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DERIVED RING ISOMORPHISMS OF 
VON NEUMANN ALGEBRAS 

C. ROBERT MIERS 

1. Introduction. Let M be an associative *-algebra with complex scalar 
field. M may be turned into a Lie algebra by defining multiplication by 
[A, B] = AB ~ BA. A Lie *-subalgebra L of M is a *-linear subspace of M 
such that if A, B G L then [-4,5] Ç L. A Lie *-isomorphism <j> between Lie 
*-subalgebras Lx and L2 of *-algebras M and N is a one-one, *-linear map of L\ 
onto L2 such that 4>[A, B] = [0(4) , <j>(B)] for all 4 , J3 G Li. We have pre
viously shown [5] that if Li = M, L2 = N where M and N are von Neumann 
algebras with no central abelian summands, then, modulo a *-linear map from 
M into the center of N which annihilates brackets, <f> is the direct sum of a 
*-isomorphism and the negative of a *-anti-isomorphism. 

In this paper we show that if M and N are von Neumann algebras with no 
central abelian summands, and if L\ = [M, M] (= all finite linear combina
tions of elements [A, B], A, B G M) and L2 = [N, N] then <j> can be extended 
to a mapping from M onto N which is the direct sum of a *-isomorphism and 
the negative of a *-anti-isomorphism. This result is analogous to that of 
R. A. Howland [4] who proved that if M and N are simple rings with M con
taining three non-zero orthogonal idempotents whose sum is the identity, then 
<j> can be extended to an isomorphism of M onto N, or to the negative of an 
anti-isomorphism of M onto N. Although von Neumann algebras have an 
abundance of projections they will not, in general, be simple owing to the 
presence of central projections. It is known [6; 8], that if M is an infinite von 
Neumann algebra then [M, M] = My if M is of type I and finite then, modulo 
the center of M, [M, M] = M, and if M is of type II, then [M, M] is uniformly 
dense in the set of operators with central trace zero. 

In what follows we shall take Dixmier [1] as a general reference. A von 
Neumann algebra M is a weakly closed, self-adjoint algebra of operators on a 
Hilbert space H containing the identity operator. The set ZM = {S G M\ST = 
TS for all T G M) is called the center of M. If P and Q are projections ( = 
self-adjoint idempotents) in M then MP = {PAP\A G Af}, PMQ = 
{PAQ\A G M] and 

PMQMP = J Ç PXiQYJP\Xi9 YteMj. 

The central support ? of a projection P is defined to be the smallest 
central projection larger than P , the central core P of P is defined to be 
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LUB{^4 S P\A = A* G ZM\- The central core of any self-adjoint element is 
denned analogously. If PQ = 0 we say P is parallel to Q, written P\\Q. 

2. General results on Lie *-isomorphisms of [M, M]. The following 
results parallel those of [5, pp. 719-723]. In particular we first show that 
certain projections and relations between projections can be characterized in 
terms of bracket relations involving elements of [M, M], and then that the 
image of these projections under a Lie *-isomorphism of [M, M] onto [N, N] 
can also be characterized. 

LEMMA 1. If A is a self-adjoint operator in the von Neumann algebra M and 
[[[[X, A], A], A], A] = 0 for all X G M, then A — A is a projection in M. 

Proof. An argument similar to [5, Theorem 1] with the polynomial t4 — t2 

replacing t3 — t will show that the spectrum of A — A consists of {0, 1}. 

LEMMA 2. If P and Q are commuting, core-free projections then [[P, Q], Q] = 0 
for all X G [M, M] implies P\\Q. If P\\Q then [[P, X], Q] = 0 for all X G M. 

Proof. If [[P, X], Q] = 0 for all X G [M, M] then [[[P, [X, P]], Q] = 0 
for ail X G M. Multiplying this out we have 

2PXPQ - PXQ - XPQ - 2PQXP - PQX + QXP = 0. 

Multiplying this relation on the left by PQ gives PQX (I - P)(I - Q) = 0 
for all X Ç M. Multiplying the relation on the left by P and on the right by Q 
gives P(I - Q)XQ(I - P) = 0 for all X € M. The result now follows from 
the proof of [5, Lemma 2]. 

LEMMA 3. Let P, Q be commuting projections in M such that [[[[X, P] , Q], P ] , 
Q] + [[X, P],Q] = Ofor all X G [M, M]. Then there exists a projection C G ZM 

such that PQ(I - C) = 0, (I - P){I - Q)C = 0. 

Proof. The bracket identity implies that 

[[[[[X, Ql P ] , Ql P ] , Q] + [[[X, Q], P ] , Ç ] = 0 

for all X G M. Multiplying this relation on the left by PQ gives PQX (I - P) 
(I - Q) = o for all X G M which implies PQ\\ (I - P)(I - Q). Let C = PQ. 

LEMMA 4. Let <t>:[My M] —> [N, N] be a Lie *-isomorphism of [M, M] onto 
[N, N] where M and N are von Neumann algebras. Then <t>[ZM C\ [M, M]) = 
ZNC\[N,N]. 

Proof. If Z G ZMC\ [M, M] then [[M, M], Z] = 0. This implies [[N, N]} 

4>{Z)~\ = 0. By [3, Sublemma, p. 5] 0(Z) G ZN. The reverse inclusion follows 
by applying the same argument to <frl. 

LEMMA 5. Let 4>, M, and N be as in Lemma 4. If P is a projection in M such 
thatP - Z G [M, M] for some Z = Z* G ZMthen<$>(P - Z) = d(P) + X(P -
Z) where 6 is a core free projection and X(P — Z) G ZN. This representation is 
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unique. Also, 0 (P - Z) = - 0 ' ( P ) + \ ' ( P - Z) where 0'(P) is a core free 
projection and \' (P — Z) G ZN. This representation is unique. 

Proof. Let F = P - Z. Then [[[X, F], F], F] = [X, F] for all X G M, and 
in particular for all X G [M, M]. Thus, [[[X, 0(F)], 0(F)], 0(F)] = [X, 0(F)] 
for all X G [X, N] since 0 is onto. Let X = [F, 0(F)]. Then 

[[[[F, 0(F)], 0(F)], 0(F)], 0(F)] = [[F, 0(F)], 0(F)]. 

