# DERIVED RING ISOMORPHISMS OF VON NEUMANN ALGEBRAS 

C. ROBERT MIERS

1. Introduction. Let $M$ be an associative *-algebra with complex scalar field. $M$ may be turned into a Lie algebra by defining multiplication by $[A, B]=A B-B A$. A Lie *-subalgebra $L$ of $M$ is a ${ }^{*}$-linear subspace of $M$ such that if $A, B \in L$ then $[A, B] \in L$. A Lie ${ }^{*}$-isomorphism $\phi$ between Lie *-subalgebras $L_{1}$ and $L_{2}$ of *-algebras $M$ and $N$ is a one-one, *-linear map of $L_{1}$ onto $L_{2}$ such that $\phi[A, B]=[\phi(A), \phi(B)]$ for all $A, B \in L_{1}$. We have previously shown [5] that if $L_{1}=M, L_{2}=N$ where $M$ and $N$ are von Neumann algebras with no central abelian summands, then, modulo a *-linear map from $M$ into the center of $N$ which annihilates brackets, $\phi$ is the direct sum of a *-isomorphism and the negative of a ${ }^{*}$-anti-isomorphism.

In this paper we show that if $M$ and $N$ are von Neumann algebras with no central abelian summands, and if $L_{1}=[M, M]$ ( $=$ all finite linear combinations of elements $[A, B], A, B \in M)$ and $L_{2}=[N, N]$ then $\phi$ can be extended to a mapping from $M$ onto $N$ which is the direct sum of a *-isomorphism and the negative of a *-anti-isomorphism. This result is analogous to that of R. A. Howland [4] who proved that if $M$ and $N$ are simple rings with $M$ containing three non-zero orthogonal idempotents whose sum is the identity, then $\phi$ can be extended to an isomorphism of $M$ onto $N$, or to the negative of an anti-isomorphism of $M$ onto $N$. Although von Neumann algebras have an abundance of projections they will not, in general, be simple owing to the presence of central projections. It is known $[\mathbf{6} ; \mathbf{8}]$, that if $M$ is an infinite von Neumann algebra then $[M, M]=M$, if $M$ is of type I and finite then, modulo the center of $M,[M, M]=M$, and if $M$ is of type II, then [ $M, M$ ] is uniformly dense in the set of operators with central trace zero.

In what follows we shall take Dixmier [1] as a general reference. A von Neumann algebra $M$ is a weakly closed, self-adjoint algebra of operators on a Hilbert space $H$ containing the identity operator. The set $Z_{M}=\{S \in M \mid S T=$ $T S$ for all $T \in M\}$ is called the center of $M$. If $P$ and $Q$ are projections (= self-adjoint idempotents) in $M$ then $M_{P}=\{P A P \mid A \in M\}, P M Q=$ $\{P A Q \mid A \in M\}$ and

$$
P M Q M P=\left\{\sum_{i=1}^{n} P X_{i} Q Y_{i} P \mid X_{i}, Y_{i} \in M\right\} .
$$

The central support $\bar{P}$ of a projection $P$ is defined to be the smallest central projection larger than $P$, the central core $\widetilde{P}$ of $P$ is defined to be

Received July 14, 1972.
$\operatorname{LUB}\left\{A \leqq P \mid A=A^{*} \in Z_{M}\right\}$. The central core of any self-adjoint element is defined analogously. If $\bar{P} \bar{Q}=0$ we say $P$ is parallel to $Q$, written $P \| Q$.
2. General results on Lie *-isomorphisms of $[M, M]$. The following results parallel those of [5, pp. 719-723]. In particular we first show that certain projections and relations between projections can be characterized in terms of bracket relations involving elements of $[M, M$ ], and then that the image of these projections under a Lie *-isomorphism of $[M, M]$ onto $[N, N]$ can also be characterized.

Lemma 1. If $A$ is a self-adjoint operator in the von Neumann algebra $M$ and $[[[[X, A], A], A], A]=0$ for all $X \in M$, then $A-\widetilde{A}$ is a projection in $M$.

