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DERIVED RING ISOMORPHISMS OF
VON NEUMANN ALGEBRAS

C. ROBERT MIERS

1. Introduction. Let M be an associative *-algebra with complex scalar
field. M may be turned into a Lie algebra by defining multiplication by
[A, B] = AB — BA. A Lie *-subalgebra L of M is a *-linear subspace of M
such that if A, B € L then [4, B] € L. A Lie *-isomorphism ¢ between Lie
*_subalgebras L; and L, of *-algebras M and N is a one-one, *-linear map of L,
onto L, such that ¢[4, B] = [¢(4), ¢(B)] for all 4, B € L,. We have pre-
viously shown [5] that if L; = M, Ly = N where M and N are von Neumann
algebras with no central abelian summands, then, modulo a *-linear map from
M into the center of N which annihilates brackets, ¢ is the direct sum of a
*_isomorphism and the negative of a *-anti-isomorphism.

In this paper we show that if M and NV are von Neumann algebras with no
central abelian summands, and if L, = [M, M] (= all finite linear combina-
tions of elements [A, B], A, B € M) and L, = [N, N] then ¢ can be extended
to a mapping from M onto N which is the direct sum of a *-isomorphism and
the negative of a *-anti-isomorphism. This result is analogous to that of
R. A. Howland [4] who proved that if M and N are simple rings with M con-
taining three non-zero orthogonal idempotents whose sum is the identity, then
¢ can be extended to an isomorphism of M onto N, or to the negative of an
anti-isomorphism of M onto N. Although von Neumann algebras have an
abundance of projections they will not, in general, be simple owing to the
presence of central projections. It is known [6; 8], that if A/ is an infinite von
Neumann algebra then [M, M| = M, if M is of type I and finite then, modulo
the center of M, [M, M] = M, and if M is of type 11, then [M, M] is uniformly
dense in the set of operators with central trace zero.

In what follows we shall take Dixmier [1] as a general reference. A von
Neumann algebra M is a weakly closed, self-adjoint algebra of operators on a
Hilbert space H containing the identity operator. The set Z,, = {S € M|ST =
TS for all T € M} is called the center of M. If P and Q are projections (=
self-adjoint idempotents) in M then Mp = {PAP|A € M}, PMQ =
{PAQ|A € M} and

PMQMP = {Z PX,QV.P|X, Y, ¢ M} :
i=1

The central support P of a projection P is defined to be the smallest
central projection larger than P, the central core P of P is defined to be
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LUB{A = P|A = A* € Z,}. The central core of any self-adjoint element is
defined analogously. If PQ = 0 we say P is parallel to Q, written P||Q.

2. General results on Lie *-isomorphisms of [A/, M]. The following
results parallel those of [5, pp. 719-723]. In particular we first show that
certain projections and relations between projections can be characterized in
terms of bracket relations involving elements of [M, M], and then that the
image of these projections under a Lie *-isomorphism of [M, M] onto [N, N]
can also be characterized.

LeEmMmA 1. If A s a self-adjoint operator in the von Neumann algebra M and
[[[[X, 4], 4], 4], A] = 0 for all X € M, then A — A is a projection in M.

Proof. An argument similar to [5, Theorem 1] with the polynomial ¢ — #2
replacing #* — ¢ will show that the spectrum of 4 — 4 consists of {0, 1}.

LemMA 2. If P and Q are commuting, core-free projections then [[P, Q], Q] = 0
for all X € [M, M) implies P|Q. If P||Q then ([P, X], Q] = O for all X € M.

Proof. If [[P, X], Q] = 0 for all X € [M, M] then [[[P, [X, P]], Q] =0
for all X € M. Multiplying this out we have

2PXPQ — PXQ — XPQ — 2PQXP — PQX + QXP = 0.

Multiplying this relation on the left by PQ gives PQX(I — P)(I — Q) =0
for all X € M. Multiplying the relation on the left by P and on the right by Q
gives P(I — Q)XQ(I — P) = 0 for all X € M. The result now follows from
the proof of [5, Lemma 2].

LEMMA 3. Let P, Q be commuting projections in M such that [[[[ X, P], Q], P],
Q] + [[X, P), Q] = Oforall X € [M, M). Then there exists a projection C € Zy
such that PQ(I — C) =0, { — P)(I — Q)C = 0.

Proof. The bracket identity implies that

LLX, Q1, P), Q, P, Q] + [[[X, Q], P], Q] =0
for all X € M. Multiplying this relation on the left by PQ gives PQX (I — P)
(I — Q) = 0forall X € M which implies PQ||(I — P)(I — Q). Let C = PQ.

LEmMA 4. Let ¢:[M, M] — [N, N] be a Lie *-isomorphism of (M, M) onto
[N, N] where M and N are von Neumann algebras. Then ¢[Zy M [M, M]) =
Zy N[N, NI.

Proof. If Z € Zyy N\ [M, M] then [[M, M], Z] = 0. This implies [[N, N],
¢(Z)] = 0. By [3, Sublemma, p. 5] ¢(Z) € Zy. The reverse inclusion follows
by applying the same argument to ¢~1.

LEMMA 5. Let ¢, M, and N be as in Lemma 4. If P is a projection in M such
that P — Z € [M, M| for some Z = Z* € Zy thenp(P — Z) = 0(P) + \(P —
Z) where 0 is a core free projection and N(P — Z) € Zy. This representation is
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unique. Also, ¢(P — Z) = —0'(P) + N (P — Z) where 0'(P) s a core free
projection and N (P — Z) € Zy. This representation is unique.