By Lemmalthis implies 0 (F) — 0 (F)~ is a core-free projection, say 0 (F). Suppose 
P - Z' G [M, M] for Z' G ZM. Then Z - Z' = (P - Z') - (P - Z) G [M, M] 
so that, by Lemma 4, 0(Z - Z') G ZiV C\ [N, N]. Also, 0(Z - Z') = 
0(P - Z') - 0 (P - Z) = 0(P - Z') + 0 (P - Z')~ - 0(P - Z) - 0 (P - Z)~ 
so that 0 {P -Z') -6{P -Z) eZN. By [5, Lemmal] this implies 0 (P - Z') = 
6(P - Z). We call this common value 6(P). If 0 (P - Z) = (? + Z' where 
<2 is a core-free projection and Z' G ZiV then 0(P) — Q G Z^ which would 
imply again by [5, Lemma 1] that 0(P) = Q and also that \{P - Z) = Zf. 

If we write 0' (P) = 0(P) - 0(P) then 0'(P) is a core-free projection and 
0(P — Z) = — 0'(P) + \ ' ( P — Z). By an argument similar to the one above 
this representation is unique. 

LEMMA 6. If P - Z, Q - Z' G [M, M], /or some self-adjoint Z, Z' G ZM, 
wi*A [P, Q] = 0 then [0(P), 0(C)] = 0. 

Proof. 0 = [P,Q] =[P-Z,Q- Z'\ Hence, 0 = 0(0) = 0[P - Z, Ç - Z'] = 
[ 0 ( p - z ) , 0 ( P - z o ] = [0(P),0«2)]. 

LEMMA 7. Let Q be a core-free projection in A7 such that Q — Z' G [N, N] for 
some Z' G ZN. There exists a core-free projection P G M and a self-adjoint 
Z G ZM such that P - Z G [M, M] and 0(P) = Q. 

Proof. Let Q' = Q - Z'. Then [[[X, 0'] , Q'], Q'] = [X, <?'] for all X G [X, N]. 
There exists a self-adjoint P' G [M", ilF] such that 0(P ' ) = Q'. This implies 
[[[X, P ' ] , P ' ] , P'] = [X, P'] for all X G [M, i f ] . Hence P' - P' = P is a 
core-free projection and (? ~ £ ' = (?' = *(P ' ) = 0 (P + P ' ) = 0(P) + 
X(P - ( - P ' ) ) . This implies 0(P) = Q. 

LEMMA 8. Le/ P and Q be core-free projections in M with P — Z, 
Q - Z' G [Mf M] for self-adjointZLZ[_e ZM. ThenP\\Qif and only if B{P)\\d(Q) 
and P = Q if and only if 0(P) = 0(C). 

Proof. If P | | e (P, Ç need not be core-free here) then 0 = [[P, X], Q] = 
[[P - Z, X], Q - Z'] for all X G [M, ilF]. Thus 0 = 0(0) = [[0(P - Z), X], 
0(Q - Z')] = Ufl(P), X], HP)] for all X G [X, X]. This implies, by Lemma 2, 
since 0(P) and 0(<2) are core-free, that 0(P)||0(<2). If 6(P)\\0(Q) then 0 = 
[[0(P), X], 0(Q)] = [[0(P - Z), X], 0(Ç - Z')] for all X G [X, X]. Thus 
0 = 0-i(O) = [[P, X], Q] for all X G [M, M]. By Lemma 2 we have P||Ç. 
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If P = Q but 6(c) 9^ 0(Q) there exists a central projection C G ZN such 
that C6(Q) = 0 but C6(P) 7e 0. By Lemma 7 there exists a core-free projec
tion R in M and a self-adjoint Z " G ZM such that P - Z" G [M, M] and 
0(R) = CT(P). Hence 0(P)||0(<2). By the preceding lemma R\\Q. Since <2 ̂ _ P 
we have R\\P. This implies 0(P)||0(P) a contradiction. Similarly 0(F) = 0(C) 
implies P = Q. 

LEMMA 9. Let Pi , . . . , Pnbe parallel projections such that Pt — Zt G [M, M] 
for self-adjoint Zt G ZM. Then 0 is additive on the Pt. 

Proof. Lemma 8 implies that the B(Pt) and || core-free projections so that 
J^i=id(Pi) is a projection. It is core-free by parallelism. Then 

o = Âjr p\ - £ 0(p,) + z 
\ 2=1 / 2=1 

where Z G Z^. Thus 6(Y!i=iPi) — YTi=iO(Pi) G Z^ and are equal. 

LEMMA 10. Let C be a central projection in a von Neumann algebra M with no 
central abelian summands. There exists a core-free projection P in M, and a 
self-adjoint Z G ZM such that P = C and P — Z G [M, M]. 

Proof. Let E + F + G = I, the identity operator, where E, F, G are central 
projections, ME is finite and discrete, MF finite and continuous, and MG 

infinite. CG is a central projection in MG so there exists a core-free projection 
Px in MG such that P\ = CG by [5, Lemma 4]. Moreover, since MG is infinite, 
P i G [M G, M G] = M G by [8]. CE is central in ME so there exists a core-free 
projection P 2 in ikf̂  such that P 2 = CP. By [6, Theorem 1] P 2 - P2

# G 
[jlf#, .MY], where P2

# is the center-valued trace of P2 . Finally, choose a pro
jection Q — P - Q in M F . Q is core-free, Q = F, and if FF* = Q, F* F = 
P - Ç, i lT , F*] = Q - èP G |\MV, ^V]- Thus CQ - %CF G [ilfCF, MCF] ç 
[MF , M F ] . L e t P 3 = CQ. 

Set P = P i + P 2 + P3 . Then P = 0 since the P , are || and P - (%CF + 
P2#) G [M, M] = [Af̂ f M J + [AfF> i l ^ ] + [Af0> I G ] . Moreover P =P1 + 
P2 + Pz = C. 

THEOREM 1. Let <j>: [M, M] —> [N, N] be a Lie *-isomorphism where M and N 
have no central abelian summands. There exists a *'-isomorphism \j/ of ZM onto ZN 

such that if P is a projection in M with P — Z G [M, M] for a self-adjoint 
Z G ZM, and if C is a central projection in M, then 0(CP) = \f/(C)6(P). Also 
6'(PC) = t(C)6'(P). 