Proof. An argument similar to [5, Theorem 1] with the polynomial $t^{4}-t^{2}$ replacing $t^{3}-t$ will show that the spectrum of $A-\widetilde{A}$ consists of $\{0,1\}$.

Lemma 2. If $P$ and $Q$ are commuting, core-free projections then $[[P, Q], Q]=0$ for all $X \in[M, M]$ implies $P \| Q$. If $P \| Q$ then $[[P, X], Q]=0$ for all $X \in M$.

Proof. If $[[P, X], Q]=0$ for all $X \in[M, M]$ then $[[[P,[X, P]], Q]=0$ for all $X \in M$. Multiplying this out we have

$$
2 P X P Q-P X Q-X P Q-2 P Q X P-P Q X+Q X P=0
$$

Multiplying this relation on the left by $P Q$ gives $P Q X(I-P)(I-Q)=0$ for all $X \in M$. Multiplying the relation on the left by $P$ and on the right by $Q$ gives $P(I-Q) X Q(I-P)=0$ for all $X \in M$. The result now follows from the proof of [5, Lemma 2].

Lemma 3. Let $P, Q$ be commuting projections in $M$ such that $[[[[X, P], Q], P]$, $Q]+[[X, P], Q]=0$ for all $X \in[M, M]$. Then there exists a projection $C \in Z_{M}$ such that $P Q(I-C)=0,(I-P)(I-Q) C=0$.

Proof. The bracket identity implies that

$$
[[[[[X, Q], P], Q], P], Q]+[[[X, Q], P], Q]=0
$$

for all $X \in M$. Multiplying this relation on the left by $P Q$ gives $P Q X(I-P)$ $(I-Q)=0$ for all $X \in M$ which implies $P Q \|(I-P)(I-Q)$. Let $C=\bar{P} \bar{Q}$.

Lemma 4. Let $\phi:[M, M] \rightarrow[N, N]$ be a Lie *-isomorphism of $[M, M]$ onto $[N, N]$ where $M$ and $N$ are von Neumann algebras. Then $\phi\left[Z_{M} \cap[M, M]\right)=$ $Z_{N} \cap[N, N]$.

Proof. If $Z \in Z_{M} \cap[M, M]$ then $[[M, M], Z]=0$. This implies [ $[N, N]$, $\phi(Z)]=0$. By [3, Sublemma, p. 5] $\phi(Z) \in Z_{N}$. The reverse inclusion follows by applying the same argument to $\phi^{-1}$.
Lemma 5. Let $\phi, M$, and $N$ be as in Lemma 4. If $P$ is a projection in $M$ such that $P-Z \in[M, M]$ for some $Z=Z^{*} \in Z_{M}$ then $\phi(P-Z)=\theta(P)+\lambda(P-$ $Z)$ where $\theta$ is a core free projection and $\lambda(P-Z) \in Z_{N}$. This representation is
unique. Also, $\phi(P-Z)=-\theta^{\prime}(P)+\lambda^{\prime}(P-Z)$ where $\theta^{\prime}(P)$ is a core free projection and $\lambda^{\prime}(P-Z) \in Z_{N}$. This representation is unique.

Proof. Let $F=P-Z$. Then $[[[X, F], F], F]=[X, F]$ for all $X \in M$, and in particular for all $X \in[M, M]$. Thus, $[[[X, \phi(F)], \phi(F)], \phi(F)]=[X, \phi(F)]$ for all $X \in[N, N]$ since $\phi$ is onto. Let $X=[Y, \phi(F)]$. Then

