 500 indi-
viduals randomly created from the catalogue of per-
mitted combinations (i.e. without the IGA engine).
Then they asked the 10 previous users to find the best
dress of the 10th generation of the previous conver-
gence test, according to the two attributes. The last
stage was to compare for each attribute and for each
user their own best dress obtained with the model
with the 10 best dresses obtained without. The com-
parisons were performed via pairwise comparisons, on

a 7 degrees scale (from –3 to 3). Finally, the results
showed that the individuals obtained with the algo-
rithm gained on average 2 degrees, compared to the
individuals obtained without IGA algorithm. So the
model has been proved to be truly satisfactory.

But two main criticisms can be formulated on these two
tests:

– Are the evaluations hedonistic or not? A hedonistic
evaluation includes the preference of the user (for
example “Please rate these individuals according to
your preferences in terms of sportiveness”; the user
may be likes sportive individuals, but not too much),
whereas a non-hedonistic evaluation does not (for ex-
ample “Please rate these individuals according to their
apparent degree of sportiveness”).

– What is the meaning given by Kim on the pairwise
comparisons? He asked the users to compare their
own best dress (from the algorithm) with the 10 best
dresses found by 3 other people. So it seems logical
that the first one (found by the user himself) is better
than the others (found by other people).
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Fig. 17. Example of pairwise comparison matrix used for the tests.

We built our test taking into account these criticisms.

4.1.2 Workshop realization

We have chosen to work for the two tests with a non-
hedonistic evaluation (“Please rate these individuals ac-
cording to their apparent degree of sportiveness”). We
have also chosen two semantic attributes: friendly and
sportive (half of the users work with the first one, the
others with the second one).

The first test that we have defined is the same that
the convergence test defined by Kim. We called it test of
“designer satisfaction”. We have worked with 10 gener-
ations composed of 20 individuals, and with a mutation
probability of 0.05 and a selection rate of 0.7.

We have defined the second test (that we called test of
“satisfaction superiority of the IGA model”) with regard
to the problem of the pairwise comparisons (expressed in
Sect. 4.1). The process is the following:

– 400 car silhouettes are created randomly from an ini-
tial population composed of contours of 20 existing
cars. To clarify the notations in the next parts of the
paper, these 400 individuals are called paper individ-
uals. Each user has to find the 3 best individuals ac-
cording to his/her assigned semantic attribute.

– Practically, these individuals are printed on a large
format paper and numbered, and the users record
their evaluation in an Excel sheet. Each user evalu-
ates the 400 paper individuals on the same scale as
in the IGA (from 0 to 6). The best car silhouettes in
his/her mind have to receive a 6 grade.

– Only the individuals which receive a 6 are selected for
the next evaluation. An Excel macro sorts out these
individuals and a new evaluation table is presented to
each user.

– The two first stages are repeated until each user finds
the 3 best individuals. That means that the users must
be more and more selective (to always have scores be-
tween 0 and 6 in order to progress).

– Then each user has to find the 3 best individuals of the
10th generation of the test of “designer satisfaction”.

– Finally a pairwise comparison matrix permits to each
user to pairwise compare his/her own 3 best individu-
als of the algorithm with his/her own 3 best paper in-

Table 4. Pairwise comparison scale.

–3 <<< highly inferior
–2 << inferior
–1 < slightly inferior
0 = equal
1 > slightly superior
2 >> superior
3 >>> highly superior

dividuals obtained by a manual selection starting from
400 individuals. The scale used has 7 degrees (from –3
to 3). This stage can be compared to the process fol-
lowed by Kelly et al to validate their IGA [7].

Pairwise comparisons permit to evaluate simply a set of
individuals without any absolute scale. An example of
such a matrix is given in Figure 17. The comparisons have
a direction to follow: here the individuals in lines are com-
pared to the individuals in columns. The evaluation scale
for these comparisons is given in Table 4. The users work
with the mathematic symbols (>, >>, = . . .), which are
then replaced by numbers to analyze the data.

The tests have been realized during a short workshop.
The panel of users was composed of 7 students (6 men
and one woman) and one professor. 4 users received the
semantic attribute friendly and the 4 others the attribute
sportive. About 2 h were necessary to complete the three
stages.