Proof. We first show that <£ induces a projection orthoisomorphism of ZM 

onto ZN. Define ^ o n a central projection C as follows: choose a core-free pro
jection P in M such that P — Z ^ [M, M] for a self-ad joint Z G ZM and 
P = C. Define ^(C) = 0(F). If (5 = C with 0 - Z' G [AT, Af] then by Lemma 
8, 0(P) = 6{Q) so that the mapping is well defined. If D is a central projection 
in N, there exists a core-free projection R £ N such that R — Z' £ [N, N] for 
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a self-adjoint Z' G ZN and R = D by Lemma 10. There exists in M a core-free 
projection P with P - Z G [M, M] and0(P) = # . Hence^(P) = Ô(P) =R = D 
so that ^ is onto. If C, D are central projections in M with CD = 0 let P = C, 
Q = D where P - Z, Q - Z' G [M, M] for self-adjoint central Z, Z' G ZM. 
Then 

CD = 0<=>PQ = 0^P\\Q<^d(P)\\d(Q)^dJF)J(Q) = 0 

<^xP(C)t(D) = 0. 

Thus ^ is a projection orthoisomorphism of ZM onto ZN and implements a 
*-isomorphism, also denoted \//, of ZM onto Z^. 

Let C be a central projection in ikf, P a projection such that P — Z (i [M, M] 
for some self-ad joint Z G ZM. There exists a core-free projection Q in M such 
that Q = C(I - P ) and Q - Z' € [M, M] for some self-adjoint Z' G ZM. 
PC + Q has carrier C and (P - Z)C + Q - Z' G [M, M]. (Note that if 
X G [M, M] and C is a central projection in itf, CX G [M, M]). Hence 
^(C) = 6(PC + (?) = fllTC) + 0(0) since PC||(?. Moreover, since PC and 
P ( J - C) are ||, 6{P) = d(PC + P(I - Q) = 6{PC) + 0(P(I - C)). 
Both 6(PC) and 0(P(I - Q) are || to 6(Q) since Q is || to P . Multiplying these 
relations we have *(C) 0(P) = 0(P) = 0(CP). 

Definition. Let P , Ç be projections in a von Neumann algebra Af. If PQ = 0 
we say P is orthogonal to Q written P ± Q. U (I — P) (I — Q) = 0 we say 
P is co-orthogonal to Q, written P co _L Q. 

LEMMA 11. Let Pi , . . . , Pn be commuting core-free projections, each pair of 
which satisfy the identity of Lemma 3. Then there exists a central projection C such 
that the P t are J_ on C, co _j_ on I — C. 

Proof. This is essentially [5, Lemma 11]. 

LEMMA 12. Let M and N be von Neumann algebras with no central abelian 
summands, and let Pi, . . . , Pn be mutually _l_ projections in M with Pt — Zt G 
\M, M] for self-adjoint Zt G ZM. There exists a projection D G ZM such that the 
6(PiD) are mutually _L, the 6'(Pt(I — D)) are mutually JL. 

Proof. The proof is similar to [5, Corollary to Lemma 11]. 

3. The I2 case. Suppose now that M is of type I2, N has no central abelian 
summands, and </>'.[ikf, M] —» [N, N] is a Lie *-isomorphism onto. The I2 case 
is isolated because the method of proof for the non-I2 case requires the choice 
of three particular non-zero projections and this choice cannot be made if M 
is of type I2. Let Pi , P 2 be _L, equivalent, abelian projections such that 
P i + P 2 = / . By [6], P i - P i ' , P 2 - Pë G [M, M}. We have Pt = 0, 
Pt = J, and, by [5, Lemma 1], fl(Pi) _L 0(P2) since 0(Pi) + B(P2) G ZN. 
Moreover I = +(I) = ^(Pi) = 0(Pi) ^ 0(Pi) + 0(P2) S I. Hence 0(Pt) + 
0(P2) = P For notation let Mtj = PMPh Ntj = diP^Nd^Pj). 
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L E M M A 13. Nti (i = 1, 2) is abelian. 

Proof. We first show t h a t Nn H [TV, TV] is abelian. Suppose Y G Nn Pi [TV,TV] 
and let X G [M, M] be such t h a t 0 ( X ) = Y. We have 0 = [ F , 0(P 2 ) ] = 
[0 (X) , 0 ( P 2 - P 2 #)] . Applying 0" 1 we have 0 = [X, P 2 ] . This implies 
X G -Mu + Tlf22. If F, F ' G TVn H [TV, TV] and X , X ' are such t h a t 4>(X) = 
F, <t>(X') = Yf then, by the above, X , X ' G M±1 + Tkf22 which is abelian. 
Hence 0 = [X, X'] implies 0 = [ F , F ' ] . 

Nn P [TV, TV] is an abelian Lie *-ideal in TVn and so by [5, Lemma 36], 
iVn H [TV, TV] Ç ZJVU, the center of TVn. This implies t ha t 

[Nn, Nn] Ç TVn H [TV, TV] C Z ^ . 

By [5, Lemma 6], [TVn, TVn] = 0. 

COROLLARY. TV /^as wo continuous part. 

Proof. Let C be a non-zero central projection in TV such t ha t TVC is continuous. 
C = CB{Pi) + Cd(P2) and one of C0(Pi) , Cd(P2) is nonzero. We also have 
t h a t Nce(Pi) £ ^ n > NCe(P2) ^ ^22. T h u s NCe(Pi) and NCB(PI) a r e abelian and 
one is nonzero. But C can have no discrete projections contained in it [1, p. 125, 
Proposition 4] a contradiction. 

T H E O R E M 2. Let 0:[Tkf, M] —> [TV, TV] &e a Li£ *-isomorphism where M is of 
type I2 and TV has no abelian summands. There exists an extension v of § to a 
*-isomorphism of M onto TV. 

Proof. We first extend 0 to 0, a near-isomorphism of .M to TV (see [5, p. 722]). 
If 4 G Tkf, then by [6, Theorem 1] there exists a unique central element, 
namely 4 ' , such t h a t A - 4# G [M, M]. Define 0 ( 4 ) = 0 ( 4 - A*) + iK4#)-
Since A* is unique the mapping is well defined. 