Proof. Let F = P — Z. Then [[[X, F], F], F] = [X, F]for all X € M, and
in particular for all X € [M, M]. Thus, [[[X, ¢ (F)], ¢(F)], ¢(F)] = [X, ¢(F)]
for all X € [N, N] since ¢ is onto. Let X = [V, ¢(F)]. Then

LY, ¢(F)], o (F)], ¢ (F)], 6(1)] = [[Y, ¢(F)], $(F)].

By Lemmalthisimplies ¢ (F) —¢ (F)~ isa core-free projection, say 6 (). Suppose
P -7 ¢ [M, MforZ' € Zyy. ThenZ —Z' =(P—-2')— (P —Z) € [M, M]
so that, by Lemma 4, ¢(Z — Z') € Zy N[N, N]. Also, ¢(Z — Z') =
6(P —Z)— (P —Z) =0(P —Z') + ¢(P —Z')~ —0(P — Z) — $(P — Z)~
sothat§(P —Z') —8(P — Z) € Zy. By [5, Lemma 1] this implies 6(P — Z') =
(P — Z). We call this common value 6(P). If ¢(P — Z) = Q + Z’ where
Q is a core-free projection and Z' € Zy then 0(P) — Q € Zy which would
imply again by [5, Lemma 1] that 6(P) = Q and also that N\(P — Z) = Z'.

If we write 8'(P) = 6(P) — 0(P) then 6'(P) is a core-free projection and
o(P — Z) = —0'(P) + N (P — Z). By an argument similar to the one above
this representation is unique.

LemMmA 6. If P — Z, Q — Z' € [M, M], for some self-adjoint Z, Z' € Z,,
with [P, Q] = 0 then [0(P), 6(Q)] = 0.

Proof.0 = [P,Q] =[P —Z,Q —Z']. Hence,0 = ¢(0) =[P — Z,Q — Z'] =
[o(P — Z), (P — Z')] = [0(P), 6(Q)].

LeEmmA 7. Let Q be a core-free projection in N such that Q — Z' € [N, N] for
some Z' € Zy. There exists a core-free projection P € M and a self-adjoint
Z € Zy such that P — Z € [M, M] and 6(P) = Q.

Proof. Let Q' = Q — Z'. Then [[[X, Q'], Q'], Q'] = [X, Q'] forall X € [N, N].
There exists a self-adjoint P’ € [M, M] such that ¢ (P’) = Q'. This implies
[[[X, P'], P'], P] = [X, P'] for all X € [M, M]. Hence P — P’ = P is a
core-free projection and Q — Z' = Q' = ¢(P') = ¢(P + P') = 4(P) +
NP — (—=P")). This implies 8(P) = Q.

Lemma 8. Let P and Q be core-free projections in M with P — Z,
Q — Z' € [M, M) for self-adjoint Z, Z' € Zy. Then P||Qif and only if 6 (P)||6(Q)
and P = Q if and only if 0(P) = 6(Q).

Proof. If P||Q (P, Q need not be core-free here) then 0 = [[P, X], Q]
[P — 2, X],0 — Z'] for all X € [M, M]. Thus 0 = ¢(0) = [[¢(P — Z), X],
o (Q — Z")] = [[8(P), X],0(P)] forall X € [N, N]. This implies, by Lemma 2,
since §(P) and 6(Q) are core-free, that 0(P)[[6(Q). If 6(P)||6(Q) then 0
[[6(P), X1, 0(0)] = [[¢(P — Z), X], ¢(Q — Z")] for all X € [N, NJ]. Thus
0 = ¢~1(0) = [[P, X, Q] for all X € [M, M]. By Lemma 2 we have P|Q.

N —
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If P = Q but 6(c) # 0(Q) there exists a central projection C € Zy such
that C8(Q) = 0 but C8(P) £ 0. By Lemma 7 there exists a core-free projec-
tion R in M and a self-adjoint Z'" € Z,; such that R — Z"" € [M, M] and
8(R) = C6(P). Hence 6(R)|0(Q). By the preceding lemma R||Q. Since § = P
we have R||P. This implies 8(R)||6(P) a contradiction. Similarly §(P) = 8(Q)
implies P = Q.

LemMA 9. Let Py, . . ., P, be parallel projections such that P, — Z, € [M, M]
for self-adjoint Z; € Zy. Then 6 is additive on the P,.

Proof. Lemma 8 implies that the §(P;) and || core-free projections so that
> i10(P;) is a projection. It is core-free by parallelism. Then

0-o( P) - T 0wy +2

i=1 =1
where Z € Zy. Thus 8(Xi=1P;) — >.i=10(P;) € Zy and are equal.

LEMMA 10. Let C be a central projection in a von Neumann algebra M with no
central abelian summands. There exists a core-free projection P in M, and a
self-adjoint Z € Zy such that P = C and P — Z € [M, M].

Proof. Let E + F + G = I, the identity operator, where E, F, G are central
projections, Mz is finite and discrete, M finite and continuous, and Mg
infinite. CG is a central projection in M4 so there exists a core-free projection
P,in Mg such that P, = CG by [5, Lemma 4]. Moreover, since M is infinite,
Py € [Mg, Mg = Mg by [8]. CE is central in My so there exists a core-free
projection Py in My such that P, = CE. By [6, Theorem 1] Py — Pyt €
[M g, Myg), where Pt is the center-valued trace of P,. Finally, choose a pro-
jection Q «~ F — Q in M. Q is core-free, Q = F, and if VV* = Q, V*V =
F—Q, 3V, V¥ =Q—3F € [Mp, Mg]. Thus CQ — 3CF € [M¢r, Mcr]
[Myp, Mz]. Let P; = COQ.

Set P = P; + Py, + P;. Then P = 0 since the P; are || and P — (3CF +
Pyt) ¢ (M, M] = [Mg, Mg] + (M7, Mpg] + [Mg, Mq]. Moreover P =P1 +
P, + P, =C.

