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Abstract

Recent developments in generalized probability theory have renewed a debate about
whether regularity (i.e., the constraint that only logical contradictions get assigned
probability 0) should be a necessary feature of both chances and credences. Crucial to this
debate, however, are some mathematical facts regarding the interplay between the existence
of regular generalized probability measures and various cardinality assumptions.
We improve on several known results in the literature regarding the existence of regular
generalized probability measures. In particular, we give necessary and sufficient conditions
for the existence of regular generalized probability measures defined on the whole powerset
of any sample space.

1. Regularity and classical probability theory
The standard Kolmogorovian approach to probability theory on infinite sample
spaces is neither regular nor total. In Kolmogorov probability theory, a probability
space is given by a triple �Ω;A;µ�, where Ω is a set called the sample space, A is a
σ-algebra of subsets of Ω, and µ is a probability measure assigning a real number in
the interval �0; 1� to every set in A.

Regularity corresponds to the constraint that only logical contradictions get
assigned probability 0.1 It is often understood as a “bridge principle” between
modality and probability (Hájek, 2011; Easwaran, 2014), stating that no possible event
can receive a probability 0 of occurring. Totality, on the other hand, requires every
subset of the sample space Ω to be measurable, that is, to have a probability value.
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1 There are many versions of regularity depending on whether one speaks of objective probabilities
(chances) or subjective probabilities (credences) and on how one interprets the modalities (doxastic,
epistemic, metaphysical, etc.). For our purposes, this can be ignored because we are not concerned with
arguing about the plausibility, or lack thereof, of any such principles but only with the mathematical
relations between regularity and totality.
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A measure µ in a probability space �Ω;A;µ� satisfies Kolmogorov’s axioms if:

• µ�U� � 0 for all U 2 A (nonnegativity);
• µ�Ω� � 1 (normality); and
• whenever fAigi2ω is a family of pairwise disjoint sets in A;µ�[i2ωAi� �P

i2ω µ�Ai� (countable additivity).

Moreover:

• µ is regular if µ�A� � 0 implies A � ; for any A 2 A; and
• µ is total if A � P�Ω�.

It is well known that (and this is one example among many) by letting Ω � �0; 1�,
we witness a failure of both regularity and totality for many standard Kolmogorovian
probability measures. Indeed, suppose µ is a uniform probability measure defined on
all singletons in �0; 1�; that is, µ�fxg� is defined for any x 2 �0; 1�, and µ�fxg� � µ�fyg�
for any x; y 2 �0; 1�. Then a standard argument that uses countable additivity2

establishes that µ�fxg� � 0 for any x 2 �0; 1�. One of the unpalatable consequences
of this fact is that we have to accept that in a Kolmogorovian setup, whenever we
throw a perfectly pointed dart at the interval [0, 1] and we assume uniformity, every
single point x 2 �0; 1� has probability 0 to be hit, even though one of them will be hit
(because µ��0; 1�� � 1). But, and we will come back to this point later on, failure of
regularity can also occur when the probability distribution is not uniform.

The failure of totality in the Kolmogorovian context often follows from the axiom
of choice. For example, Vitali’s theorem establishes that there are subsets of the
interval [0, 1] that are not Lebesgue measurable.3 When one does not require the
probability measure to be translation invariant, the existence of total probability
measures on the interval �0; 1� becomes either trivial (for any x 2 �0; 1�, the function
µx:P��0; 1�� ! �0; 1� given by µ�U� � 1 if x 2 U;µ�U� � 0 otherwise is a two-valued,
countably additive, total probability measure) or independent of ZFC (the existence of
a countably additive total measure µ such that µ�fxg� � 0 for all x 2 �0; 1� implies
that 2ω is real-valued measurable; see Ciesielski [1989]).

The failure of regularity and totality4 in the Kolmogorovian case raises the issue of
whether there exist theorems relating regularity and totality that can be stated in
more general terms and that apply beyond the context of Kolmogorovian probability.
For instance, the failure of totality for the Lebesgue measure uses countable
additivity. But what if we weaken our probability measures to finitely additive
functions?5

2 In fact, finite additivity is enough; see Section 3.
3 The axiom of choice is necessary here: Solovay (1970) showed that if there is an inaccessible cardinal,

then there is a model of ZF in which all sets of reals are Lebesgue measurable.
4 We are keeping these two problems separate because in certain accounts, regularity could fail

because no value has been assigned to a possible event (see Hájek, 2011, 7). In our account, regularity can
fail only when a possible event (a nonempty subset of the sample space) is assigned probability 0.

5 For example, Banach (1923) constructs a total, finitely additive, and translation-invariant probability
measure on [0,1], but that measure is, of course, not regular.
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Philosophers of probability have devoted quite a bit of attention to regularity.6 The
discussion has recently been revitalized by the emergence of powerful infinitesimalist
approaches to probability theory, which seem to open new possibilities for a defense
of regularity by using infinitesimals in the range of the probability measure. But some
philosophers have found this attempt to save regularity wanting. In particular,
Williamson (2007), Easwaran (2014), and Hájek (2011) have claimed that the use of
infinitesimals is not a satisfactory way of implementing regularity as a constraint on
rational credences. For instance, Williamson (2007) provides a thought experiment
with a countably infinite sequence of coin tosses and claims that even with
infinitesimals at our disposal, the probability of such a sequence is 0 (and yet such a
sequence is possible). Meanwhile, Easwaran (2014) and Hájek (2011) argue that some
of the issues for orthodox Bayesianism created by the failure of regularity are best
addressed by a revision of orthodox Bayesianism altogether.

Regarding the introduction of infinitesimals as a solution to the regularity
problem in standard probability theory, the dialectic that has emerged has been well
characterized by Hájek:

I envisage a kind of arms race: we scotched regularity for real-valued probability
measures by canvassing sufficiently large domains: making them uncountable. The
friends of regularity fought back, enriching their ranges: making them hyper-
realvalued. I counter with a still larger domain: making its values hyperreal-valued.
Perhaps regularity can be preserved over that domain by enriching the range again,
as it might be, making it hyper-hyperreal-valued. I counter again with a yet larger
domain: making its values hyper-hyperreal-valued. And so it goes. Some latter-day
Bernstein and Wattenberg would need to keep coming up with constructions that
would uphold regularity, however big Ω gets—presumably with ever-richer fields
of numbers to provide the values of the probability measures (2011, 21–22).