Obviously 0 is a *-linear map from M into [TV, TV] + ZN. If X G [M, Ttf ] then 
X# = 0 so tha t 4>(X) = 0 ( X ) . 

0 [ 4 , B] = 0 [ 4 , B] = 0 [ 4 - A * , B - B*] = [4(A - A*), d>(B - B*)] = 

[ 0 ( 4 - A*) + ^ ( 4 # ) , 0 ( S - B*) + 4,(B*)] = It (A), $(B)] 

so t h a t 0 preserves brackets. If 0 ( 4 ) = $(B) then 0 ( 4 - B - (A* - B*)) G 
ZN C\ [TV, TV] so t h a t A - B - (A* - B*) £ ZM. This shows A - B G ZM. 
If B + Z' G [TV, TV] + ZN there exists A G [TV, TV], Z G ZM with 0 ( 4 ) = 5 , 
xP(Z) = Z'. Then 0 ( 4 + Z) = 0 ( 4 ) + ^ ( Z ) = 5 + Z ' so t ha t 0 is on to 
[TV, TV] + ZN. By the Corollary to Lemma 13, TV has no continuous pa r t so t h a t 
by [6], and [8], [TV, TV] + ZN = TV. 

Applying [5, Theorem 2] to the near isomorphism </>:M —> TV we have 
0 = o- + r where 0- is an associative *-isomorphism of M onto TV and r is a 
*-linear map which annihilates [M, M]. If A G [M, Tkf], 0 ( 4 ) = 0 ( 4 ) = 
a(A) + r(A) = a (4 ) . 
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4. The non-12 case. Let <j> : [M, M] — [N, N] be a Lie *-isomorphism where 
M and N have no abelian summands and M is not of type 12 (M may have a 
type 12 summand). We wish to employ techniques of [4], but in order to do 
this we must make a particular choice of three projections. 

LEMMA 14. There exist projections Pi , P2 , P3 in M such that X) P* = / , 
p1 = p2 = it p1 v^ p 2 | I - p 3 is the h-summand, I - P 3 ^ P i + P2 , 
P i ( I — P3) awd P2( / — P3) are the equivalent, J_, abelian projections com
prising I — P3, a^d //zere £xis/ central self-adjoint elements Zu i = 1, 2, 3, swcfe 
Jfta* P , - Z, € [Af, M], Moreover we have P^PMPj = PzPiMPkMPj for 
i,j,k e {1 ,2 ,3} . 

Proof. Let Cn™ be the In part of M (n ^ 2), C(2> the Hi part, and C<8> the 
infinite part. Cn

(l) is the sum of n equivalent (abelian) projections Pi(n\ . . . , 
PJn). Un is even (n ^ 4) let 

(n-2) /2 n -2 w 

0 i w = E P / B ) - <22
(B) = E ^<(B\ &0 0 = E P i w . 

2=1 i=n/2 i=n—l 

If w is odd let 

(n -D/2 w-1 

<2iw = E -P/K). <22
(B) = E P / " \ Q*n) = i'»60. 

*=1 *=(n-+ 1) /2 

Moreover, by [6], there exist central self-adjoint elements Pi, P2, P3 in 
MC(D where C(1) = E"=iC ( 1 ) such that 

00 00 00 

E Qin) - T„ E <22(B) - rt, E e3
(re) - r3 e [M, M ] . 

w = l w = l rc=l 

C<2) = Eî_il?f where P , — P , . If VV* = Dx + Z>2, F*F = £>3 + £>4 then 
[ 7 , F*] = C<2> - (Z>, + Di) £ [Mco>, M c w] ç [M, M]. Since £>3 ~ Dit 

Di - D4 £ [M, M] which implies D4 - %Cm £ [M, M]. The same argument 
holds for Dlt D2, Dz. Similarly C(3) = E t i -E* with Et — E} and E< e [M, M] 
by [8]. 

Let 

P i = Pi (2 ) + Ë Gi(K> +D1 + Eu 
w=3 

P2 = P2
<2) + E Ç2(re) + D2 + E2, 

P3 = Ë Q™ +D3 + Di + Ez + £4. 
w=3 

All assertions except the last are clear. If P ^ <2 ^ P with FF* = Q F* F = P 
then PXQ = PXVRV*Q so that PMQ = PMRMQ. We apply this technique 
to each ln summand (n è 3), to the II, summand, and to the infinite summand. 
For example, examine C4

(1). C4
(1) = (?i(4) + (V4 ) + <23

(4) where (?3(4) = 
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P3(4) + p4(4) a n d Q I ( 4 ) ^ <22(4) _ p3(4) _ p4(4) W e p r o v e a f e w representative 

cases: 
(i) Qi<4>MQ2<

4) = (2i(4)M(23
(4)M(22(4). For, 

<2i(4)X<22
(4) = (21(

4)XFP3
(4)(33(4)F*(32(4) where V*V = P3

( 4 ) , FF* = Ç2
(4). 

(ii) Çi(4>M(23
(4) = (?i(4)M(V4)iWW4>. For, 

<2i(4)x<23
(4) = e 1c«xp 8

( 4 ) + <2I ( 4 ) XP 4
( 4 ) = 

( 2 I ( 4 ) X F P 2 ( 4 ) F * P 3
( 4 ) ( 3 3 ( 4 ) + (2I ( 4 ) ^W / P 2

( 4 ) TF*P 4
( 4 ) (23 ( 4 ) 

where 
7 * 7 = p2(4)? VV* = P3

( 4 ) , W*W = P2
( 4 ) , WW* = P 4

( 4 ) . 