4.1.3 Results

4.1.3.1 Test of “designer satisfaction”

The analysis of the car silhouettes obtained by the
users during the first test shows interesting results.

For the two semantic attributes, the users reach in
their own last generation the same type of car silhouettes.
Moreover, those profiles are nearly the same for semantic
attribute sportive, whereas they are really different from a
user to another with attribute friendly. Figures 18 and 19
illustrate this phenomenon.

The displayed silhouettes are chosen from the 3 best
ones of each user. It is also interesting to notice that the
car silhouettes from the 6th generation are almost the
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Fig. 18. Examples of best “sportive” car silhouettes (one from
each user).

Fig. 19. Examples of best “friendly” car silhouettes (one from
each user).

same for each user, which means that the diversity of
the populations is weak from the 6th generation. In other
words, the IGA seems to converge quite quickly. It could
be interesting to know if this fast convergence is desirable
or not. This observation is not tackled in this paper. How-
ever, a way to change this speed is the mutation operator.
But for the tests, a quite low mutation rate has been cho-
sen to already prove that our IGA approach is already
valuable without imposing a gruelling work to the users
since they not only have the IGA to use (this use repre-
sents a fourth of the test duration). With a high mutation
rate, the convergence speed would probably be lower, be-
cause a lot of novelty would appear at each generation.

Finally, the functions of fitness evolution are obtained
in Figure 20 for the two semantic attributes. The average
fitness increases for the two semantic attributes showing
a good global behavior of the model: the user satisfaction
increases on average from 3.0 to 5.0 for attribute friendly,
and from 2.3 to 3.9 for attribute sportive. So it is an in-
crease of about 70%.

4.1.3.2 Test of “satisfaction superiority of the IGA model”

Table 5 shows the results of the test for each user and
for each semantic attribute.

Some details have to be explained to understand the
meaning of Table 5. The pairwise comparisons are made
according to the following scheme: the best individuals
from the IGA are compared to the best paper individuals.
User 4 has for example an average evaluation of +1.00.
According to Table 4, it means that user 4 found the best
individuals from the IGA slightly superior to the best
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Fig. 20. Fitness evolution for the convergence test.

Table 5. Average values of the results of the subjectivity test
(for the evaluation scale, see Tab. 4).

Sportive

User 1 +1.78
User 2 +1.67
User 3 +1.56
User 4 +1.00

Average +1.50

Friendly

User 5 –0.33
User 6 +0.67
User 7 +0.78
User 8 +1.22

Average +0.58
Total average +1.04

paper individuals. Thus positive numbers prove that the
results obtained with our model are better than without.

The results show a good behavior for the semantic at-
tribute sportive: the average score is +1.50, so the best
IGA individuals are between “slightly superior” and “su-
perior” to the best paper individuals.

For the attribute friendly, the results show a good
behavior too, even if the difference is slightly less percep-
tible. All the users prefer the individuals from the IGA
except user 5, who prefers the individuals without the
model. Globally, the results for this attribute are not re-
ally homogenous, which can be explained by a more sub-
jective comprehension (and so characteristic to each user)
of the word friendly than the word sportive (this obser-
vation is highlighted in other tests presented hereafter).

4.1.4 Synthesis

Those first two tests show a satisfactory behavior of
our model. The user satisfaction increases with the gen-
erations, and the results are globally better with the IGA
than without.

However, some major differences can be noticed be-
tween the two semantic attributes. Indeed the user per-
ception is really different from a user to another: sportive
seems to be perceived in the same way by everyone,
whereas each user has a different perception of friendly.
So to confirm these observations we have proceeded to
more sophisticated post-processing analysis, using the
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(a) (b) 

Fig. 21. Comparison between the reference silhouette (a) and the final resulting silhouette (b).

similarity index described in Section 3. We propose here
five user tests that use the similarity index to process the
same data (except the first one) as those used for the
previous tests.

4.2 Tests based on the similarity index

4.2.1 Test of “novelty emergence”

The goal of this test is to show that it is possible to
reach a defined individual which is not part of the initial
population.