The thought contained here has received a tentative characterization by Hofweber
(2014b) and a more formal one by Pruss (2013). Hofweber advocates “flexibility” in the
choice of range and conjectures that by choosing a large enough range, one can
preserve properties akin to regularity (he is especially concerned about preserving
what he calls the “minimal constraint”):

The lesson from this for believers in infinitesimal chances is simply this: we
don’t pick our numbers that measure chance once and for all. We don’t use a
fixed number system once and for all, suitable for whatever events need their
chances measured. Rather, we pick a suitable extension of the real numbers, one
that is suitable for the task at hand and the events under consideration that need
their chances measured. If we try to measure the chance of the dart to hit a
certain point on the real line, or the chance that a countable sequence of coin
tosses comes up heads, then any hyperreal extension of the real numbers will do.
We can just pick one. If we hope to measure a larger set of events, then we should
play it safe and pick a larger non-Archimedean extension of the real numbers.

6 Hájek (2011) lists Kemeny (1955), Shimony (1955, 1970), Jeffreys (1922), Edwards et al. (1963), Carnap
(1963), Stalnaker (1970), Lewis (1980), Skyrms (1980), Appiah (1985), Jackson (1987), and Jeffrey (1992).
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All that is needed, I conjecture, is one that has larger cardinality than the set of
events to be measured. As long as the range of the probability measure is larger
than the domain, we will be fine. Less might be fine in most cases, but more is a
safe bet. Thus when we measure the chance of events in a certain set of events
we pick some extension of the real numbers with infinitesimals that has a larger
size than the set of events. Any one of them will do. But you can’t pick one first to
be suitable for any possible sets of events that need their chances measured.

In keeping with the dialectic outlined so far, the formal results discussed in the literature
on the topic can be roughly divided into two categories. On the one hand, existence
theorems establish that under certain conditions on the sample spaceΩ and the range of
probabilities V, regular probability measures fromP�Ω� to V can be constructed. On the
other hand, impossibility theorems identify conditions on Ω and V under which there can
be no regular probability measure from P�Ω� to V. For results of the first kind,
Hofweber (2014a) provides, for instance, the following result:

Theorem 1.1. Let Ω be any infinite sample space. There is a hyperreal field <� of at most
cardinality 2jΩj and a regular probability measure from P�Ω� into <�.

In other words, given any sample space Ω of cardinality κ, one can always obtain a
total and regular probability measure on P�Ω� by finding an appropriate hyperreal
field of cardinality 2κ.

By contrast, the best impossibility results existing in the literature are given by
Pruss (2013) (see also sec. 2). Unlike Hofweber (2014a), who focuses on the size of the
algebra of subsets of the sample space, Pruss focuses on the size of the sample space.
Pruss (2013) shows that wheneverΩ is strictly larger in cardinality than the range of a
probability measure µ;µ cannot be regular.

Our main contribution to the existing literature is an improvement of Pruss’s
impossibility theorem. Using a notion of generalized probability measure inspired by
Pruss’s setting, we establish the following:

Theorem 3.1. For any generalized probability range �V;	;
; 0� and any set Ω such that
jΩj � jVj, there is no total regular V-probability measure for Ω.

Theorem 3.1 is a clear strengthening of Pruss’s result because it establishes that
the assumption that jΩj > jVj can be weakened to jΩj � jVj. We also combine our
novel impossibility theorem with existence theorems such as the ones noted by
Hofweber (2014a) and Benci et al. (2018) to address the following question: Given
a sample space Ω and a cardinal κ, is there a generalized probability range V
(see Definition 2.1) of size κ and a regular generalized V-probability measure defined
on P�Ω�? We show that under the assumption of the generalized continuum
hypothesis (GCH), the conjunction of the known existence theorems and our
impossibility result yields a complete answer to the question:

Theorem 5.7. (GCH) Let κ be a cardinal and Ω a set. Then there is a hyperreal field < of
size κ and a total and regular finitely additive probability measure µ:P�Ω� ! < if and only
if (iff) jΩj < κ.
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Moreover, a related problem is to give necessary and sufficient conditions for
when, given a sample spaceΩ and a field V, there exists a regular probability measure
defined onP�Ω�. Because we believe that the first question is the more relevant one
for the current philosophical debate on regularity, we do not pursue this question
here. However, we consider a similar question in the case where the algebra of events
is the set of finite and cofinite subsets of Ω rather than the full powerset. Regarding
this issue, we establish the following existence result:

Theorem 4.7. LetΩ be an infinite set, let Fin�Ω� be the algebra of finite and cofinite subsets
of Ω, and let V be a countable non-Archimedean field. Then there is a regular V-probability
measure µ: Fin�Ω� ! V.

We then use this lemma together with well-known impossibility results to
establish the following:

Theorem 4.8. Let Ω be an uncountable set and F an infinite field. Then there is a regular
generalized F-probability measure defined on the algebra of finite and cofinite subsets ofΩ iff F
is non-Archimedean.

The rest of the article is organized as follows. In Section 2, we introduce a framework
for generalized probability measures inspired by the one in Pruss (2013) and connect
the issue of regularity in probability theory to an old result of Zermelo (1904) regarding
functions from the powerset of a set X into X itself. In Section 3, we show how Zermelo’s
theorem can be used to establish several impossibility results about total and regular
probability measures. In particular, we show how to improve the cardinality
assumption in Pruss’s impossibility theorem. In Section 4, we investigate what
happens when the requirement that a generalized probability measure be defined on
the full powerset of an infinite sample space is relaxed, and we show that even in this
case, Zermelo’s theorem allows us to prove some impossibility theorems. Finally, in
Section 5, we discuss the connection between our results and some of the hyperreal
fields that have been constructed as ranges of regular generalized probability measures.