(m) e3
(4)M(23(4) = e3 ( 4 ) ^0 i ( 4 ) ^Q3 ( 4 ) . For, 

(?3(4)^(?3(4) = P 3
( 4 ) IP3 ( 4 ) + P3

( 4 )XP4
( 4 ) + P4

( 4 )XP3
( 4 ) + P4

( 4 )XP4
( 4 ) = 

(23 (4)P3 (4)XFPl^F*P3
(4)(23 (4) + Q3

(4)P3(4)XIFPi(4W*P4(4>(23(4) 

+ (24(4)P4
(4)XFPi(4)F*P3

(4)(23(4) + P4
(4)XIFP1<

4>IF*P4(4)<23
(4) 

where 
7 * 7 = p1(4) | 7 7 * = p3(4) ) ^ ^ = p i(4 ) ) ww* = p4(4)> 

Similar arguments work in the other cases. 
Let Pu i = 1, 2, 3, be as in Lemma 14 and let Qi = P i (J — P 3) , Ç2 = 

P 2 ( / - P3) , (?3 = P1P3, Ç4 = P2P3, (?5 = P3 . By Lemma 12 there exists a 
central projection D £ M such that the 6(QtD) are JL and the 6''(Qt(I — D) 
are _L for i = 3, 4, 5. (Note that <2*P> - ZtD G [MD, MD] C [M, M].) 

LEMMA 15. 0(ÇO _L 0(Ç2) a ^ <9(Qi) + 0((?2) = ^ ( / - P 3 ) . 

P r ^ / . Qi - Zi(J - P3) , Q2 - Z2(I - P3) G [M, M] and Q, + Q2 = 
I - P3 . Hence Q1 - ZX{I - P3) + Q2 - Z2(l - P8) U . H [M, M]. This 
implies 0(<2i - Zi(J - P3) + Ç2 ~ Z 2 ( / - P3)) G Z*. Hence 0(00 + 
0(Q2) G ZN. As before this implies 9{Q\) _L 0(Q2) since they are core-free. 

0(Qt) = g ( P Q ^ ( J - A ) so that g(QQ ^ ( I - P 3 ) , i = 1, 2. * ( / - P3) = 
*(&) = *(&) ^ *(&) + <2(<22) ^ HI - ^3). 

COROLLARY. 0 ' (QI ) = 0(Ç2). 

P ™ / . 0'(&) = HQÎ) - 0 ( d ) = * ( I - P3) - 0(Qi) = 6(Q2). 

For notation let M „ = QiMQjy Ntj = 6{Qi)M6{Qj) for i, j G {1, 2}, and 
let ilfy = QiDMQjD, Mtj = 0,(7 - D)MQj{I - D), Ntj = 6{QiD)Nd{BjD)1 

and iV„- = 0'(Qi(I - D))N6' (Qj(I - D)) for i, j G {3, 4, 5}. Notice that if 
Xtj G Mi, (i * j) then XtJ = [Xij9 Q,] G [M, M]. 

LEMMA 16. ^(ŒLiNu + J^t-M ^ [ ^ W) = 
(L\-iMu + Z't-zMu) H [M, M]. 

Proof. See [5, Lemma 26]. Note that ZM Q Y,\=iMtt + T.LzMu. 

LEMMA 17. ^(N») = Mij} 4rx(Ntj) = Mtj if i ^ j . 
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Proof. See [5, Lemma 27]. 

LEMMA 18. E U K < 2 * £ > ) = 4>(DP9), ZUe'(Qi(I - D)) = * ( ( / - D)PZ). 

Proof. In [5, Lemma 13] replace D by DPz, and the result follows. 

LEMMA 19. 4>{(ZMll + ZM) C\ [M, M]) ç (Nn + ZN) C\ [N, N]. 

Proof. HA £ (ZMll+ ZM) C\ [M, M] then [A, X] = 0 for all X in 

5 

E M„ + E Mu + E Mtj + E Mu. 
i^j;i,3^ i=l i^j;i,j^ i^3 

Hence [4(A), X] = 0 for all X in 

Z #<i + (Z #« + Z AU P [#, #] + £ #<, 

= ( E «̂ + (E #« + E #«) + E #J n M#] 
( 5 5 ) 

= <STS\TeN,s = o(Q2)+ £ e(Qj)) + D 0'((M'-^))f n[i\rf;v] 
v z=3 i=3 / 

= iv^n [iv,iv]. 
(Note that by Lemmas 15 and 18, S = I - 6(Qi).) In particular [4(A),X]=0 
for all X in Ns P [iVs, # 5 ] = [iVs> iV5]. Since 4 G ElLiM,, + j:UMiU 

4(A) = Bx + C where Bx G Nn and C G TVs by Lemma 16. Thus 0 = 
[4(A), X] = [J3i + C, X] = [C, X] for all X in [iVs, N si By [3, Sublemma, 
p. 5] this implies [C, X] = 0 for all X in Ns, or that C G Z^g = Z s . Since 
S = I-d(Q1) we have C = Z(I - d(Q1)). Finally, 0 (4 ) - Bx + C = 
B1 - 6(Q1)Z + Z G (TVn + Z*) H [iV, iV]. 

COROLLARY, 0((Mn + ZM) H [M, M]) c (Nu + ZN) P [N, N]. 

Proof. Mu is abelian since Qi is an abelian projection. Hence Mu Ç ZM l l . 

Wenowextend0|[ l f 7_P3, i f 7_p3] to a Lie *-isomorphism of 4 of X a ^ . ^ A f ^ 
into N, and then analyze 4- We cannot proceed exactly as in Theorem 2 because 
of a lack of information about the image of ^î^ij^Mn under 0. 

If A G Iigi f ig2Mii define 4(A) = 4(A - A*) + f(A#). This is well de
fined since MU-P9) is finite. If A G Mtj, (i, j) = (1, 2) or (2, 1) then A* = 0 
and # ( 4 ) = 0 ( 4 ) . If A G Af„ then A - A* G (AT** + ZM) Pi [Af, ilf] by 
[6, Theorem 1] and by Lemma 19, 4(A) = 0 (4 - A*) + ^(A*) G Nu + ZM. 
4 is obviously *-linear. If 4(A) = 0 then 4(A - A*) G ZN P [TV, iV] so that 
i - i ^ Z ¥ H [M, I f ] . Thus A e ZM so that 4 = A* and 0 = 0 ( 4 ) = 
4(A - 4#) + 4/(A*) = 0 + <K4#). Hence 4# = 0. This shows 4 is 1-1. 
0 preserves brackets as in Theorem 2. 