$$
[[[[[Y, \phi(F)], \phi(F)], \phi(F)], \phi(F)]=[[Y, \phi(F)], \phi(F)] .
$$

By Lemmal this implies $\phi(F)-\phi(F) \sim$ is a core-free projection, say $\theta(F)$. Suppose $P-Z^{\prime} \in[M, M]$ for $Z^{\prime} \in Z_{M}$. Then $Z-Z^{\prime}=\left(P-Z^{\prime}\right)-(P-Z) \in[M, M]$ so that, by Lemma $4, \phi\left(Z-Z^{\prime}\right) \in Z_{N} \cap[N, N]$. Also, $\phi\left(Z-Z^{\prime}\right)=$ $\phi\left(P-Z^{\prime}\right)-\phi(P-Z)=\theta\left(P-Z^{\prime}\right)+\phi\left(P-Z^{\prime}\right)^{\sim}-\theta(P-Z)-\phi(P-Z)^{\sim}$ so that $\theta\left(P-Z^{\prime}\right)-\theta(P-Z) \in Z_{N}$. By [5, Lemma 1] this implies $\theta\left(P-Z^{\prime}\right)=$ $\theta(P-Z)$. We call this common value $\theta(P)$. If $\phi(P-Z)=Q+Z^{\prime}$ where $Q$ is a core-free projection and $Z^{\prime} \in Z_{N}$ then $\theta(P)-Q \in Z_{N}$ which would imply again by [5, Lemma 1] that $\theta(P)=Q$ and also that $\lambda(P-Z)=Z^{\prime}$.

If we write $\theta^{\prime}(P)=\overline{\theta(P)}-\theta(P)$ then $\theta^{\prime}(P)$ is a core-free projection and $\phi(P-Z)=-\theta^{\prime}(P)+\lambda^{\prime}(P-Z)$. By an argument similar to the one above this representation is unique.

Lemma 6. If $P-Z, Q-Z^{\prime} \in[M, M]$, for some self-adjoint $Z, Z^{\prime} \in Z_{M}$, with $[P, Q]=0$ then $[\theta(P), \theta(Q)]=0$.

Proof. $0=[P, Q]=\left[P-Z, Q-Z^{\prime}\right]$. Hence, $0=\phi(0)=\phi\left[P-Z, Q-Z^{\prime}\right]=$ $\left[\phi(P-Z), \phi\left(P-Z^{\prime}\right)\right]=[\theta(P), \theta(Q)]$.

Lemma 7. Let $Q$ be a core-free projection in $N$ such that $Q-Z^{\prime} \in[N, N]$ for some $Z^{\prime} \in Z_{N}$. There exists a core-free projection $P \in M$ and a self-adjoint $Z \in Z_{M}$ such that $P-Z \in[M, M]$ and $\theta(P)=Q$.

Proof. Let $Q^{\prime}=Q-Z^{\prime}$. Then $\left[\left[\left[X, Q^{\prime}\right], Q^{\prime}\right], Q^{\prime}\right]=\left[X, Q^{\prime}\right]$ for all $X \in[N, N]$. There exists a self-adjoint $P^{\prime} \in[M, M]$ such that $\phi\left(P^{\prime}\right)=Q^{\prime}$. This implies $\left[\left[\left[X, P^{\prime}\right], P^{\prime}\right], P^{\prime}\right]=\left[X, P^{\prime}\right]$ for all $X \in[M, M]$. Hence $P^{\prime}-\widetilde{P}^{\prime}=P$ is a core-free projection and $Q-Z^{\prime}=Q^{\prime}=\phi\left(P^{\prime}\right)=\phi\left(P+\widetilde{P}^{\prime}\right)=\theta(P)+$ $\lambda\left(P-\left(-\widetilde{P}^{\prime}\right)\right)$. This implies $\theta(P)=Q$.

Lemma 8. Let $P$ and $Q$ be core-free projections in $M$ with $P-Z$, $Q-Z^{\prime} \in[M, M]$ for self-adjoint $Z, Z^{\prime} \in Z_{M}$. Then $P \| Q$ if and only if $\theta(P) \| \theta(Q)$ and $\bar{P}=\bar{Q}$ if and only if $\theta(P)=\overline{\theta(Q)}$.