2. Part-whole and regularity
In this section, we first introduce the general probabilistic setting in which we will
work. Throughout this article, we will not assume that the range of a probability
measure µ is contained in the real unit interval �0; 1�. The motivation for this is
twofold. First, Hájek’s (2011) “arms race” description of the dialectic between
proponents and opponents of regularity involves considering domains and codomains
of ever-increasing cardinality. Second, as we shall see later on, the relationship
between regularity, totality, and cardinality in the classical setting is muddled by the
fact that the standard unit interval �0; 1� is Archimedean. We may therefore hope to
gain a clearer understanding of the possible obstacles to the existence of a total and
regular probability measure in a more general context in which Archimedeanity does
not play a role anymore. However, given the importance of probability measures with
a range contained in the real interval �0; 1� in the literature, we will often point out
how the results we discuss apply in this specific case. We start with the following
definitions adapted from Pruss (2013).
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Definition 2.1. A generalized probability range is a tuple �V;	;
; 0� satisfying the
following conditions:

• �V;	� is a partial order, with 0 being its least element;
• �V;
; 0� is a commutative monoid—that is, 
 is a commutative and associative
operation on V, and x
 0 � x for any x 2 V; and

• for any x; y; z 2 V; x < y implies x
 z < y
 z.

Definition 2.2. Let �V;	;
; 0� be a generalized probability range. A generalized
V-probability space is a triple �Ω;A;µ� such that:

• Ω is a set, and A is a collection of subsets of Ω closed under finite unions and
complements; and

• µ:P�Ω� ! V is a function satisfying the following two conditions:
– 0 	 µ�A� for any A 2 A (nonnegativity); and
– whenever A; B 2 A are such that A \ B � ;;µ�A [ B� � µ�A� 
 µ�B� (finite
additivity).

Given a generalized probability space, �Ω;A;µ�, the generalized V-probability
measure µ is total if A � P�Ω�, and it is regular if µ�A� � 0 implies A � ; for
any A 2 A.

For any ordered field F, the nonnegative elements of F form a generalized
probability range. For this reason, we will sometimes consider fields as generalized
probability ranges, despite the slight abuse of language. Note that in the classical
setting, a finitely additive probability measure is a generalized R-probability measure
�Ω;A;µ� satisfying the additional condition that µ�Ω� � 1.

Pruss (2013) shows a version of the following:

Theorem 2.3. Let �V;	;
; 0� be a generalized probability range and Ω a set such
that jΩj > jVj. Then there is no total and regular generalized V-probability measure for Ω.

Our first main result (Theorem 3.1) is an improvement of Pruss’s result. In this
section, we lay the groundwork for this theorem by establishing a connection
between generalized regular probability measures and part-whole–preserving
functions. We start by recalling a result that is well known in the literature
(e.g., it is stated en passant in Benci et al. [2018], 516) but is worth proving expressly.
We first need the following definition:

Definition 2.4. Let V be a generalized probability range and �Ω;A;µ� be a generalized
V-probability space. The generalized V-probability measure µ preserves part-whole if for any
A; B 2 A such that A⊊ B;µ�A� < µ�B�.

Lemma 2.5. Let µ:A ! V be a generalized V-probability measure for some generalized
probability range V. Then µ satisfies regularity iff µ preserves part-whole.

726 Paolo Mancosu and Guillaume Massas



Proof. First, it is a simple exercise to verify that any generalized V-probability space
�Ω;A;µ� has the following two properties: µ�;� � 0, and µ�A� 	 µ�B� whenever
A; B 2 A and A � B.

Fix V;Ω;A, and µ:A ! V. If A⊊ B for some A; B 2 A, then finite additivity implies
that µ�B� � µ�A� 
 µ�BnA�. If µ is regular, then we have 0 < µ�BnA�, from which it
follows that

µ A� � � µ A� � 
 0 < µ A� � 
 µ BnA� � � µ B� �:
Hence, µ preserves part-whole.

Now suppose µ preserves part-whole, and let A be any nonempty set inA. Because
;⊊ A, by part-whole we have µ�;� < µ�A�. Thus, µ�A�≠µ�;� � 0 for every
nonempty subset A, which means that µ is regular. □

We now introduce a theorem that will be of great use for our proofs. Its
significance for the study of abstraction operators that are used in the context of
neologicism has been highlighted by Mancosu and Siskind (2019) and for issues
related to the axiom of choice in second-order logic by Siskind et al. (2023). The
theorem, in its set-theoretic version, is implicit in Zermelo (1904) and was brought
out explicitly by Kanamori (1997).

Theorem 2.6 (Zermelo, 1904). Given a set X and an arbitrary function f : P�X� ! X,
there are sets A; B 2 P�X� such that A⊊ B and f �A� � f �B�.

The theorem can be proved without the axiom of choice, and it can be formalized
in a second-order theory with only the additional symbol for f (see Mancosu and
Siskind, 2019). Here is a set-theoretic proof that uses transfinite induction:

Proof. Fix a set X and a function f : P�X� ! X. In order to violate part-whole, we
must find two sets A; B 2 P�X� such that A is a proper subset of B and f �A� � f �B�.
Using transfinite recursion, define a function G : Ord ! P�X�, where Ord is the class
of ordinals, as follows:

G 0� � � f ;� �;
G α� � � f ran Gjα� �� �;where ran�Gjα� � fG β� �jβ < αg:

One easily verifies that for any ordinal α; G�α� � X. Because P�X� is a set and Ord
is a proper class, there must be α < β 2 Ord such that G�α� � G�β�. Letting A � Gjα
and B � Gjβ, this means that f �A� � G�α� � G�β� � f �B�. At the same time, we
clearly have that A⊊ B, which shows that A and B are the required counterexamples to
part-whole. □

The connection between the previous applications and the probabilistic setting is
the following. Just as in neologicism we are concerned with functions defined by
abstraction principles mapping concepts (conceived extensionally as subsets of the
domain of individuals) on a certain domain into the domain itself, in many
applications of probability theory, we are also mapping a collection of subsets (or the
entire power set) of the sample space Ω into Ω itself.