Defining mappings a0 and X0 as follows: if A G Mtj, (i, j) = (1, 2) or (2, 1) 
let (To(4) = 0 (4 ) = 0 ( 4 ) . If 4 G Af„( i - 1,2) then 0 ( 4 ) = *0(A) + X0(4) 
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where <TQ(A) 6 Nit, A0(yl) € ZN. <r0 and X0 are well defined for if 
a0(A) + \0(A) = a0(B) + \0(B) then a0(A) - <r0(B) € Ntt f\ ZN = JO}. 
(To and Xo can be shown to be *-linear maps with <r0(AB) = a0(A) <r0(B) for all 
A,B 6 Mj _ P 3 as in [5, Lemmas 18-22]. 

LEMMA 20. <r0 extends 0|[if7_p3, M7_P3] to a *-homomorphism of ikf7_p3 

into N. 

Proof. We show that X0 annihilates brackets of elements in M(Ql+Q2). 
Xo[A,B] = $[A,B] -a0[A,B] = [$(A), $(B)] - [a0(A), a0(B)] = [a0(A) + 
\o(A), a0(B) + Xo(5)] ~ [*o(A), <r0(B)] = 0 since \0(A) G ZN. Hence 
<t>[A, B] = $[A, B] = c70[^, B] + \[A, B] = a0[A, B]. 

We turn our attention to MT2. By Lemma 14, QiMQt = QiMQkMQj for 
i, j , & G {3, 4, 5} so that we also have QtDMQjD = QiDMQkDMQjD for 
i, j , k G {3, 4, 5}. A similar relation will hold with D replaced by I — D. 

LEMMA 21. Let (i, j , k) be any permutation of (3, 4, 5). If Xtj G Mtj, 
Xjk G Mjk then <t>(XtjXjk) = <t>(Xtj) <t>{Xjk). If Xtj G Mijy Xjk G Mjk then 
^(XijXjk) = —<j)(Xjk) <t>(Xij). 

Proof. H i ?£ j and Xtj G Mtj then <t>{Xij) G Ntj by Lemma 17. Hence 
4>(XtjXlk) = 4>[XtJ, Xjk] = [4>{Xti), <f>(Xjk)] = 4>(XtJ) 4>{Xjk). U i ^ j and 
Xu G Mtj then d>(Xij) G Njt. 4>(XtJXJk) = </>[XtJ,Xjk] = [<l>(XtJ), cf>(Xjk)] = 
— <b(Xjk) 4>(Xij). 

LEMMA 22. $ is a homomorphism from the algebra generated algebraically by 
Mij + Mjk + Mik into the one generated algebraically by N{j + Njk -f Nik, and 
the negative of an anti-homomorphism of the algebra generated algebraically by 
Mij + Mjk + Mik into the one generated algebraically by NH + Nkj + Nki, 
where (i, j , k) is a permutation of (3, 4, 5). 

Proof. It suffices to let (i, j , k) = (3, 4, 5). If XM G MM, XAb G M45, then 
by Lemma 21, <£(X34X45) = <£(X34) <£(X45). In all other cases 0 = 0(0) = 
<t)(Xi:iXkl) = <t>(Xtj) <j>(Xkl) by Lemma 17. 

For the other part, if Xu G If34, X45 G -M45 then ^ p ^ X ^ ) = -</>(X45) 
<£(X34) by Lemma 21. In all other cases 0 = 0(0) = 4>{XijXki) = —4>(Xki) 
4>{Xij) by Lemma 17. 

LEMMA 23. A von Neumann algebra M is generated algebraically by [M, M] 
if and only if M has no abelian summands. 

Proof. By [6], [M, M] is the set of all finite sums of niloptent operators of 
index two. By [2], M is algebraically generated by nilpotents of index two 
if and only if M has no abelian summands. 

LEMMA 24. [MP 3 , MPZ] is linearly generated by Mtj, Mij, [Mij, Mji], and 
[Mij, Mji] for i 9e j , i, j G {3, 4, 5}. [M7_P3, M7_P3] is linearly generated by 
M^ and [Mtj, Mji], i ^ j , i, j G {1, 2}. 
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Proof. [Mpt, MP,] = [MpiD, Mp3D\ + [ M P , ( / _ B ) I M F , < J _ D ) ] . 

5 

= S M„ + £ [M„, M,,] + E [M„, JW„]. 
i^j;^i,j^B i^j;^i.j^5 i=3 

It suffices to show that [Af33, M33] £ [M34, Af43]. M33 = QJ)MQ*D = 
QzDMQADMQzD. If A, B e MM then 4 = Q,DAQZD = Q^DAV04DV*Q,D 
and B = QzDBQzD. Thus [4, B] = [Q,DXQ,DYQ,D, Q,DBQ,D] (for ap
propriate X, F) = 
[QzDXQiD, Q,DYQZDBQ,D] - [Q,DBQ,DXQ,D} Q,DYQ,D] G [Mih M43]. 

The other parts of the lemma are proved similarly. 

COROLLARY. [N, N] is linearly generated by Nijt Nijy [Nijy Nji], and 
[Nu, ft jt] fori *j. 

LEMMA 25. If Xtj, Ytj G Mih Xjt G MH then </>(X^Xiz-F^-) = 
MX») 4>(Xjt) MY^fori 9* j,i,j G {3, 4, 5}.IfXiJ9 YtJ G MiJ9Xjt G MH 

then^{X^XnYu) = 0 ( F „ ) <t>{Xjt) c^X^) for i 9*j,i,j G {3,4,5}. 

Proof. LetX3 4 , F34 G i¥34, X43 G M43. We will show that [</>(X34X43F34) -
<£(X34) <̂ >(X43) 0(F34)] [iV, iV] = 0. This will imply the result by Lemma 23. 
By the Corollary to Lemma 24 it suffices to show that 

(1) [</>(X34X13F34) - 4>(^34) <£(X43) *(F84)] <t>(Xtj) = 0 for i ^ j and 
Xtj G Mij or ikfz> Since, by Lemma 17, both </>(X34X43F34) and <£(X34) <K-^43) 
0(F34) are in X34, (1) will be true if i 9^ 4 and X^- G -M -̂ or if Xtj G .M^ for 
i 7e- j . We need only check X43 and X45. (Note that X 4 i = 0 since Ç4 ^ P3, 
QiSI - Pz). 