To answer this question we can execute a simple test.
A subject draws on a sheet of paper a car body silhou-
ette which comes spontaneously to his or her mind and
which is not part of the initial population. This car body
silhouette is taken as a “target individual”. With the aid
of our proposed IGA, the user must now try to obtain the
“target silhouette” he had drawn on a sheet of paper by
the end of the IGA process. The objective of this test is of
course to prove that there is no limit to our system to con-
verge toward the dreamed shape. Then, keeping in front
of him or her this reference drawing, the user evaluates
the car contour individuals, in providing higher grades to
contours which look close to the target contour and lower
grades to those that are more dissimilar. By considering
both the number of generations needed to resemble to the
target individual and the similarity value, we can estimate
the quality of our design system.

Alternatively the target car silhouette may be an indi-
vidual of the initial population that is removed from this
initial population.

We have preferred to make abstraction of the designer
subjectivity in automating the ability of the system to
converge towards an ideal car silhouette, so as to measure
the sole quality of the method. The role of the designer
is played by an algorithm of similarity fitness calculation,
which automatically evaluates the individuals of a gener-
ation in terms of their similarity to the target individual,
thanks to the similarity index previously defined.

We repeated several times this test, with different tar-
get individuals extracted from the initial population for
an average final similarity index of 90%. Let us provide
a practical example with the target individual provided
in Figure 21a. The parameters for the genetic algorithm
were the following: population of 100 individuals, turnover
rate of 0.7 and mutation probability of 0.3. The mutation
can change a gene in a range of ± (50%–200%). After 10
generations our system reached the car body silhouette
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Fig. 22. The average fitness of all individuals in the popula-
tion over the generations.

in Figure 21b which has a similarity index of 92%, and
which can be visually considered as a much satisfactory
result.

The average fitness of the population converges over
the generations to a high value (see Fig. 22), whereas the
value of the best similarity index in the population (the
fitness of the fittest individual) raises rapidly from relative
low 44% to 92%.

4.2.2 Test of “diversity lowering”

The aim of this test, called test of “diversity lowering”
is to study:

– The evolution of the similarity index for each user
along the ten first generations.

– The similarities that could exist between the individ-
uals of the last generation of each designer.

The idea simply consists in calculating the similarity in-
dex between all the individuals of all the users and for all
the generations of the previous workshop, and to group
together the data to observe potential correlations.

A high value of similarity for the last generation would
mean that the IGA converges towards a single individuals
family, and so that there is a diversity lowering.

These results concern the evolution of the similarity
index of each user. The curves are shown in Figure 23.

The initial population has an average of 6.5% of simi-
larity. In all the cases and for the two semantic attributes,
the values increase quickly. At the 6th generation (Gen-
eration #5 on the graph), the averages of all the users
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Generation

Fig. 23. Evolution of the similarity index along the genera-
tions for the two semantic attributes.

Table 6. Similarity values between users for semantic at-
tribute friendly (in %).

User 5 User 6 User 7 User 8
User 5 79.07 6.91 4.02 2.89
User 6 89.65 20.65 8.81
User 7 61.02 11.97
User 8 74.16

Total average 9.21

Table 7. Similarity values between users for the semantic at-
tribute sportive (in %).

User 1 User 2 User 3 User 4
User 1 79.95 47.87 63.09 36.20
User 2 72.34 74.14 42.62
User 3 89.61 41.04
User 4 74.74

Total average 50.83

are above 40% similarity, and at about 75% for the last
generation. The averages of each user (in italic in Tables 6
and 7) are all included between 60 and 90% of similarity,
which corresponds to a level of very strong similarities.

This test clearly shows that, for each user, the model
converges towards a single family of car silhouettes, which
are very close in terms of visual aspect. But it means too
that there exists a significant diversity lowering.

4.2.3 Test of “inter-designer convergence”

The goal of this test, called test of “inter-designer
convergence” is to study the similarities that can exist
between the last generations of all the users. We clearly
want a design system that preserves the freedom of think-
ing and creating of each designer, so as to be able to keep
the personality of each of them within the last generation
of individuals.

As in the previous test, the idea simply consists in
calculating the similarity indexes for all pairwise compar-
isons between one individual of the last generation of one
user and one individual of the last generation of the other

Table 8. Maxima of similarity values between best individuals
of the IGA and paper individuals (in %).