Philosophy of Science 727



The following result is the first immediate application of Zermelo’s (1904) result in
the context of probability theory:

Theorem 2.7. Let X be a subset of �0; 1�, and let µ from P��0; 1�� into X be a finitely
additive probability measure. Then µ is not regular.

Proof. Fix a finitely additive probability measure µ : P��0; 1�� ! X, and notice that
we may view µ as a finitely additive measure with codomain �0; 1�. By Lemma 2.5, µ is
regular only if it preserves part-whole. But by Theorem 2.6, µmust violate part-whole
and therefore cannot be regular. □

Theorem 2.7 only uses a special case of Zermelo’s theorem—namely, when the
codomain of the function f is a subset of the unit interval. As we shall now see, the
generality of Zermelo’s theorem allows for a much more general impossibility result
regarding the existence of regular probability measures.

3. Zermelo’s theorem and generalized probability measures
Our first generalization of Theorem 2.7 allows us to consider a much wider class of
sample spaces and probability ranges.

Theorem 3.1. For any generalized probability range �V;	;
; 0� and any set Ω such that
jΩj � jVj, there is no total regular V-probability measure for Ω.

Proof. Suppose toward a contradiction that µ is a regular generalized V-probability
measure for Ω. Because jΩj � jVj, there is a surjection f : Ω ! V. Consider the inverse
image lift f� : P�V� ! P�Ω� of the surjection f , given by f��A� � fy 2 Ωjf �y� 2 Ag for
any A � V. One easily verifies the following:

• f��;� � ;; f��A� � f��B� whenever A; B � V and A � B; and
• for any A; B � V; f��A [ B� � f��A� [ f��B�; f��A \ B� � f��A� \ f��B�;
• f� is an injection.

Now consider the composition ν � µ � f� : P�V� ! V. We then verify that ν is a
regular generalized V-probability measure. Indeed:

• For any A � V; ν�A� � µ�f��A�� � 0 by nonnegativity of µ.
• For any A; B � V such that A \ B � ;:

ν A [ B� � � µ f� A [ B� �� � � µ f� A� � [ f� B� �� � � µ f� A� �� � 
 µ f� B� �� �
by finite additivity of µ, and because f��A� \ f��B� � f��A \ B� � ;. Hence,

ν A [ B� � � ν A� � 
 ν B� �;
which shows that ν is finitely additive.
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• For any A � V; �A� � 0 implies that µ�f��A�� � 0. Because µ is regular, this
means that f��A� � ;. Because f� is injective and f��A� � f��;� � ;, it follows
that A � ;, which establishes that ν is regular.

By Lemma 2.5, this means that there is a part-whole–preserving function
µ : P�V� ! V, which contradicts Zermelo’s theorem. Hence, there is no generalized
V-probability measure µ : P�Ω� ! V. □

Theorem 3.1 is a clear generalization of Pruss’s (2013) result. By appealing to
Zermelo’s theorem, we weakened the assumption thatΩ has size strictly greater than
V to merely assuming the existence of a surjection from Ω to V.

Moreover, Pruss’s (2013) result only shows that there must be at least one failure of
regularity for any V-probability measure. Using Theorem 3.1, however, we can
actually show that there must be many failures of regularity, even in the generalized
setting.

Lemma 3.2. Let Ω be a set and V be a generalized probability range such that
jΩj � jVj � κ. Then for any V-probability measure µ : P�Ω� ! V;µ�fxg� � 0 for κ

many elements x 2 Ω.

Proof. Let C � fx 2 Ωjµ�fxg� � 0g, and let Ω0 � ΩnC. Consider the function
ν : P�Ω0� ! V determined by ν�A� � µ�A� for any A � Ω0. One easily verifies that
ν is a V-probability measure for Ω0. Now suppose that A⊊ B 2 P�Ω0�. This implies
that there is x 2 BnA, and note that because B is disjoint from C; ν�fxg� � µ�fxg� > 0,
which implies that ν�BnA� > 0. Because ν�B� � ν�A� 
 ν�BnA�, it therefore follows
that ν�A� < ν�B�. Thus ν is a regular V-probability measure for Ω0. By Zermelo’s
theorem (Theorem 3.1), it follows that jΩ0j < jVj � κ. Now, because
κ � jΩj � jΩ0j 
 jCj, from jΩ0j < κ and basic cardinal arithmetic, it follows that
jCj � κ. Thus, µ�fxg� � 0 for κ many elements x of Ω.

Finally, we conclude this section by discussing in some detail the special case of
real-valued finitely additive probability measures. As an immediate corollary of
Theorem 3.1, we obtain the following:

Corollary 3.3. Let Ω be a set such that jΩj � 2@0 . Then no finitely additive probability
measure µ : P�Ω� ! �0; 1� is regular.

Corollary 3.3 is a weaker form of a well-known result establishing that there can be
no finitely additive regular probability measure from a set Ω into �0; 1� when Ω is
uncountable. The argument has been presented neatly by both Hájek (2003) and
Williamson (2007). Let Ω be a set, and suppose that µ is a finitely additive probability
measure into �0; 1� and defined on all singletons. For any natural number n, let An be
the set of all x 2 Ω such that µ xf g� � ≥ 1

n. By finite additivity, each An must be finite,
which means that there can only be countably many singletons mapped to a nonzero
value in �0; 1�. If Ω is uncountable, then this means that uncountably many singletons
must be mapped to 0.