THEOREM 1. Let ¢:[M, M] — [N, N] be a Lie *-isomorphism where M and N
have no central abelian summands. There exists a *-isomorphism  of Zy onto Zy
such that if P is a projection in M with P — Z € [M, M] for a self-adjoint
Z € Zy, and if C is a central projection in M, then 6(CP) = ¢(C)6(P). Also
0'(PC) = ¢(C)¥ (P).

Proof. We first show that ¢ induces a projection orthoisomorphism of Z,
onto Zy. Define ¢ on a central projection C as follows: choose a core-free pro-
jection P in M such that P — Z € [M, M] for a self-adjoint Z € Z,; and
P = C.Definey(C) = 6(P).If Q = CwithQ — Z' € [M, M] then by Lemma
8,8(P) = 6(Q) so that the mapping is well defined. If D is a central projection
in N, there exists a core-free projection R € N such that R — Z’ € [N, N] for
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a self-adjoint Z' € Zyand R = D by Lemma 10. There exists in M a core-free
projection P with P — Z € [M, M]and8(P) = R. Hencey(P) =0(P) =R =D
so that ¢ is onto. If C, D are central projections in M with CD =0let P = C,
Q =D where P — Z, Q — Z' € [M, M] for self-adjoint central Z, Z' € Z,,.
Then

CD =0 PQ0=0sPQ=0(P)6(Q) =6(P)6(Q) =0
< (O (D) = 0.

Thus ¢ is a projection orthoisomorphism of Z, onto Zy and implements a
*_isomorphism, also denoted y, of Z,; onto Zy.

Let C be a central projection in M, P a projection such that P — Z € [M, M]
for some self-adjoint Z € Z,;. There exists a core-free projection Q in M such
that Q = C(I — P) and Q — Z' € [M, M] for some self-adjoint Z' € Z,.
PC 4+ Q has carrier Cand (P — Z)C + Q — Z' € [M, M]. (Note that if
X € [M, M] and C is a central projection in M, CX € [M, M]). Hence
Y(C) = 6(PC + Q) = 0(PC) + 0(Q) since PC||Q. Moreover, since PC and
P(I — C) are ||, 8(P) = 6(PC + P(I — C)) = 0(PC) + 6(P(I — (C)).
Both 8(PC) and 8(P(I — C)) are || to 6(Q) since Q is || to P. Multiplying these
relations we have ¥ (C) 0(P) = 60(P) = 6(CP).

Definition. Let P, Q be projections in a von Neumann algebra M. If PQ = 0
we say P is orthogonal to Q written P L Q. If (I — P)(I — Q) = 0 we say
P is co-orthogonal to Q, written P co L Q.

Lemma 11. Let Py, ..., P, be commuting core-free projections, each pair of
which satisfy the identity of Lemma 3. Then there exists a central projection C such
that the P;are L on C,co L on I — C.

Proof. This is essentially [5, Lemma 11].

LemMma 12. Let M and N be von Neumann algebras with no central abelian
summands, and let Py, . .., P, be mutually 1 projections in M with P, — Z, €
[M, M] for self-adjoint Z; € Zy. There exists a projection D € Zy, such that the
0(P.D) are mutually 1, the 8’ (P(I — D)) are mutually 1 .

Proof. The proof is similar to [5, Corollary to Lemma 11].

3. The I, case. Suppose now that M is of type 1., N has no central abelian
summands, and ¢:|[M, M] — [N, N] is a Lie *-isomorphism onto. The I, case
is isolated because the method of proof for the non-I, case requires the choice
of three particular non-zero projections and this choice cannot be made if M
is of type I.. Let P, P, be L, equivalent, abelian projections such that
P, + P, =1. By [6], P, — Pit, Py — Pyt € [M, M]. We have P, = 0,
P, =1, and, by [5, Lemma 1], 0(P;) L 6(P:) since 0(P;) 4+ 0(P:) € Zy.
Moreover I = ¢(I) = ¢ (P,) = 0(Py) < 0(P,) + 0(P2) < I. Hence 8(P;) +
6(Py) = I. For notation let M ;; = P,MP; N;; = 6(P;)NO(P;).
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LEMMA 13. Ny; (¢ = 1, 2) is abelian.

Proof. We first show that Ny, M [N, NJ is abelian. Suppose Y € Ny M [N,N]
and let X € [M, M] be such that ¢(X) = VY. We have 0 = [V, 0(Ps)] =
[¢(X), ¢(P> — Pst)]. Applying ¢! we have 0 = [X, P,]. This implies
X € M+ Mo If YV, YV € NiuMN [N, N] and X, X’ are such that ¢(X) =
Y, ¢(X’) = V' then, by the above, X, X’ € My; + M., which is abelian.
Hence 0 = [X, X'] implies 0 = [V, V’].

Nt M [N, N] is an abelian Lie *-ideal in Ni; and so by [5, Lemma 36],
N1t M [N, N] C Zy,,, the center of Ny;. This implies that

[Nlly Nll:] g Nll m [Ny N] g ZN11*
By [5, Lemma 6], [Ny, N1u1] = 0.
COROLLARY. N has no continuous part.

Proof. Let C be a non-zero central projection in N such that N ¢ is continuous.
C = (C§(P,) + C6(P2) and one of C6(P,), CO(P:) is nonzero. We also have
that NVegpoy © Nit, Negepy & Nas. Thus Nggepy and N gy(py) are abelian and
one is nonzero. But C can have no discrete projections contained in it [1, p. 125,
Proposition 4] a contradiction.