Proof. If $P \| Q(P, Q$ need not be core-free here) then $0=[[P, X], Q]=$ $\left[[P-Z, X], Q-Z^{\prime}\right]$ for all $X \in[M, M]$. Thus $0=\phi(0)=[[\phi(P-Z), X]$, $\left.\phi\left(Q-Z^{\prime}\right)\right]=[[\theta(P), X], \theta(P)]$ for all $X \in[N, N]$. This implies, by Lemma 2, since $\theta(P)$ and $\theta(Q)$ are core-free, that $\theta(P) \| \theta(Q)$. If $\theta(P) \| \theta(Q)$ then $0=$ $[[\theta(P), X], \theta(Q)]=\left[[\phi(P-Z), X], \phi\left(Q-Z^{\prime}\right)\right]$ for all $X \in[N, N]$. Thus $0=\phi^{-1}(0)=[[P, X], Q]$ for all $X \in[M, M]$. By Lemma 2 we have $P \| Q$.

If $\bar{P}=\bar{Q}$ but $\overline{\theta(c)} \neq \overline{\theta(Q)}$ there exists a central projection $C \in Z_{N}$ such that $C \theta(Q)=0$ but $C \theta(P) \neq 0$. By Lemma 7 there exists a core-free projection $R$ in $M$ and a self-adjoint $Z^{\prime \prime} \in Z_{M}$ such that $R-Z^{\prime \prime} \in[M, M]$ and $\theta(R)=C \theta(P)$. Hence $\theta(R) \| \theta(Q)$. By the preceding lemma $R \| Q$. Since $\bar{Q}=\bar{P}$ we have $R \| P$. This implies $\theta(R) \| \theta(P)$ a contradiction. Similarly $\overline{\theta(P)}=\overline{\theta(Q)}$ implies $\bar{P}=\bar{Q}$.

Lemma 9. Let $P_{1}, \ldots, P_{n}$ be parallel projections such that $P_{i}-Z_{i} \in[M, M]$ for self-adjoint $Z_{i} \in Z_{M}$. Then $\theta$ is additive on the $P_{i}$.

Proof. Lemma 8 implies that the $\theta\left(P_{i}\right)$ and $\|$ core-free projections so that $\sum_{i=1} \theta\left(P_{i}\right)$ is a projection. It is core-free by parallelism. Then

$$
0=\phi\left(\sum_{i=1}^{n} P_{i}\right)-\sum_{i=1}^{n} \theta\left(P_{i}\right)+Z
$$

where $Z \in Z_{N}$. Thus $\theta\left(\sum_{i=1}^{n} P_{i}\right)-\sum_{i=1}^{n} \theta\left(P_{i}\right) \in Z_{N}$ and are equal.
Lemma 10. Let C be a central projection in a von Neumann algebra $M$ with no central abelian summands. There exists a core-free projection $P$ in $M$, and a self-adjoint $Z \in Z_{M}$ such that $\bar{P}=C$ and $P-Z \in[M, M]$.

Proof. Let $E+F+G=I$, the identity operator, where $E, F, G$ are central projections, $M_{E}$ is finite and discrete, $M_{F}$ finite and continuous, and $M_{G}$ infinite. $C G$ is a central projection in $M_{G}$ so there exists a core-free projection $P_{1}$ in $M_{G}$ such that $\bar{P}_{1}=C G$ by [ $\mathbf{5}$, Lemma 4]. Moreover, since $M_{G}$ is infinite, $P_{1} \in\left[M_{G}, M_{G}\right]=M_{G}$ by [8]. CE is central in $M_{E}$ so there exists a core-free projection $P_{2}$ in $M_{E}$ such that $\bar{P}_{2}=C E$. By [6, Theorem 1] $P_{2}-P_{2}{ }^{\#} \in$ [ $M_{E}, M_{E}$ ], where $P_{2}{ }^{*}$ is the center-valued trace of $P_{2}$. Finally, choose a projection $Q \sim F-Q$ in $M_{F}$. $Q$ is core-free, $\bar{Q}=F$, and if $V V^{*}=Q, V^{*} V=$ $F-Q, \frac{1}{2}\left[V, V^{*}\right]=Q-\frac{1}{2} F \in\left[M_{F}, M_{F}\right]$. Thus $C Q-\frac{1}{2} C F \in\left[M_{C F}, M_{C F}\right] \subseteq$ $\left[M_{F}, M_{F}\right]$. Let $P_{3}=C Q$.