Sportive

User 1 84.49
User 2 21.26
User 3 80.92
User 4 97.93

Average 71.15

Friendly

User 5 2.67
User 6 98.09
User 7 71.32
User 8 26.94

Average 49.75
Total Average 60.45

user. These inter-designer pairwise comparisons are av-
eraged for all couples of designers to result in Tables 6
and 7 for the two considered semantic attributes. In the
diagonals of the inter-designer matrices, one retrieves the
results of the previous test.

The values are really consistent with the visual as-
pect of the individuals. For semantic attribute friendly,
the values inter-designer (in bold) are not high, and the
total average is only 9.21% similarity, whereas this total
average is 50.83% for attribute sportive. It means that the
similarity between the last population of the users for at-
tribute sportive is high and that, on the contrary, there
is few connection between individuals evoking friendly.

These results confirm rigorously that the perception of
the word sportive is the same for all users (they all came to
the same type of profiles), whereas each user has its own
perception of the word friendly (they all have a different
kind of car silhouettes at the end of the workshop).

4.2.4 Test of “superiority of the IGA model”

This test is called test of “superiority of the IGA
model”. Its goal is to show that our IGA design system
obtains better results than without, i.e. with a brute force
solution enumeration, in particular in terms of time and
number of individuals processed to obtain the results.

It consists in comparing for each user the 3 best indi-
viduals of the IGA with the 3 best individuals obtained
without the IGA (printed on paper) with the similarity
index.

The maxima of similarity are shown in Table 8. For
5 users out of 8, the maximum is above 70% of similarity.
For 2 users, the maximum is included between 20 and
30%. For the last one, it is only 2.67% of similarity.

It means that, much of the time, the final solutions ob-
tained are quite resembling, whatever the design method
(IGA system or brute force enumeration). Indeed, with-
out any judgment of value, 5 users have found with the
IGA at least one individual that is very close to one of
the paper individuals.

But, 400 individuals were proposed on paper and it
takes about 45 min for one user to evaluate them. Com-
paratively, less than 200 individuals are used with the
IGA process (10 generations of 20 individuals, minus
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Table 9. Example of similarity values for the comparison between the best individuals of the IGA and the initial population
(in %).

 

Best Individual 1 Best Individual 2 Best Individual 3

Ind 0 2,04 1,93 1,84

Ind 1 2,95 2,77 2,65

Ind 2 10,02 9,02 8,80

Ind 3 0,91 0,88 0,90

Ind 4 3,45 3,24 3,35

Ind 5 2,04 1,94 1,91

Ind 6 1,42 1,36 1,36

Ind 7 1,78 1,74 1,52

Ind 8 13,90 13,73 10,75

Ind 9 6,62 6,17 6,53

Ind 10 2,76 2,60 2,47

Ind 11 3,28 3,41 2,91

Ind 12 2,08 1,97 1,97

Ind 13 69,65 69,89 53,21

Ind 14 3,50 3,30 3,46

Ind 15 7,15 7,23 10,83

Ind 16 2,07 1,97 1,93

Ind 17 3,05 2,88 2,87

Ind 18 1,65 1,58 1,47

Ind 19 1,99 1,93 1,69

User 2

Initial 
Population

those who survive from one generation to the next one),
and the evaluation only lasts about 20 min. So we can
say that our system seems to be able to bring comparable
results more quickly and with fewer individuals, this is
clearly a proof of its utility

4.2.5 Test of “attraction in the surroundings
of initial individuals”

The last test proposed in this paper is called test of
“attraction in the surroundings of initial individuals”. It
tries to answer the following question: is the user really
able to design his/her own car silhouette, or are the final
individuals influenced by the initial individuals and close
to their genotypes?

We answer this issue by pairwise comparing the 3 best
individuals produced by the IGA process with the 20 car
silhouettes of the initial population.

The results of this test are very interesting, but too
sizeable to be displayed here in their whole. That is why
only the case of user 2 is presented in Table 9.

This table shows that the best individuals of user 2
are very close to Individual #13 of the initial population
(more than 50% of similarity). Individual #13 represents
the silhouette of a Porsche 911. Two other minor influ-
ences can be noticed (with Individuals #2 and #8), but
the values are below 20%, which is not much significant.
User 2 worked with the semantic attribute sportive, and it
is important to notice that the same results are obtained
with the 3 other users who worked with this attribute.