THEOREM 2. Let ¢:[M, M| — [N, N| be a Lie *-isomorphism where M 1is of
type 1o and N has no abelian summands. There exists an extension o of ¢ to a
*_.usomorphism of M onto N.

Proof. We first extend ¢ to @, a near-isomorphism of M to N (see [5, p. 722]).
If A ¢ M, then by [6, Theorem 1] there exists a unique central element,
namely A#, such that A — A* € [M, M]. Define ¢{4) = ¢(4 — At) + ¢ (4*).
Since Af is unique the mapping is well defined.

Obviously ¢ is a *-linear map from M into [NV, N] 4+ Zy. If X € [M, M] then
X* = 0so that ¢(X) = ¢(X).

#l4, B] = ¢[4, B] = ¢[4 — A}, B — Bl] = [¢(4 — A¥), ¢(B — B¥)] =
[¢(4 — A#) + ¢ (A1), ¢(B — Bf) + ¢(BY)] = [¢(4), ¢(B)]

so that & preserves brackets. If $(4) = ¢(B) then¢(4d — B — (A% — B#)) ¢
Zy M [N, N]sothat A — B — (At — Bt) € Z. This shows A — B € Z,,.
If B+ Z €[N, N] + Zy there exists A € [N, N|, Z € Zy with ¢(4) = B,
Y(Z) = Z'. Then ¢4 + Z) = ¢(4) + ¢(Z) = B + Z' so that ¢ is onto
[V, N] + Zu. By the Corollary to Lemma 13, NV has no continuous part so that
by [6], and [8], [V, N] + Zy = N.

Applying {5, Theorem 2] to the near isomorphism &:M — N we have
é = ¢ + 7 where ¢ is an associative *-isomorphism of M onto N and 7 is a
*.linear map which annihilates [M, M]. If A € [M, M], ¢(4) = ¢(4) =
o(A) + 7(4) = a(4).
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4. The non-I, case. Let ¢ : [M, M]— [N, N] be a Lie *-isomorphism where
M and N have no abelian summands and 3 is not of type I. (M may have a
type I, summand). We wish to employ techniques of [4], but in order to do
this we must make a particular choice of three projections.

LEMMA 14. There exist projections Py, Psy, Py in M such that >, P; = I,
P1=P2=I, Plv‘\Pg, I—P,g 1/.8 the Ig—Su’WLWLd?’Ld, I—PgéPl—I—Pg,
P,(I — Py) and Py(I — P;) are the equivalent, |, abelian projections com-
prising I — Ps, and there exist central self-adjoint elements Z;, 1 = 1, 2, 3, such
that P, — Z; € [M, M]. Moreover we have P3P, MP; = P;P MP.MP; for
i, 7, B € {1, 2, 3}.

Proof. Let C,V be the I, part of M (n = 2), C® the 11, part, and C® the
infinite part. C,‘V is the sum of # equivalent (abelian) projections P;™, . .
P,™ If niseven (n = 4) let

*y

(n—2) /2 n—2
(n) — Z P (n) Q2(n) — Z Pi(n), (n) Z P (n)
i= i=n/2 i=n—1
If 7 is odd let
(n—1) /2 w , n—1
(
Ql(n) = Z Pl " ’ Q2 Y= Z Pi(n)y Q3(n) = Pn(n)-
i=1 i=(n+1) /2

Moreover, by [6], there exist central self-adjoint elements 7, 75, 7T in
Mo where CU = 32 ,C,V such that

; Ql(n) — Ty, ; Q2(n) — 1, ; Qs(n) — T3 € [M, M].

C? = ZLlD,- where D; v~ D;. If VV* = Dy, 4+ Ds, V¥V = Dy + D, then
[V, V¥] = C® — (D3 + Dy) € [Mc®, Mo»] C [M, M]. Since D3 ~ D,,
D; — D, € [M, M] which implies Dy — 3$C® € [M, M]. The same argument
holds for Dy, D, Dy, Similarly C® = S%_E, with E; — E;and E; € [M, M]
by [8].

Let

P=P® + > Ql(n) + D) + Ey,
n=3

Py=P® + 3 0,™ 4 Dy + E,,

n==3
= 23 05 + Ds + Dy + E; + Eu.

All assertions except the last are clear. If P ~~ Q «~ Rwith VV* = Q V*V = R
then PXQ = PXVRV*Q so that PMQ = PMRMQ. We apply this technique
to each I, summand (= = 3), to the II, summand, and to the infinite summand.
For example, examine C,V. C,® = Q1™ + @ 4 Q;® where Q; =
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P;® 4 Py® and Q1™ Qo Py P, We prove a few representative
cases:

(1) 01 OMQ® = Q1 MQ;® MQ,™. For,
010X 0, = QX VP;0Q;0TV*0,  where V*V = Py, VT* = Qy@.

(1) Q1 W MQ;® = QW MQ,WMQ;¥. For,
01DXQ;@ = QWX P 4 QWXP & =

Q1iOX VPO VP00, 4 QO X WP, O WHP (9,
where
V*V = P, VV* = Py, W¥W = P, WIW* = P,®,
(1ii1) Qs WMQ;® = Q;WMQ; W MQ3;¥. For,
0;WXQ;® = P;WXP,® 4 P;WXP,® 4+ P,OXP,® 4 POXP,® =
Qs WP WX VPO VP90, 4 QPO X WP (O W*P 0,
+ QuOP, WX VPO V*P (00,0 4 P WX WP (OW*P @0,
where
V¥V = PO, VV* = P;O, W*W = P&, WIV* = P,@W,

Similar arguments work in the other cases.