Set $P=P_{1}+P_{2}+P_{3}$. Then $\bar{P}=0$ since the $P_{i}$ are $\|$ and $P-\left(\frac{1}{2} C F+\right.$ $\left.P_{2^{*}}\right) \in[M, M]=\left[M_{E}, M_{E}\right]+\left[M_{F}, M_{F}\right]+\left[M_{G}, M_{G}\right]$. Moreover $\bar{P}=\bar{P}_{1}+$ $\bar{P}_{2}+\bar{P}_{3}=C$.

Theorem 1. Let $\boldsymbol{\phi}:[M, M] \rightarrow[N, N]$ be a Lie ${ }^{*}$-isomorphism where $M$ and $N$ have no central abelian summands. There exists a ${ }^{*}$-isomorphism $\psi$ of $Z_{M}$ onto $Z_{N}$ such that if $P$ is a projection in $M$ with $P-Z \in[M, M]$ for a self-adjoint $Z \in Z_{M}$, and if $C$ is a central projection in $M$, then $\theta(C P)=\psi(C) \theta(P)$. Also $\theta^{\prime}(P C)=\psi(C) \theta^{\prime}(P)$.

Proof. We first show that $\phi$ induces a projection orthoisomorphism of $Z_{M}$ onto $Z_{N}$. Define $\psi$ on a central projection $C$ as follows: choose a core-free projection $P$ in $M$ such that $P-Z \in[M, M]$ for a self-adjoint $Z \in Z_{M}$ and $\bar{P}=C$. Define $\psi(C)=\overline{\theta(P)}$. If $\bar{Q}=C$ with $Q-Z^{\prime} \in[M, M]$ then by Lemma $8, \overline{\theta(P)}=\overline{\theta(Q)}$ so that the mapping is well defined. If $D$ is a central projection in $N$, there exists a core-free projection $R \in N$ such that $R-Z^{\prime} \in[N, N]$ for
a self-adjoint $Z^{\prime} \in Z_{N}$ and $\bar{R}=D$ by Lemma 10 . There exists in $M$ a core-free projection $P$ with $P-Z \in[M, M]$ and $\theta(P)=R$. Hence $\psi(\bar{P})=\overline{\theta(P)}=\bar{R}=D$ so that $\psi$ is onto. If $C, D$ are central projections in $M$ with $C D=0$ let $\bar{P}=C$, $\bar{Q}=D$ where $P-Z, Q-Z^{\prime} \in[M, M]$ for self-adjoint central $Z, Z^{\prime} \in Z_{M}$. Then

$$
\begin{aligned}
C D=0 \Leftrightarrow \bar{P} \bar{Q}=0 \Leftrightarrow P\|Q \Leftrightarrow \theta(P)\| \theta(Q) \Leftrightarrow \overline{\theta(P)} \overline{\theta(Q)}=0 & \\
& \Leftrightarrow \psi(C) \psi(D)=0 .
\end{aligned}
$$

Thus $\psi$ is a projection orthoisomorphism of $Z_{M}$ onto $Z_{N}$ and implements a ${ }^{*}$-isomorphism, also denoted $\psi$, of $Z_{M}$ onto $Z_{N}$.

Let $C$ be a central projection in $M, P$ a projection such that $P-Z \in[M, M]$ for some self-adjoint $Z \in Z_{M}$. There exists a core-free projection $Q$ in $M$ such that $\bar{Q}=C(I-\bar{P})$ and $Q-Z^{\prime} \in[M, M]$ for some self-adjoint $Z^{\prime} \in Z_{M}$. $P C+Q$ has carrier $C$ and $(P-Z) C+Q-Z^{\prime} \in[M, M]$. (Note that if $X \in[M, M]$ and $C$ is a central projection in $M, C X \in[M, M])$. Hence $\psi(C)=\overline{\theta(P C+Q)}=\overline{\theta(P C)}+\overline{\theta(Q)}$ since $P C \| Q$. Moreover, since $P C$ and $P(I-C)$ are $\|, \theta(P)=\theta(P C+P(I-C))=\theta(P C)+\theta(P(I-C))$. Both $\theta(P C)$ and $\theta(P(I-C))$ are $\|$ to $\theta(Q)$ since $Q$ is $\|$ to $P$. Multiplying these relations we have $\psi(C) \theta(P)=\theta(P)=\theta(C P)$.