Porsche 911 acts as an absorbing genome in people’s
minds, outperforming from the beginning all the other
individuals and killing the competition. In other words,
all the users perceive a sportive car as a Porsche 911.
Porsche 911 has definitely a brand effect and a visual
identity.

For semantic attribute friendly, the results are totally
different. No car that influences all the users can be iden-
tified. In 2 cases out of 4, no significant influence of an
initial individual is noticed. In the two other cases, such a
car can be identified, with the scores of 40% of similarity,
but this car is different for the two users (Porsche 911 for
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the one, Chevrolet Corvette C4 for the other). It shows
again that this attribute is differently perceived.

4.2.6 Synthesis

Those five tests based on the similarity index permit
to prove rigorously some results. Indeed in all cases the
system turns out to converge towards a uniformed popu-
lation. For semantic attribute sportive, this profile is the
same for any of the four users and is close to Porsche 911.
For semantic attribute friendly, no similar influence from
the initial population is identified, and the results really
depend on the user. The perception of the attributes is
really different from a user to another.

Moreover, our IGA model converges quickly and with
fewer individuals than with the sole brute force enumer-
ation method, which is really satisfactory and reveals its
utility.

Finally, many issues would now merit to be investi-
gated further:

– The model always converges towards one profile fam-
ily. Is it not possible to converge towards at least two
different families?

– What happens if Porsche 911 or the other influencing
cars are not in the initial population? Do the users
even find them?

– Why are there so many differences in the perception of
the semantic attributes? Some concepts of Emotional
Design and Kansei Engineering could be introduced
to get a more sophisticated model, but may be at the
detriment of simplicity.

5 General conclusions and perspectives

We have presented in this paper an innovative car sil-
houettes design model. Based on an encoding method of
the genomes by Fourier decomposition, it offers to the
car designers the possibility to create new car silhouettes
from an initial population according to their preferences
which are not needed to be made explicit before.

Several user tests have been carried out to study the
convergence of the model in terms of user satisfaction,
but also in terms of perceived distance, using a similarity
index. The results show very satisfactory results. They
permit to answer the four questions defined in the intro-
duction:

– Are the users satisfied by our model? Yes, the sat-
isfaction increases along the generations of the IGA,
and the users comment that they really enjoy to work
with our interactive GA system rather than picking
up remarkable silhouettes in a catalogue.

– Are the results better with our model than without?
Yes, in terms of user satisfaction, but also in terms of
time and numbers of processed individuals.

– Does our model really create novelty? Potentially. It
highly depends on the chosen semantic attribute or on
the question or objective the user has in a more or less

explicit manner. Anyway, we proved that individuals
which are considered as visually far from the initial
population may be created.

– Are the results different from a user to another? Po-
tentially. It also depends on the chosen semantic at-
tribute too. But we at least proved that personal opin-
ions can be expressed and preserved as long as people
are not subject to the same image (like what a sportive
car is).

In consequence, our system should allow style designers
to converge towards intuitive ideas and to make emerging
surprise in exploring large spaces of potential silhouettes.

The mutation operator and the ability to directly
modify interesting car profiles during the IGA process
have not been studied in detail in this paper. The setting
of the mutation rate is a real issue and it will be studied in
further work, it is the mean of regulating the convergence
speed of the IGA. This speed is probably a bit fast for
the moment, but the assessment effort asked to the users
at each generation seems sufficient for us. Another way to
slow down the convergence could be to keep in the next
generation of the IGA a high number of the individuals
of the previous generations.

Finally a last interesting perspective is to explore a
new product field: the encoding method that we use is
very flexible and applicable to many design objects. We
think that excellent results could be obtained with simple
shapes. The ideal form would be a simple 2D-closed-curve
from a solid of revolution (which permits to describe the
whole product with a single closed curve), like stemmed
glasses or vases.

Acknowledgements. We gratefully thank François Bleibel,
Nicolas Cordier, Gilles Foinet and Thomas Ricatte for their
contributions to this work.

References

[1] P.J. Bentley, D.W. Corne, Introduction to creative
evolutionary systems, in Creative evolutionary systems,
Morgan Kaufmann Publishers Inc., 2002, pp. 1–75

[2] G. Renner, A. Ekart, Genetic algorithms in computer
aided design, Computer-Aided Design 35 (2003) 709–726
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