The Hájek–Williamson argument has three advantages. The first one is that it
shows that the failure of regularity must occur in many places because uncountably
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many singletons must be mapped to 0. By contrast, Corollary 3.3 only guarantees that
regularity must fail in some place, which is enough to conclude that any standard
probability measure must assign probability 0 to fxg for some x, but nothing more.
Here, however, it is easy to see that one can adapt the proof of Lemma 3.2 in a
straightforward way so as to obtain continuum many failures of regularity in the case
of a probability measure defined on the full powerset of a sample space of size
continuum. Second, although our application of Zermelo’s theorem requires
the sample space Ω to have size continuum, one only needs Ω to be uncountable
for the Hájek–Williamson argument to go through. In the absence of the continuum
hypothesis, the Hájek–Williamson result is therefore stronger than ours. Finally, the
Hájek–Williamson argument only requires the probability measure to be defined on
all singletons,7 whereas our results assume that the probability measure is total.
However, the last two differences between the two results are connected to a third
significant one: the Hájek–Williamson argument relies in an essential way on the fact
that the real interval �0; 1� is Archimedean. By finite additivity, only finitely many
singletons can have probability greater than 1

n for a fixed natural number n, which
means that uncountably many singletons must have a value smaller than 1

n for any n.
But this implies that uncountably many singletons must have probability 0 only
because 0 is the unique element smaller than 1

n for any n (i.e., �0; 1� is Archimedean).
The Hájek–Williamson argument does not say anything about the failure of regularity
in a non-Archimedean field, which contrasts with the generality of Theorem 3.1. We
will return to the issue of Archimedeanity in the next section, in which we investigate
to what extent totality is necessary to establish the impossibility results mentioned
so far.

4. Relaxing totality
In this section, we investigate the consequences of relaxing the requirement that the
algebra of events must be the entire powerset of Ω for the existence of regular
measures. Let us start with an easy result.

Lemma 4.1. Let Ω be a set, and assume that there exists a total and regular generalized
V-probability measure µ on P�Ω� for some generalized probability range V. Then for any
infinite algebraA of subsets ofΩ, there is a generalized probability range V 0 of size at most jAj
and a regular probability measure ν : A ! V 0. Moreover, if V is a field, then so is V 0.

Proof. Let Ω;A;V , and µ : A ! V be as in the statement of the lemma, and let S be
the range of the restriction of µ to A. Let V 0 be the substructure of V generated by S,
and notice that because jAj � maxf@0; jSjg, we have that jV 0j 	 A. But clearly, the
restriction ν : A ! V 0 of µ is the required regular probability measure. Moreover, if
V is a field, then we can take V 0 to be the substructure of V generated by S in the
language of fields, and thus we may assume that V 0 is a field.

7 In fact, it requires an even weaker assumption on the algebra A of events—namely, that it contains
an uncountable antichain (recall that an antichain in a field of sets is a collection of pairwise disjoint
sets).
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In the next section (Theorem 5.5), we will recall existing results in the literature
establishing that for any set Ω there is a hyperreal field V and a regular generalized
V-probability measure defined on P�Ω�. This entails that the assumption in the
statement of Lemma 4.1 can in fact always be satisfied.

For now, let us investigate some consequences of this lemma for countable sample
spaces and real-valued probability measures. In order to do this, we start by recalling
a classical result of measure theory (e.g., it is a special case of theorem 2.5 in Horn and
Tarski [1948]):

Lemma 4.2. Let Ω be a countable set. Then there is a regular finitely additive probability
measure µ : P�Ω� ! �0; 1�.

Proof. Let us first show this in the case Ω � N. Recall that any real number in the
interval �0; 1� has a binary expansion; that is, it can be written as a (possibly infinite)
sequence of negative powers of 2. For example, the rational number 0:625 can be
written as 0:5
 0:125 � 1  2�1 
 0  2�2 
 1  2�3. Conversely, any countable
sequence s of 0s and 1s determines the binary expansion of some real number
r�s� 2 �0; 1�. For any subset U of N, let µ0�U� � r�χU�; that is, let µ0�U� be the real
number whose binary expansion is determined by the characteristic function of U.
Formally, this means that for any U � N:

µ0 U� � �
X
i2N

χU i� �  2�i:

For example, µ0�f1; 3g� � 1  2�1 
 0  2�2 
 1  2�3 � 0:625. Then observe the
following:

• µ0�U� � 0 iff χU is constantly 0 iff U � ;.
• Whenever U \ V � ;, we have that:

µ0 U� � 
 µ0 V� � � P
i2N χU i� �  2�i 
P

i2N χV i� �  2�i

� P
i2N χU i� � 
 χV i� �� �  2�i

� P
i2N max χU i� �;χV i� �� �  2�i

� P
i2N χU[V  2�i

� µ0 U [ V� �;
which shows that µ0 is finitely additive (in fact, the same argument shows
that it is σ-additive).

Hence, µ0 is a regular finitely additive probability measure defined on the whole of
P�N�. Now if Ω is any countable set, there is a surjection f : N ! Ω, which can be
lifted to an injection f� : P�Ω� ! P�N�, as in the proof of Theorem 3.1. But then
µ0 � f� : P�Ω� ! �0; 1� is also a regular finitely additive probability measure defined
on P�Ω�. □
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Combined with a similar construction as in Lemma 4.1, we get the following as an
immediate corollary of Lemma 4.2:

Corollary 4.3. Let Ω be a countable set, and let Fin�Ω� be the algebra of finite and cofinite
subsets of Ω. Then there is a regular probability measure µ : Fin�Ω� ! �0; 1� \Q.

Proof. Let f be a bijection betweenΩ and ω. This induces an isomorphism of fields of
sets ϕ : Fin�Ω� ! Fin�ω�. Note, moreover, that for any finite or cofinite subset A of
ω;µ0�A� is rational, where µ0 is the regular probability measure defined in the proof
of Lemma 4.2. Then letting µ be the restriction of µ0 to Fin�ω� and ν � µ � ϕ, we have
that ν is a regular Q-probability measure. □

Moreover, Lemmas 4.1 and 4.2 also have some immediate consequences regarding
the interaction of probability theory and computability theory. For example, it is well
known that there are only countably many recursive subsets of ω and that they form a
Boolean subalgebra A of P�ω�. By Lemma 4.1, we may consider the subfield V 0 of R
generated by the range of the restriction of µ0 to A, where, again, µ0 is the function
defined in the proof of Lemma 4.2. In fact, it is easy to verify that V 0 is exactly the field
of all recursive reals in the interval �0; 1�. This has the following consequence:

Corollary 4.4. Let R0 be the field of recursive reals in the interval �0; 1�. Then there is a
countable algebra A � P�R0� and a regular probability measure ν : A ! R0.