Definition. Let $P, Q$ be projections in a von Neumann algebra $M$. If $P Q=0$ we say $P$ is orthogonal to $Q$ written $P \perp Q$. If $(I-P)(I-Q)=0$ we say $P$ is co-orthogonal to $Q$, written $P$ co $\perp Q$.

Lemma 11. Let $P_{1}, \ldots, P_{n}$ be commuting core-free projections, each pair of which satisfy the identity of Lemma 3. Then there exists a central projection C such that the $P_{i}$ are $\perp$ on $C$, co $\perp$ on $I-C$.

Proof. This is essentially [5, Lemma 11].
Lemma 12. Let $M$ and $N$ be von Neumann algebras with no central abelian summands, and let $P_{1}, \ldots, P_{n}$ be mutually $\perp$ projections in $M$ with $P_{i}-Z_{i} \in$ $[M, M]$ for self-adjoint $Z_{i} \in Z_{M}$. There exists a projection $D \in Z_{M}$ such that the $\theta\left(P_{i} D\right)$ are mutually $\perp$, the $\theta^{\prime}\left(P_{i}(I-D)\right)$ are mutually $\perp$.

Proof. The proof is similar to [5, Corollary to Lemma 11].
3. The $\mathrm{I}_{2}$ case. Suppose now that $M$ is of type $\mathrm{I}_{2}, N$ has no central abelian summands, and $\phi:[M, M] \rightarrow[N, N]$ is a Lie ${ }^{*}$-isomorphism onto. The $\mathrm{I}_{2}$ case is isolated because the method of proof for the non $-\mathrm{I}_{2}$ case requires the choice of three particular non-zero projections and this choice cannot be made if $M$ is of type $\mathrm{I}_{2}$. Let $P_{1}, P_{2}$ be $\perp$, equivalent, abelian projections such that $P_{1}+P_{2}=I$. By [6], $P_{1}-P_{1^{\#}}, P_{2}-P_{2^{\#}} \in[M, M]$. We have $\widetilde{P}_{i}=0$, $\bar{P}_{i}=I$, and, by [5, Lemma 1], $\theta\left(P_{1}\right) \perp \theta\left(P_{2}\right)$ since $\theta\left(P_{1}\right)+\theta\left(P_{2}\right) \in Z_{N}$. Moreover $I=\psi(I)=\psi\left(\bar{P}_{1}\right)=\overline{\theta\left(P_{1}\right)} \leqq \theta\left(P_{1}\right)+\theta\left(P_{2}\right) \leqq I$. Hence $\theta\left(P_{i}\right)+$ $\theta\left(P_{2}\right)=I$. For notation let $M_{i j}=P_{i} M P_{j}, N_{i j}=\theta\left(P_{i}\right) N \theta\left(P_{j}\right)$.

Lemma 13. $N_{i i}(i=1,2)$ is abelian.
Proof. We first show that $N_{11} \cap[N, N]$ is abelian. Suppose $Y \in N_{11} \cap[N, N]$ and let $X \in[M, M]$ be such that $\phi(X)=Y$. We have $0=\left[Y, \theta\left(P_{2}\right)\right]=$ $\left[\phi(X), \phi\left(P_{2}-P_{2^{*}}\right)\right]$. Applying $\phi^{-1}$ we have $0=\left[X, P_{2}\right]$. This implies $X \in M_{11}+M_{22}$. If $Y, Y^{\prime} \in N_{11} \cap[N, N]$ and $X, X^{\prime}$ are such that $\phi(X)=$ $Y, \phi\left(X^{\prime}\right)=Y^{\prime}$ then, by the above, $X, X^{\prime} \in M_{11}+M_{22}$ which is abelian. Hence $0=\left[X, X^{\prime}\right]$ implies $0=\left[Y, Y^{\prime}\right]$.
$N_{11} \cap[N, N]$ is an abelian Lie ${ }^{*}$-ideal in $N_{11}$ and so by [5, Lemma 36], $N_{11} \cap[N, N] \subseteq Z_{N_{11}}$, the center of $N_{11}$. This implies that

$$
\left[N_{11}, N_{11}\right] \subseteq N_{11} \cap[N, N] \subseteq Z_{N_{11}}
$$