(2) 0(X34X43F34) </>(X45) - 0(X34) 0(X43) <£(F34) </>(X45) 

= (by Lemma 21) 

$(X34X43F34X45) — </>(X34) <£(X43) 0(F34X45) 

= (by Lemma 21) 

<£(X 3 4 X 4 3 F 3 4 X 4 Ô) — $(X34) $(X43F34X45) 

= (by Lemma 21) 

<£(X 3 4 X 4 3 F 3 4 X 4 Ô) — 0(X34X43F34X45) = 0. 

As for X43, we can write X43 = Y?i=iX±$(*)X53
(Z') by Lemma 14. We have 

<KX43) = Ê 0(x45
( f ))^(x53

( i )) 

i=l 

by Lemma 21. By the preceding argument we have (1) if (i, j) = (4, 3). 
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The second statement is proved similarly. For example if X34, F34 £ il2"34, 
X43 6 -M43 and X53 G M53 then 

0(X34X43F34) 0(X53) - 0(F84) 0(£4 8) 0(X34) 0(X53) 

= — 0(X53X34X43F34) + <£(F34) 0(X43) <£(X53X34) 

= — $(X53X34X43F34) — $(F34) <£(X53X34X43) 

= — </>(X53X34X43F34) + <£(X53X34X43F34) = 0. 

LEMMA 26. Let (i, j , k) be any permutation of (3, 4, 5). If 

5 = 1 Z = l 

where Xtj £ Af^ £&ew 

w m 

22 <t>(Xij S )4>{Xji S ) = 2-/ «K-̂ flfc * )<t>(Xki
 % ). 

5 = 1 * = 1 

5 = 1 * = 1 

w/zer£ Xtj £ J0T^ 2/&ew 

w m 

Z <t>(x3t
U))Hxtj

(s)) = Z <t>(X*i(t))4>{xik
u)). 

5 = 1 z = l 

Proof. We prove the second statement. The proof of the first is similar. Let 
(h j , k) = (3, 4, 5). We show that 

( n m \ 

£ ^»(X43
(S))<A(X34

(S)) - Z ^ W ' W s J ™ ) ) [ N , N ] = 0. 
5 = 1 Z = l / 

As before, we check elements of [TV, N] of the form <j>(Yi3), i T^ j where 
YiLe Mtj or Mij. Since X34(s) G i?34 , 0(X34<

S>) £ iV43 and similarly 
0(X35

( Ï )) G iV53, (1) will hold if Ytj ^ Mtj i 9* j or if Ytj £ MtJ with j 5* 3. 
We need only check the cases F^- G Mtj for (i, j ) = (4, 3) or (5, 3). 

n m 

Z ^,(X43
<s))«#»(x34

(s,)0(F43) - x ; * (^ H
( , ) ) * ( ^» 5

( , ) ) * ( r « ) 
s = l z = l 

= £ <^(F43X34
(S)X43

U)) + E 0(X53
O))^(F43X35

O)), by Lemmas 21, 25 
*=i 

= 23 0(F41X34
(S)X43

(S)) - £ 0(F 4 3 X 3 ^X 6 3 a ) ) ,byLemma21 
s=l *=1 

( n m \ 

£ F43^34
(S)^43(S> - Z P « £ „ " t f „ ( < ) ) = *(0) = 0. 

5=1 t=l / 
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A similar computation shows that 

n m 

(2) Z <K^«(S))<KX34
(S))<MFS3)- Z 4>(xJ'))<k(x3S

u))<t>(YM) = o. 

We are now in a position to define the extension of <j> on [Mp3, M P 3 ] . 

Definition. Le t o"i and </ be mappings of M J ) P 3 and M(I_D)p-3 into N^{Dp3) 
and i\fy(( /-2»p3), respectively, defined in the following manner : 

(1) i f X G M „ (i ^ j ) , < n ( X ) = <£(X) G Niâ for i,j G { 3 , 4 , 5 } ; 
(2) if X G I , and X = ZUX^Xj^ = E?-iX,*<'>**<<'> for i, j , 

& G {3, 4, 5} then 

n m 

<n(X) = E tfCXV'MV) = £ <K^*(s))<H /̂s>); 
( = 1 6 = 1 

(3) if X e M „ (t ^ j ) , </(X) = <r(X) € # „ for t, j 6 {3, 4, 5} ; 

(4) if X d Mtt and X = E U . / " ^ / ' 1 = E Ï L i - X V 0 * * / " then 

<r'(X) = - E <KXit
l°)<KXit

U)) = - Z *(^ti<'))0(^«(*>). 
f = l ? = 1 

Extend ci (respectively a') to all of i k f ^ (respectively M{ I-D)PS) by linearity. 
These maps are well defined by Lemma 26. I t is a straightforward computa t ion 
to check t h a t u\ and a' are *-linear. 

L E M M A 27. ai is an extension of C/)\[MDP3, MDP3] to MDP~3, and a' is an exten

sion of <t>\[MU-D)p3, M(7_2»p8] to M{I-D)P3. 

Proof. MDP3 is linearly generated by Xtj and [Xtj, Xjt] where i ^ j and 
Xtj G Mfj, i, j e . {3, 4, 5 j . By definition, al = 4> on Jkf^. <T[X^-, X^-J = 

^{XijXji — XjiXij) = aiXijXji) — ^(XjiXij) = <t>{Xij) <t>(Xji) — (t>(Xji) 
<j>(Xij) = <t>[Xij, Xji] from the definition of ai on Mit. 

Similarly M(I-D)P3 is generated by Xtj and [Xtj, X^] where i ^ j and 
X ^ G JfiT,,, i, J G {3, 4, 5}. Again ^ = <j> on i f i^ . ( / [ X ^ X . - J = . ' ( I , ^ , . ) -
a'(XjiXfj) = —4>(Xji) <t>(Xij) + <t>(Xij) <t>(Xji) = 0[X^-, X , J . 

L E M M A 28. ci is a homomorphism of MDP-3 into Nt(Dp3), and af is the negative 
of an anti-homomorphism of M( T-D)PS into X^ ( ( /_.£>)p3). 

Proof. We show the ant i -homomorphism par t . T h e homomorphism proof is 
analogous. We mus t show t h a t <jf(XijXkl) = — crf(Xki) o-'(X^) for i, j , k, 
l G { 3 , 4 , 5 } . 