Proof. Because R0 is countable, fix a bijection f : R0 ! ω. As usual, this yields an
isomorphism f� : P�ω� ! P�R0�, so let A � f ��A�; that is, A is the range of the
restriction of f to A. Clearly, A is a countable subalgebra of R0. Moreover, let
ν : A ! R0 be defined as ν�f��A�� � µ0�A�. Notice that this is well defined because, by
construction, any element in A is of the form f��A� for some A 2 A such that
µ0�A� 2 R0. But clearly, ν is regular, which completes the proof. □

In other words, when restricting our attention to a countable subalgebra of the
powerset of the recursive reals in the interval �0; 1�, we are able to escape the
conclusion of Zermelo’s theorem. Of course, this is only because A is not the full
powerset of the set of recursive reals because there are uncountably many subsets of
the recursive reals. Let us also note that the regular probability measure thus
constructed is not itself recursive, nor is A the algebra of recursive subsets of R0.

The previous results establish that relaxing the assumption of totality may
sometimes allow for the existence of regular probability measures. One is therefore
led to wonder whether totality is in fact a necessary condition for the conclusion of
Zermelo’s theorem to apply. The proof of Zermelo’s original theorem certainly seems
to make essential use of the fact that the function f : P�X� ! X that ends up
violating part-whole is defined on all arbitrary subsets of X. However, the obstacle to
the existence of regular probability measures is not totality per se because it is
sufficient that the algebra of events be merely isomorphic to the full powerset of the
sample space, as the following straightforward lemma shows:
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Lemma 4.5. Let Ω be an infinite set and V a generalized probability range such that
jΩj � jVj. Then for any algebra of events A such that A and P�Ω� are isomorphic as fields
of sets, there is no regular V-probability measure µ : A ! V.

Proof. SupposeA is an algebra of events isomorphic toP�Ω�, and let ϕ : P�Ω� ! A
be such an isomorphism. Clearly, if µ : A ! V is a regular V-probability measure,
then so is µ � ϕ : P�Ω� ! V. Therefore, by Theorem 3.1 there can be no regular
V-probability measure defined on A. □

As a direct consequence of Lemma 4.5, we can now prove the following
impossibility theorem for algebras of events that are far from being the full powerset
of the sample space:

Corollary 4.6. Let Ω be an infinite set and V be a generalized probability range such that
jΩj � jVj. Then there is a subalgebra A of P�Ω� such that jAj � jP�Ω�nAj � jP�Ω�j
and for which there is no regular V-probability measure defined on A.

Proof. Fix a bijection f fromΩ intoΩ × f0; 1g, and let π : Ω × f0; 1g ! Ω be defined
as π�x; i� � x for any x 2 Ω; i 2 f0; 1g. Finally, let g : Ω ! Ω be the composition π � f .
Because g is a surjection, it induces an embedding g� of P�Ω� into P�Ω�. Let
A � g��P�Ω�� � fg��U�jU � Ωg. It is straightforward to verify that the map
ϕ : A ! P�Ω� given by ϕ�g��U�� � U for any U 2 P�Ω� is an isomorphism of fields
of sets. By Lemma 4.5, this implies that there can be no regular V-probability measure
defined onA. Now for any x 2 Ω, let x0 � f �1�x; 0� and x1 � f �1�x; 1�. Note that x0 ≠ x1
yet g�x0� � g�x1� � x for any x 2 Ω. Thus, for any x 2 Ω and U � Ω; x0 2 g��U� iff
g�x0� 2 U iff g�x1� 2 U iff x1 2 g��U�. From this, it follows at once that fx0g =2A for any
x 2 Ω. Because x0 ≠ y0 whenever x≠ y, we can therefore conclude that A is a proper
subalgebra of P�Ω� such that jP�Ω�nAj � jP�Ω�j. □

This result establishes that totality is not, after all, a necessary condition for the
conclusion of Zermelo’s theorem to hold. Indeed, to guarantee that there can be no
regular generalized V-probability measure defined on a subalgebraA ofP�Ω� for some
set Ω of size jVj, it is enough to assume that A is isomorphic to P�Ω�, which, as
corollary 4.6 shows, does not coincide with A being the full powerset of Ω. Moreover,
the real obstacle to the existence of a regular function also does not lie in the
constraints put on the cardinality of the algebra of events, as the following result shows:

Lemma 4.7. LetΩ be an infinite set, let Fin�Ω� be the algebra of finite and cofinite subsets of
Ω, and let V be a countable non-Archimedean field. Then there is a regular V-probability
measure µ : Fin�Ω� ! V.

Proof. Let V be a countable non-Archimedean field.8 Fix a positive infinitesimal
ε 2 V. By definition, any element in Fin�Ω� is either a finite subset of Ω or the

8 Recall that such a field V can be constructed, for example, by building a non-Archimedean
elementary extension V 0 of Q using the compactness theorem and then taking V to be a countable
elementary substructure of V0 .
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complement of such a finite subset. Define µ : Fin�Ω� ! V by letting µ�A� � εjAj if A
is finite, and �A� � 1 � εjΩnAj otherwise. Let us show that µ is the required measure.
Suppose A; B 2 Fin�Ω� are such that A \ B � ;. We distinguish two cases:

• Case 1: Both A and B are finite. In this case we have that A [ B is finite and
jA [ Bj � jAj 
 jBj, so

µ A [ B� � � ε A [ Bj j � ε Aj j 
 Bj j� � � ε Aj j 
 ε Bj j � µ A� � 
 µ B� �:

• Case 2: Either A or B is infinite. Without loss of generality, assume A is infinite.
Note that this means thatΩnA is finite. Because A \ B � ;, we have that B � ΩnA, so
B is also finite. By simple finite cardinality reasoning, we have that jΩnAj �
jBj 
 j�ΩnA� \ �ΩnB�j. Moreover, we have that Ωn�A [ B� � �ΩnA� \ �ΩnB�.
Because A and A [ B are infinite but B is finite, it follows that µ�A� �
1 � εjΩnAj;µ�A [ B� � 1 � εj�ΩnA� \ �ΩnB�j, andµ�B� � εjBj. Nowwe compute:

ΩnAj j � Bj j 
 ΩnA� � \ ΩnB� �j j ,
Bj j � ΩnAj j � ΩnA� � \ ΩnB� �j j ,

ε Bj j � ε ΩnAj j � ε ΩnA� � \ ΩnB� �j j ,
1 � ε ΩnAj j 
 ε ΩnBj j � 1 � ε ΩnA� � \ ΩnB� �j j ,

µ A� � 
 µ B� � � µ A [ B� �:
It follows that µ is a V-probability measure. Moreover, by construction, µ is clearly

regular. □

Lemma 4.7 shows that the cardinality of the algebra of events does not determine
by itself how big the codomain of a regular generalized probability measure must be.
Indeed, a countable codomain will suffice for a sample space Ω, provided that the
algebra of events under consideration is generated by the singletons. But such an
algebra has the same cardinality as Ω, which shows that a countable codomain is
enough to find regular measures for arbitrarily large algebras.