By [5,Lemma 6], $\left[N_{11}, N_{11}\right]=0$.
Corollary. $N$ has no continuous part.
Proof. Let $C$ be a non-zero central projection in $N$ such that $N_{C}$ is continuous. $C=C \theta\left(P_{1}\right)+C \theta\left(P_{2}\right)$ and one of $C \theta\left(P_{1}\right), C \theta\left(P_{2}\right)$ is nonzero. We also have that $N_{C \theta\left(P_{i}\right)} \subseteq N_{11}, N_{C \theta\left(P_{2}\right)} \subseteq N_{22}$. Thus $N_{C \theta\left(P_{1}\right)}$ and $N_{C \theta\left(P_{2}\right)}$ are abelian and one is nonzero. But $C$ can have no discrete projections contained in it $[\mathbf{1}, \mathrm{p} .125$, Proposition 4] a contradiction.

Theorem 2. Let $\phi:[M, M] \rightarrow[N, N]$ be a Lie *-isomorphism where $M$ is of type $\mathrm{I}_{2}$ and $N$ has no abelian summands. There exists an extension $\sigma$ of $\phi$ to $a$ *-isomorphism of $M$ onto $N$.

Proof. We first extend $\phi$ to $\bar{\phi}$, a near-isomorphism of $M$ to $N$ (see [5, p. 722]). If $A \in M$, then by [ $\mathbf{6}$, Theorem 1] there exists a unique central element, namely $A^{\#}$, such that $A-A^{\#} \in[M, M]$. Define $\bar{\phi}(A)=\phi\left(A-A^{\#}\right)+\psi\left(A^{\#}\right)$. Since $A^{\#}$ is unique the mapping is well defined.

Obviously $\bar{\phi}$ is a *-linear map from $M$ into $[N, N]+Z_{N}$. If $X \in[M, M]$ then $X^{\#}=0$ so that $\bar{\phi}(X)=\phi(X)$.

$$
\begin{gathered}
\bar{\phi}[A, B]=\phi[A, B]=\phi\left[A-A^{\#}, B-B^{\#}\right]=\left[\phi\left(A-A^{\#}\right), \phi\left(B-B^{\#}\right)\right]= \\
{\left[\phi\left(A-A^{\#}\right)+\psi\left(A^{\#}\right), \phi\left(B-B^{\#}\right)+\psi\left(B^{\#}\right)\right]=[\bar{\phi}(A), \bar{\phi}(B)]}
\end{gathered}
$$

so that $\bar{\phi}$ preserves brackets. If $\bar{\phi}(A)=\bar{\phi}(B)$ then $\phi\left(A-B-\left(A^{\#}-B^{*}\right)\right) \in$ $Z_{N} \cap[N, N]$ so that $A-B-\left(A^{\#}-B^{\#}\right) \in Z_{M}$. This shows $A-B \in Z_{M}$. If $B+Z^{\prime} \in[N, N]+Z_{N}$ there exists $A \in[N, N], Z \in Z_{M}$ with $\phi(A)=B$, $\psi(Z)=Z^{\prime}$. Then $\bar{\phi}(A+Z)=\phi(A)+\psi(Z)=B+Z^{\prime}$ so that $\bar{\phi}$ is onto $[N, N]+Z_{N}$. By the Corollary to Lemma $13, N$ has no continuous part so that by [6], and $[8],[N, N]+Z_{N}=N$.