(1) i 7* j , k ?* I, j j * k. In this case XtjXkl = 0 so af(XijXkt) = 0. 
<rf(Xij) G 8a and a'(Xkl) G Nlk so t h a t af (XkJ) </(Xti) = 0._ 

(2) i 9*j, k 9* /, j = k. If i = /, *,(XijXjl) = -<t>(Xjl) $(Xjj) = 
-a' (Xji) <Jf(Xij) smceo- ' (X^) = ^(Xtj) fo r i ^ j . Hi ^ Ithena'(XtjXjt) = 
c^XijXjt) = -4>(Xjl) <j>(Xij) = -*'&„) *'(Xij). 
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(3) i = j , k 9^ /, i 9^ k. We can assume, in this case, t ha t Xu = XikXki. 
Then af(XuXkl)^= 0. Also -a'(Xkl) <j'(XikXki) = <t>{Xkl) <t>{Xki) <j>(Xik) = 0 
since <\>(Xkl) £ Nik, <\>{Xki) 6 Nik and i ^ &. 

(4) i = j , k j* I, i = k. We can assume, in this case, t ha t Xti = Xit XH. 
Thzn<j\XuYn) = <j'{XilXli Yu) = 4>(X<£„?u) = 4>(?u) <t>{XH) <t>{Xtl) 
= af(Yu) a'(Xli) af(Xn) = -<r'(Ytl) af(XilXli) = -*'(YU) <r'(Xu). 

(5) i 9^ j , k = I. This case is proved in a manner similar to (3) and (4). 
(6) i = j , k = I, i ?£ k. We can assume, in this case, t ha t Xit = XikXki and 

Xk]L= YkiYtk. XuXkk = 0 so t ha t < / ( X A ) = 0. <r'{XikXki) <j'(YkiYik)^ 
4>(Xki) <t>(Xik) <i>{Yik) 0 ( 7 * 0 = 0, s ince_0(X«) ^Nki1 and * ( F « ) G JV**. 

(7) i = j , fe = Z î = &.^We^can a s s u m e X u = XipXPi,Xkk = YipYpi (i ^ p). 
a'(XuXkk) = a'(XipXpiYipYpi) = —<r(Ypi) <t>{XipXpiYip) = —<l>(Ypi) <$>(YiP) 
4>(Xpi) <j>(Xip) = —(jr(YipYPi) ar(XipXpi) = —(j'(Xkk) d ' ( l i t ) . 

T H E O R E M 3. Let 0:[Af, M] —> [N, N] be a Lie ""-isomorphism of [M, M] onto 
[Ny N] where M and N are von Neumann algebras with no central abelian sum-
mands. There exists a map U:M —> N which extends $ and such that U = a + <rf 

where a is a *-isomorphism of Mc onto iV^(c) and a' is the negative of a *-anti-
isomorphism of' M !-C onto i\fy( 7_c) for an appropriate central projection C G M. 

Proof. By Theorem 2 it suffices to assume M is not of type I2. Let D, P i , P 2 , 
P 3 be as above, let C = I — P 3 + DPz, and let a = a0 + ai. 

In general if <j)'.[M, M] —> N is a Lie *-isomorphism where ikf is a von 
Neumann algebra with no central summands, and N is a *-algebra, and if II is 
an extension of <j> to an associative *-homomorphism or *-anti-homomorphism 
of M, then II is 1-1. For, suppose A = A* and 11(^4) = 0. Then 
n ( [A , B], B]) = 0 for all self-adjointB in M. This implies t ha t cj>([[A, B], B]) = 
0 (since <£ = II on [M, M\) and thus [ [4 , B], B] = 0. By [7] this implies 
A £ ZM, or ker II Ç ZM. But ker II is a two-sided *-ideal of ikf and cannot be 
contained in ZM unless it is zero. The proof of this claim goes as follows: 

Let J be a two-sided, *-ideal of M contained in ZMi and let A = 4 * £ J 
with ||̂ 4 || ^ 1. If P is a core-free projection of M then PA = AP 6 J C Z M 

and P^4 ^ P . T h u s P^4 is central, self-adjoint, and so is equal to 0 since P is 
core-free. Now choose a core-free P with P = I. Then P — P = I — P is core-
free so t h a t 0 = 4 ( / - P ) = ,4 - 4 P = ,4. 

Applying the above to cr0, °"i> and o-' we see t h a t each of these is 1-1. 
II itself is an extension of <j> to M since a0 extends 0|[ikT/_p3, M j_p3] to 

Afj-pg, o- extends ^ [ i k f ^ , ilf^pg] to MDP3, and o-r extends 0|[ikT(i-D)p3, 
ikf( i-zopg] to ikf( I-D)PZ and so [iV, iV] C Range II. Moreover, since the image 
of M under II is a *-subalgebra of iV, the *-algebra generated by [N, N] is 
contained in Range II. But this algebra is just N by Lemma 23. T h u s II onto. 
This implies t ha t each of c0, cru and a' is onto. 

COROLLARY. If §\M —> N is a Lie *-isomorphism of M onto N where M and N 
have no central abelian summands, there exists a central projection C in M such 
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that (j) = a + v + X w/^r£ o- w a *'-isomorphism of Mc onto iV^o, o7 û //*# 
negative of a *-anti-isomorphism of M 7 _ c (rate N^a-c) and ^ ^ a *-linear map 
of M into ZN which annihilates brackets. 

Pro if. 7] = <J>\[M,M] is a Lie *-isomorphism of [M, M] onto [iV, N]. Let C, 
or, o-' be as in Theorem 3, and set X = <j> — (a + </). X is *-linear since both 
</> and cr + cr' are, and X annihilates brackets since <j> = a + a' on brackets. 

We need to show that \(A) 6 Z^ for 4 Ç I . Since the ring generated 
by [N, N] is N and since <j> maps [M, M] on [iV, iV], it suffices to show that 
[\(A),(t>(X)] = 0 for all X in [M, M]. [\(A), 4>(X)] = [4>(A) - (a + <rf)(A), 
<j>{X)} = [d>(A), 4>(X)] - [(o- + O ^ ) , 4>(X)] = ^ , Z ] - [(o- + <r')04), 
(o- + / ) f f l ] (since 0 = ex + a' on [M, I f ]) = 0[4, X] - (o- + a') [A,X] = 
0[i4,X] - 0[i4,Z] = 0. 
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