Let P, ¢ =1, 2, 3, be as in Lemma 14 and let Q, = P,(I — P3), 0, =
Py(I — Py), Qs = P.P;, Qi = PyP;, Qs = Ps. By Lemma 12 there exists a
central projection D € M such that the 6(Q;D) are L and the ¢’ (Q;(I — D)
are | fori = 3,4, 5. (Note that Q.D — Z,D € [Mp, Mp] C [M, M].)

P?’O_Of. Ql - Zl(I — Pg), Qz —_ Zz(I —_ P,;) € [zl[, .Zl{] and Ql + QQ =
I — Pg‘ Hence Ql - Z](I_— P;;) + Q2 - Zz([ - P3) € ZNf\ [M, M] This
implies ¢(Q1 — Z1(I — P3) 4+ Q2 — Z2(I — P;)) € Zy. Hence 6(Q:) +
0(Q2) € Zy. As before this implies §(Q,) L 6(Q-) since they are core-free.

0(Q:) =8P )Y(I — Py)sothat8(Q:) S ¢(I — Py),i=1,2.94(I — Py) =
Y(Q1) = 0(Q1) =0(Q1) + Q(Q2) = y(I — Py).

COROLLARY. ' (Q1) = 6(Q:).

Proof. 6'(Q1) = 6(Q1) — 6(Q1) = ¢¥(I — P3) — 6(Q1) = 6(Q).

For notation let M,; = Q:MQ;, Ni; = 0(Q:)M6(Q;) for ¢, j € {1, 2}, and
let Mi; = Q:DMQ;D, Mi; = QI — D)MQ,;(I — D), Ny; = 6(Q:D)N6(6;D),
and N,; = ¢/(Q;(I — D))N¢'(Q,(I — D)) for 7, j € {3, 4, 5}. Notice that if
Xy € Mi; (15 j) then X4y = [Xyy, Q5] € [M, M].

Lemma 16. ¢~ ((Z3aiNi + XimsNw) N[N, N]) = )
(Zg=1Mii + Z?=3Mii) N [M, M]

Proof. See [5, Lemma 26]. Note that Z, C S M+ X5
LEMMA 17. ¢~ (Ny;) = My, o2 (Nyy) = My if i # 5.
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Proof. See [5, Lemma 27].

Lemma 18. $3:0(Q.D) = ¢(DPy), X1t (Q.(I — D)) = ¢((I — D)Py).
Proof. In [5, Lemma 13] replace D by DPs3, and the result follows.

LEmMMA 19. ¢ ((Zar,, + Zu) N (M, M]) © (Nu + Zy) N[N, N

Proof. f A € (Zyry, + Zar) N [M, M] then [4, X] = 0 for all X in

> M“+ZM“+ > M+ Y M

%5 i,i22 i#j 1,523 =3

Hence [¢(4), X] = 0 for all X in

> N”+(Z N”—I—ZN”) NI[N,NI+ > Ny

)1, j22 EJ 1,23
( Z Nl]+(z N““I—ZN“) NH)ﬂ[N,N]

25,1, j22
{STS;T €N,S =000 + ; 6(Q.D) + ; 6" (Q:(L — D))} M [N, N]

Il

£j;1,j23

Il

= NsM [N, Nl

(Note that by Lemmas 15 and 18,S = I — 6(Q,).) In particular [¢(4),X]=0
for all X in Ns M\ [Ngs, Ns] =[Ns, Nsl. Since 4 € 35 My + X540,
¢(A) = By + C where B, € N;; and C € Ng by Lemma 16. Thus 0 =
[¢p(A), X] = [B:+ C, X] = [C, X] for all X in [N, Ns]. By [3, Sublemma,
p. 5] this implies [C, X] = 0 for all X in Ng, or that C € Zy, = Zs. Since
S=1-—0(0,) we have C=Z({ — 6(Q,)). Finally, ¢(d) =B, + C =
By — 0(Q0Z + Z € (Nui + Zy) N [N, N].

COROLLARY. ¢ (M1 + Zy) N[ M, M]) € (N + Zy) N[N, N].
Proof. M, is abelian since Q; is an abelian projection. Hence My, C Zy,,.

We now extend ¢|[ M ;_7,, M ;_7;] toaLie *-isomorphism of ¢ of > 1<, ;z2M
into IV, and then analyze ¢. We cannot proceed exactly as in Theorem 2 because
of a lack of information about the image of > 1<, j<eM ;; under ¢.

If A€ Yi<ij=oM;; define ¢(4) = ¢(4 — At) 4+ ¢ (A#). This is well de—
fined since M (; 7, is finite. If 4 € M,;, (4,7) = (1, 2) or (2, 1) then A* =
and ¢(A) = ¢(4). If A € M, then 4 — A% € (M, + Zy) N | M, M] by
[6, Theorem 1] and by Lemma 19, ¢(4) = ¢ (4 — A#) + ¢ (A#) € N1y + Z,,.
¢ is obviously *-linear. If ¢(4) = 0 then ¢(4 — A*) € Zy M [N, N] so that
A — At € Zyy N [M, M]. Thus A € Zy so that A = A% and 0 = ¢(4) =
oA — A*) + ¢(4*%) = 0 + ¢ (4#). Hence A* = 0. This shows ¢ is 1-1.
¢ preserves brackets as in Theorem 2.

Defining mappings oo and Ao as follows: if A € M, (2,7) = (1,2) or (2, 1)
letog(4d) = ¢(4) = ¢(4). If{ 4 € M,;, (¢ = 1,2) then $(4) = ao(4) + re(4)
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where oo(4) € Ny M(4A) € Zy. a9 and Ny are well defined for if
(T()(A) + )\o(A) = Uo(B) + )\0(B) then (T()(A) e (T()(B) E N“ N ZN = {0}.
oo and A\ can be shown to be *-linear maps with ¢¢(AB) = ¢0(4) o¢(B) for all
A, B € M ;_p, as in [5, Lemmas 18-22].