We conclude this section by connecting this last result with our discussion of
Archimedeanity in the previous section:

Corollary 4.8. LetΩ be an uncountable set and F be an infinite field. Then there is a regular
generalized F-probability measure defined on the algebra of finite and cofinite subsets ofΩ iff F
is non-Archimedean.

Proof. Suppose that F is non-Archimedean. Because F is infinite, it contains a
countable non-Archimedean subfield. By Lemma 4.7, it follows that there is a regular
generalized F-probability measure defined on the Boolean algebra of finite and
cofinite subsets of F. Conversely, if F is Archimedean, then the Hájek–Williamson
argument shows that there can be no regular generalized F-probability measure
defined on all the singletons in Ω.
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5. Regularity, cardinality, and hyperreal fields
In this final section, we connect our investigations on the relationship between
totality, regularity, and cardinality to the nonstandard approach to probability and to
hyperreal extensions of R. We will limit ourselves to the model-theoretic approach to
nonstandard analysis because our interest in the cardinality of domains and
codomains of regular probability measures does not align with an axiomatic approach
à la Nelson. We start by recalling the framework of enlargements that is central in
Robinsonian nonstandard analysis.9

Definition 5.1. The universe U�X� over a set X is defined as follows:

• U0�X� � X;
• Ui
1�X� � Ui�X� [P�Ui�X�� for i < ω; and
• U�X� � [i < ωUi�X�.

Definition 5.2 An enlargement is a map � : U�X� ! U�X� between universes such that:

• X⊊X, and �x � x for any x 2 X;
• X �� X and �; � ;;
• (Transfer Principle) for any first-order formula ϕ�x1; ::; xn� in the language of set theory
and any a1; . . . ; an 2 U�X�:

U X� �j � ϕ a1; . . . ; an� � ,� U X� �j � ϕ��a1; . . . ;� an�; and

• (Saturation Principle) whenever A 2 U�X� is collection of sets such that for any
a1; . . . ; an 2 A;\i	nai ≠ ;, there is b 2 U�X� such that b 2 \�

i	nai.

Whenever � : U�R� ! U�<� is an enlargement, < is a hyperreal extension of R,
meaning that it satisfies the same first-order theory in the language of fields as R, but
it contains infinitely small and infinitely large numbers. In particular, one obtains a
nonstandard unit interval �0; 1�< �� �0; 1�R. Using a nonstandard framework similar
to enlargements, Bernstein and Wattenberg (1969) showed the following:

Theorem 5.3 (Bernstein and Wattenberg, 1969). There is a hyperreal extension < and a
total and regular probability measure µ : P��0; 1�R� ! �0; 1�< such that for any Lebesgue
measurable set A � �0; 1�, the Lebesgue measure of A is equal to the standard part of µ�A�.

One must exert some care in distinguishing the hyperreal field < used by
Bernstein and Wattenberg (1969) from the simplest type of hyperreal extensions
obtained by taking an ultrapower of the reals modulo a nonprincipal ultrafilter on ω.
Indeed, if R is such an ultrapower, then

9 For a comprehensive introduction to enlargements, see Goldblatt (2012, part IV).
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j�0; 1�R �j jff jf : ω ! �0; 1�Rg �j j�0; 1�Rj@0 � �2@0�@0 � 2@0 ;

and hence �0; 1�R has the same size as R. But then it follows directly from Theorem 3.1
that there can be no total and regular probability measure from P�R� into �0; 1�R.
Thus, the hyperreal field < considered by Bernstein and Wattenberg cannot be
isomorphic to such a hyperreal extension R because it must have size strictly greater
than 2@0 .

Another important aspect of this nonstandard setting is the distinction between
internal and external objects. Given an enlargement � : U�X� ! U�X�, an element
a 2 U�X� is internal if a 2 [ � U�X� � [f�bjb 2 U�X�g, and external otherwise. The
distinction is crucial for many applications of nonstandard analysis because internal
objects generally behave in a much more tractable fashion than external objects. An
important example of internal objects is the internal subsetsPInt��A� of the image �A
of some standard object A. In particular, one has that for any A 2 U�X�,

�P A� � � PInt��A�:
In the context of an enlargement � : U�R� ! U�<�, one may therefore be

interested in considering both internal and external entities when discussing the
existence of total and regular probability measures on the nonstandard unit interval
�0; 1�<. The following is straightforward to verify:

Lemma 5.4. Let � : U�R� ! U�<� be an enlargement. Then:

1. There is no external total and regular probability measure µ : P��0; 1�<� ! �0; 1�<.
2. There is no internal total and regular probability measure µ : PInt��0; 1�<� ! �0; 1�<.

Proof. Item 1 is a direct application of Theorem 3.1. For item 2, note that U�R�
satisfies the first-order statement that there is no total and regular probability
measure µ : P��0; 1�R� ! �0; 1�R, so by the Transfer Principle �U�R� satisfies the
corresponding statement that there is no total and regular probability measure
µ : � P��0; 1�R� ! �0; 1�<. But because �P��0; 1�R� � PInt��0; 1�R�, it follows that there
is no regular internal probability measure into �0; 1�< defined on all the internal
subsets of �0; 1�<. □

It is worth mentioning that Lemma 5.4 does not address the issue of whether there
can be an external �0; 1�<-valued regular probability measure that is defined on all the
internal subsets of �0; 1�<. Note in particular that the results of Section 4 do not apply
here becausePInt��0; 1�<� has the same size as the full powerset of �0; 1�<, but it is not
a complete algebra, and thus it is not isomorphic to P��0; 1�<�.10 We leave this
technical issue as an interesting open problem for the time being and limit ourselves
to pointing out that nonstandard frameworks obtained as limits of enlargements
might be a promising approach toward a positive answer to this problem.11

10 By contrast, the fourth possibility—namely, that there must be an internal probability measure
defined on the whole powerset of �0; 1�<—is obviously ruled out by Theorem 3.1.