LemMma 20. o extends ¢|[M ;_5,, M ;_5,] to a *-homomorphism of M ;_7,
into N.

Proof. We show that )\, annihilates brackets of elements in Mg+ qy)-
Nl4, B] = ¢[4, B] — ao[4, B] = [$(4), $(B)] — [00(4), 00(B)] = [00(4) +
N (A4), ao(B) + MN(B)] — [00(4), do(B)] = 0 since N\(4A) € Zy. Hence
o[4, B] = §[4, B] = ao[4, B] + N4, B] = ail4, B].

We turn our attention to Mp,. By Lemma 14, Q;MQ; = Q,.MQ;MQ; for
i, 7, k € {3, 4, 5} so that we also have Q,DMQ;D = Q.DMQ,DMQ;D for
i, 7, k € {3, 4, 5}. A similar relation will hold with D replaced by I — D.

LemMa 21. Let (¢, j, k) be any permuiation of (3, 4, 5). If X, € My,
X € My, then (X Xy) = ¢(Xuy) (X ). If Xy € My, Xy € My then
d(X X ) = —d(X i) ¢(X4y).

Proof. If 1 # j and X;; € M,; then ¢(X ;) € N;; by Lemma 17. Hence
¢(Xin1k) = o[ Xy, Xp] = [6(X45), d(X )] = ¢(Xi;) ¢(X ). If ¢ 5 j and
Xi; € Mijthen ¢(X ;) € Ny ¢(X ;X 3) = o[ Xy, X = [¢(X45), ¢(X 1)) =
—o(X 1) ¢(X4)).

LEMMA 22. ¢ is a homomorphism from the algebra gemerated algebraically by
M; + My + My into the one generated algebraically by N;; + Ny + Ny, and
the negative of an anti-homomorphism of the algebra gemerated algebraically by
M + M, + My into the one generated algebraically by N;; + Nij + Ny,
where (1, 7, k) is a permutation of (3, 4, 5).

Proof. 1t suffices to let (7, j, k) = (3, 4, 5). If X34 € M3y, X4s € My, then
by Lemma 21, ¢(X3:X45) = ¢(X31) ¢(X4s5). In all other cases 0 = ¢(0) =
(X ;X 1) = ¢(X4;) ¢(Xi1) by Lemma 17. L B

For the other part, if X33 € My, X5 € Mys then ¢(X3:X45) = —¢(Nys)
¢ (X35) by Lemma 21. In all other cases 0 = ¢(0) = ¢(X ;X)) = —¢(Xi))
¢(X;;) by Lemma 17.

LEMMA 23. A von Neumann algebra M is generated algebraically by [M, M)
if and only if M has no abelian summands.

Proof. By [6], [M, M] is the set of all finite sums of niloptent operators of
index two. By [2], M is algebraically generated by nilpotents of index two
if and only if M has no abelian summands.

LeEmMA 24. [Mp,, Mp,] is linearly generated by My, M,;, [M,;, M;.], and
[Mg;, M, for i # j, 1,7 € {3, 4, 5}. [M -5, M ;_5,] is linearly generated by
M and (M, My, # j, 1,7 € {1, 2}.
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Proof. [Mz,, M5,] = [M#,0, M3, + [(M#;a-py, MBy( 1—ny]-

[M7,p, AMFsD]z[ Z My, Z Mw:l

3<1,j<5 3<1,j=<5

5
= Z Mij + Z []l/[ijy Mji] + Z []Wii, ﬂ[ﬁ]-
#7351, j<5 #7351, S5 =3

It suffices to show that [Mss, Mss] © [Mys, Mys]. Msz = Q:DMQsD =
0sDMQDMQsD. If A, B € M;3; then A = Q:DAQ:D = Q;:DAVO.DV*Q3D
and B = Q;DBQ;D. Thus [4, B] = [Q:DXQ.DY(QsD, Q:DBQ;D] (for ap-
propriate X, V) =

[0sDXQ.D, Q:DYQ:DBQ:D] — [Q:DBQsDXQuD, QuDYQsD] € [Msi, M.

The other parts of the lemma are proved similarly.

COROLLARY. [N, N] is linearly gemerated by N, N, [Ny, N;i, and
[Nij, N“] f07'1/. ?é_]

LEMMA 25. If Xij, Y“‘ E 111”', in 6 lei then ( X Y ) =
(X i) ¢(X;0) ¢(Yiy) for i # 4,4,5 € (3,4, 5. If X4y, YViy € My, X5 € My,
then ¢(X ;X ;Y1) = ¢(Viy) (X ;1) ¢(Xyj) fori # j, 4,7 € {3, 4, 5}.

Proof. Let X4, Vs € Mss, X € Mys. We will show that [¢(X 354X 43 V5s) —
¢ (X34) ¢(Xa3) ¢(V34)] [V, N] = 0. This will imply the result by Lemma 23.
By the Corollary to Lemma 24 it suffices to show that

(1) [6(X3iXusV3a) — ¢(X31) ¢(Xu3) 6(V34)] ¢(X ;) = 0 for ¢« 5 j and
Xi; € My;or My, Since, by Lemma 17, both ¢ (X3:X 43Y34) and ¢(X34) ¢>(X4,)
¢ (YV34) are in Ny, (1) will be trueif ¢ # 4and X;; € My, orif X,;; € My, for
i # j. We need only check X,3 and X45. (Note that X4 = 0 since Q4 < Ps,

Q1 = I — Py).
2) ¢ (X5 X43Y34) ¢(Xus) — ¢(Xsa) ¢(Xi3) ¢(Via) ¢(X5)
= (by Lemma 21)
¢ (X3 X 13V34Xu5) — ¢ (Xs4) ¢(Xa3) ¢ (V35X 45)
= (by Lemma 21)
¢ (X33X 13V 34X 45) — ¢(X34) ¢(X43V34Xs5)
= (by Lemma 21)
(X3 X 13V 34X 45) — ¢ (X 34X 43V 3. X 45) = 0.
As for X3, we can write Xa3 = > im1 X450 X539 by Lemma 14. We have

¢ (Xa3) = ; d(X i) (X557)

by Lemma 21. By the preceding argument we have (1) if (¢, j) = (4, 3).
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_ The second statement is proved similarly. For example if Xss, Vi € My,
Ny € My3 and X3 € Ms; then
¢ (X3X 03 Vss) 6(Xs3) — ¢ (Vaa) 6(Xis) 6(Lsa) ¢(X53)
— ¢(X5: X3 X 03 Vs0) + ¢(Via) 0(Xas) & (X 55X 34)
— d(X5sX3uX 43 V31) — o (Vaa) o (X55X50Xs5)
— ¢(X5sX5 03 Vs0) + ¢ (X5 X5 X3 Vi) = 0.

I

LemMmA 26. Let (i, j, k) be any permutation of (3, 4, 5). If

=1

n m

(s) (s) (€3] [©)
ZXH )(]‘1'6 = Zsz in
s=1

where Xij € M“’ then

SZ::I o (X ) ¢ (X, é S(Xa®) o (X.?).
If
él X,9%,9 = ‘?; 2,08,
where X 1; € M, then
32; (X)X ,) = IZ: (Kei®) (X 1?).

Proof. We prove the second statement. The proof of the first is similar. Let
(4,7, k) = (3, 4, 5). We show that

(1) (Z (X i) (Xs) — 2 ¢(X53(1))¢(35X(5)))[N,N] = 0.

s=1 =1
As before, we check elements of [N, N] of the form ¢(Y;), 72 # j where
Yy € My or M” Since X3, € Ms,, ¢(X34(3)) € Ny and similarly
d)(ng,(t)) E N53y (1) will hold if Yij < M”’l # jOr if Y‘ij S Mij With] # 3.
We need only check the cases ¥,; € M, for (i, 7)) = (4, 3) or (5, 3).
> ¢@u)e @) o(Tu) — 2 ¢(Xas) ¢ (Xus')¢(Tis)
s=1 =

> 6 (PuXaXu®) + 20 ¢(Xss” )6 (PiX3:'?), by Lemmas 21, 25

s=1 1=1

I

> ¢(I74'3X'3F)X4§S)) — > ¢(TusX:"X5”), by Lemma 21
s=1

=1

~

3

I

¢(Z1 ?43)?34(3))?43(8) - z:l 1743??35“))?53“)) = ¢(0) = 0.
= 1=
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A similar computation shows that

@ X @) e@ )6 (Tor) = X 6T (Xus')8(F) = 0.
§= 1=
We are now in a position to define the extension of ¢ on [M5,, Mz,].

Definition. Let o1 and ¢’ be mappings of M5, and M(;_py5, into Nypp,)
and Ny r—p)Ps), respectively, defined in the following manner:

(MifX € My 6#7),01(X) = ¢(X) € Ny fori,j€ {3,4,5};

(2)if X € My and X = Y. X,;00X;,0 = Y XX, for 1, j,
kE € {3, 4, 5} then

n m

n(X) = ; dX e X ) = 2 X)X 0™);

=1

3)if X € My (i #j), o' (X) = o(X) € Nyiford,j€ (3,4, 5);
€M

@) if X gand X = DX, 00X (0 = 30 X ,0X,,¢) then
(%) = = 2 s = = X o) e@u®),
1= 5=

Extend o, (respectively ¢’) to all of M pp, (respectively M (;_py5,) by linearity.
These maps are well defined by Lemma 26. It is a straightforward computation
to check that o; and ¢’ are *-linear.

LEMMA 27. oy 15 an extension of ¢|[M p5,, M p5,] to M pp,, and o' is an exten-
sion of ¢|[M(1—pypy, M 1—my7:] to M 1—pyp;.

Proof. Mpp; is linearly generated by X;; and [X;;, X;;] where ¢ # j and
X € My, 1, 5 € {3, 4, 5}. By definition, oy = ¢ on M. o[X, X;] =
o(X X — XjXyy) = o(X X)) — o(X;:X4) = (X)) ¢(Xj0) — ¢(X;0)
o(X ;) = ¢[X 4y, X ;] from the definition of ¢, on M ;.

Similarly M¢;_pp, is generated by X,; and [X,;, X;;] where i 7 and
X’“— c M”, 1,7 € {3; 4, 5}. {\gain a =~¢ on ]ljl” a’[)?ij, X”] = a/(X'in’j,-) —
o (X;X0) = —o(X;0) ¢(X4) + o(X4)) (X)) = ¢V, X,

LemMA 28. o1 25 a homomorphism of M pp, into NypFsy), and o' is the negutive
of an anti-homomorphism of M 1—pyp, into Ny 1-pyBy)-

Proof. We show the anti-homomorphism part. The homomorphism proof is
analogous. We must show that o' (X ;) = —o' (X)) o' (X)) for 4, j, k
1€ 13,4, 5.

()i #=j, k#1, j#=k In this case X,;Xs; =0 so o/ (X, X)) =
o' (X4;) € Njiand o' (X3,) € Ny so that o' (X;,) o/ (X4;) = 0.