11 We thank C. Ward Henson for the suggestion, connected to his work on the isomorphism property
in enlargements (Henson, 1974).
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We conclude this section by discussing the connection between our results and an
alternative approach to probability theory inspired by nonstandard analysis—
namely, the non-Archimedean probability (NAP) theory developed by Benci et al.
(2013, 2018). The main advantage of NAP over classical probability theory is that one
can construct, for any set Ω, a total and regular probability measure on P�Ω� whose
codomain is a reasonably small hyperreal extension of R. We briefly review their
construction here.

Let Ω be an infinite set. We writePFin�Ω� for the set of all finite subsets of Ω, and
we write ΩR for the ring of functions from PFin�Ω� into R, where the operations 

and  and the order < are defined pointwise. A fine ideal on ΩR is a maximal ideal
containing the set

fϕ : PFin Ω� � ! Rj9A � Re8B � A : ϕ B� � � 0g:

Given a fine ideal I, the quotient ΩR=I is a hyperreal field that extends R and has
size

jΩR �j jRj PFin Ω� �j j � �2@0� Ωj j � 2 Ωj j:

Benci et al. (2013) prove the following.

Theorem 5.5. For any infinite set Ω, there is a total, regular, finitely additive probability
measure µ : P�Ω� !Ω R=I.

Benci et al. (2013) call such functions NAP measures and show that they exhibit a
number of attractive properties. In particular, they satisfy a notion of additivity that
is arguably a generalization of countable additivity in the non-Archimedean context.
Combined with Theorem 3.1, this yields the following result regarding the interplay
between cardinality, regularity, and totality for hyperreal fields:

Theorem 5.6. Let Ω be an infinite set and κ be a cardinal. Then:

1. If jΩj � κ, then for any hyperreal field< of size at most κ, there is no total and regular
probability measure µ : P�Ω� ! <.

2. If 2jΩj 	 κ, then there is a hyperreal field < of size at most κ and a total and regular
probability measure µ : P�Ω� ! <.

Proof. Item 1 follows directly from Theorem 3.1 because any hyperreal field is a
generalized probability range, and item 2 follows immediately from Theorem 5.5. □

Finally, let us note that under the assumption of GCH, Theorem 5.6 yields a
complete answer to the question of the compatibility between regularity and totality
as raised in Section 1.

Theorem 5.7 [GCH] Let κ be a cardinal andΩ a set. Then there is a hyperreal field< of size
κ and a total and regular probability measure µ : P�Ω� ! < iff jΩj < κ.
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Proof. Suppose that there is a hyperreal field < of size κ and a total and regular
probability measure µ : P�Ω� ! <. Then by the contrapositive of Theorem 5.6.1, it
follows that jΩj < κ. Conversely, suppose that jΩj < κ. Because GCH holds, it follows
that 2jΩj � jΩj
 	 κ. Hence, by theorem 5.6.2, there is a hyperreal field < of size at
most κ and a probability measure µ : P�Ω� ! <. But clearly, without loss of
generality, we can assume that < has size κ, which completes the proof. □

We conclude by briefly discussing the significance of our results to the debate
regarding regularity in probability theory. In short, we see our results as confirming
that the debate has been essentially well posed by Hofweber (2014b) and Hájek (2011).
On the one hand, Theorem 5.7 can be viewed as the mathematical fact underlying
Hájek’s (2011) “arms race.” Indeed, as a consequence of Zermelo’s theorem, for any
possible range of probability values V, any regular probability measure defined on the
full powerset of V must take its values in a range of cardinality strictly greater than V.
In that sense, no hyperreal field can be “large enough” to play the role of the reals in
an alternative to Kolmogorov probability theory that would satisfy the regularity
constraint. At the same time, Hofweber is correct in saying that the cardinality of the
codomain is the only substantial obstacle to the existence of a regular probability
measure for any sample space. In fact, under GCH, it is necessary and sufficient to take
the successor cardinal of the size of the domain as the size of the codomain of such a
regular probability measure. To make this point differently, this means that, at least
under GCH, the existence theorems noted by Hofweber (2014a) and Benci et al. (2018)
are the best possible. Interestingly, this also has a consequence for a slightly different
question, regarding whether any standard probability function can be approximated
by a regular function defined on a hyperreal field.12 Hofweber and Schindler (2016)
give a positive answer to this question. Given a standard probability space �Ω;A;µ�,
they show that µ can be approximated by a regular probability measure µ (in the
sense that µ�U� is infinitesimally close to µ�U� for any U 2 A) defined on a hyperreal
field V of size at most 2jΩj. As an easy consequence of Theorem 5.7, we have that,
under GCH, the cardinality bound obtained by Hofweber and Schindler is the best
possible. In other words, this means that from the point of view of the cardinality of
the range of probabilities, the existence problem (i.e., whether there exists a regular
probability measure) and the approximation problem (i.e., whether any standard
probability function can be approximated by a regular one) are equivalent.

Finally, let us make one final remark on the issue. As the results in Section 4 show,
a lot hinges on the particular structure of the algebra of events under consideration. If
one agrees with Hájek (2011) that the regularity constraint implicitly entails a totality
constraint, then the “arms race” is indeed the only option. But if one only wants to
consider events that are finite or cofinite sets of outcomes, then, as Lemma 4.7 shows,
any countable non-Archimedean field would suffice. We take this as evidence that
there is still much to explore regarding the interplay between regularity, totality, and
cardinality in probability theory.

12 We thank an anonymous referee for mentioning this issue.
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