@) i#=j, k#L j=Fk If i=1 X, X)) = —¢(,) ¢, =
—a' (X;1) o/ (Xyy) since o' (X4)) = ¢ (X ) fora = j. If i 5 Ithen o' (X, X;,) =
¢(X11th) = —¢(le) o (Xiy) = —d'(Xj1) o' (X4y).

’

e
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(3)i = j, k # 1,1 # k. We can assume, in this case, that X;; = X ;X;..
Then ¢’ (X :.X:) = 0. Also _o'/(Xkl) a/(Xikai) = ¢(Xkl) ¢(Xm) ¢(Xfm) =0
since ¢(X4;) € Nu, ¢(Xyx:) € Ny and @ # k.

(4) 1 = j, k # 1,7 = k. We can assume, in this case, that X;; = X;; X,..
Then C‘;I(Xiif/il) = U'(:Yqui Vi) = ¢(Xiljzlil7”) = ¢(¥:) ¢(X1Q (X 1)
= 0/(Yu) U,(‘Yli) U/(Xil) = —Ul(yiz) U,(Xilei) = _0"(1711) U'(Xii)-

(5) © # j, B = I. This case is proved in a manner similar to (3) and (4).

(6) i = j, B = [,1 # k. We can assume, in this case, that X;; = XX, and
jzkk = Yki I7tlc~ Xu}?kk = 0 so that U/(Xiika) = 0. a,(Xikl?ki) 7,(17“171‘1@) =
6(Xi) 06X ) ¢(Yu) (Vi) = 0, Since~¢(Xik2 €~Nkiy and ?(Iitk) € Ny

(7)i=4,k=11t="Fk Wecanassume X;; = X ,X,;, Xpx = Vi, Vi (7 £ p).
a (i?u‘?kkL: U,(Xipoi?ip?pi) = j”gypi) ¢<Xvip‘\~ygi Yiz)) = _¢(ypi) ‘ib(Yizz)
¢ (Xpi) ¢(X i) = =0 (Y Vpi) o (X \yi) = —0" (X)) o' (Xa).

THEOREM 3. Let ¢:[M, M| — [N, N]| be a Lie *-isomorphism of [M, M] onto
[N, N] where M and N are von Neumann algebras with no central abelian sum-
mands. There exists a map I1: M — N which extends ¢ and such that 11 = o + o’
where o is a *-isomorphism of M onto Nyccy and o' is the negative of a *-anti-
isomorphism of M ;¢ onto Ny 1— ¢y for an appropriate central projection C € M.

Proof. By Theorem 2 it suffices to assume M is not of type I.. Let D, Py, P,
P; be as above, let C = I — Py 4+ DP;, and let ¢ = oy + o1.

In general if ¢:[M, M] — N is a Lie *-isomorphism where M is a von
Neumann algebra with no central summands, and NV is a *-algebra, and if I is
an extension of ¢ to an associative *-homomorphism or *-anti-homomorphism
of M, then I is 1-1. For, suppose 4 = A* and T(4) = 0. Then
II([4, B], B]) = 0for all self-adjoint B in M. This implies that ¢ ([[4, B], B]) =
0 (since ¢ = I on [M, M]) and thus [[4, B], B] = 0. By [7] this implies
A € Zy, or ker II © Zy. But ker II is a two-sided *-ideal of M and cannot be
contained in Zy unless it is zero. The proof of this claim goes as follows:

Let £ be a two-sided, *-ideal of M contained in Z, and let 4 = A* ¢ ¥
with [|[4]] £ 1. If P is a core-free projection of M then PA = AP € S C Zy
and PA £ P. Thus PA is central, self-adjoint, and so is equal to 0 since P is
core-free. Now choose a core-free P with P = I. Then P — P = I — P is core-
freesothat0 = Al — P) =4 — AP = A.

Applying the above to ¢y, o1, and ¢’ we see that each of these is 1-1.

1I itself is an extension of ¢ to M since oy extends ¢|[M ;_5,, M ;_5,] to
M ;_3,, o extends ¢|[Mpr,, Mpp,] to Mpp,, and ¢’ extends ¢|[M ;_p7;,
M ;_pyF,] to M(;—pyp, and so [N, N] € Range II. Moreover, since the image
of M under II is a *-subalgebra of N, the *-algebra generated by [V, N] is
contained in Range II. But this algebra is just N by Lemma 23. Thus II onto.
This implies that each of a9, o1, and ¢’ is onto.

COROLLARY. If ¢: M — N is a Lie *-isomorphism of M onto N where M and N
have no central abelian summands, there exists a central projection C in M such
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that ¢ = o + o + X\ where o 1s a *-isomorphism of M onto Nycey, o' 1s the
negatiwe of a *-anti-isomorphism of M ;_¢ onto Ny —¢y and \ is a *-linear map
of M into Zy which annihdates brackets.

Proof. n = ¢|uran is a Lie *-isomorphism of [M, M] onto [N, N]. Let C,
o, ¢’ be as in Theorem 3, and set A\ = ¢ — (¢ + ¢’). X is *-linear since both
¢ and ¢ + ¢ are, and A\ annihilates brackets since ¢ = ¢ 4+ ¢’ on brackets.

We need to show that A(4) € Zy for 4 € M. Since the ring generated
by [NV, N] is N and since ¢ maps [M, M] on [N, N], it suffices to show that
[N(A), ¢(X)] = 0 for all X in [M, M]. [N(A4), ¢(X)] = [¢(4) — (¢ + o) (4),
o(X)] = [¢(4), $(X)] — [(¢ + o')(4), (X)] = ¢[4, X] — [(¢ + ') (4),
(o0 + ') (X)] (since ¢ = o + o’ on [M, M]) = ¢[4, X] — (¢ + ') [4, X] =
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