Applying [5, Theorem 2] to the near isomorphism $\bar{\phi}: M \rightarrow N$ we have $\bar{\phi}=\sigma+\tau$ where $\sigma$ is an associative ${ }^{*}$-isomorphism of $M$ onto $N$ and $\tau$ is a *-linear map which annihilates $[M, M]$. If $A \in[M, M], \phi(A)=\bar{\phi}(A)=$ $\sigma(A)+\tau(A)=\sigma(A)$.
4. The non- $\mathrm{I}_{2}$ case. Let $\phi:[M, M]-[N, N]$ be a Lie ${ }^{*}$-isomorphism where $M$ and $N$ have no abelian summands and $M$ is not of type $\mathrm{I}_{2}$ ( $M$ may have a type $I_{2}$ summand). We wish to employ techniques of [4], but in order to do this we must make a particular choice of three projections.

Lemma 14. There exist projections $P_{1}, P_{2}, P_{3}$ in $M$ such that $\sum P_{i}=I$, $\bar{P}_{1}=\bar{P}_{2}=I, P_{1} \sim P_{2}, I-\bar{P}_{3}$ is the $\mathrm{I}_{2}$-summand, $I-\bar{P}_{3} \leqq P_{1}+P_{2}$, $P_{1}\left(I-\bar{P}_{3}\right)$ and $P_{2}\left(I-\bar{P}_{3}\right)$ are the equivalent, $\perp$, abelian projections comprising $I-\bar{P}_{3}$, and there exist central self-adjoint elements $Z_{i}, i=1,2,3$, such that $P_{i}-Z_{i} \in[M, M]$. Moreover we have $\bar{P}_{3} P_{i} M P_{j}=\bar{P}_{3} P_{i} M P_{k} M P_{j}$ for $i, j, k \in\{1,2,3\}$.

Proof. Let $C_{n}{ }^{(1)}$ be the $\mathrm{I}_{n}$ part of $M(n \geqq 2), C^{(2)}$ the $\mathrm{II}_{1}$ part, and $C^{(3)}$ the infinite part. $C_{n}{ }^{(1)}$ is the sum of $n$ equivalent (abelian) projections $P_{1}{ }^{(n)}, \ldots$, $P_{n}{ }^{(n)}$. If $n$ is even ( $n \geqq 4$ ) let

$$
Q_{1}{ }^{(n)}=\sum_{i=1}^{(n-2) / 2} P_{i}^{(n)}, \quad Q_{2}{ }^{(n)}=\sum_{i=n / 2}^{n-2} P_{i}^{(n)}, \quad Q_{3}{ }^{(n)}=\sum_{i=n-1}^{n} P_{i}{ }^{(n)} .
$$

If $n$ is odd let

$$
Q_{1}{ }^{(n)}=\sum_{i=1}^{(n-1) / 2} P_{i}^{(n)}, \quad Q_{2}{ }^{(n)}=\sum_{i=(n+1) / 2}^{n-1} P_{i}^{(n)}, \quad Q_{3}{ }^{(n)}=P_{n}{ }^{(n)} .
$$

Moreover, by [6], there exist central self-adjoint elements $T_{1}, T_{2}, T_{3}$ in $M_{C^{(1)}}$ where $C^{(1)}=\sum_{n=1}^{\infty} C_{n}{ }^{(1)}$ such that

$$
\sum_{n=1}^{\infty} Q_{1}{ }^{(n)}-T_{1}, \quad \sum_{n=1}^{\infty} Q_{2}{ }^{(n)}-T_{2}, \quad \sum_{n=1}^{\infty} Q_{3}{ }^{(n)}-T_{3} \in[M, M]
$$

$C^{(2)}=\sum_{i=1}^{4} D_{i}$ where $D_{i} \sim D_{j}$. If $V V^{*}=D_{1}+D_{2}, V^{*} V=D_{3}+D_{4}$ then $\left[V, V^{*}\right]=C^{(2)}-\left(D_{3}+D_{4}\right) \in\left[M_{C^{(2)}}, M_{C^{(2)}}\right] \subseteq[M, M]$. Since $D_{3} \sim D_{4}$, $D_{3}-D_{4} \in[M, M]$ which implies $D_{4}-\frac{1}{2} C^{(2)} \in[M, M]$. The same argument holds for $D_{1}, D_{2}, D_{3}$. Similarly $C^{(3)}=\sum_{i=1}^{4} E_{i}$ with $E_{i} \sim E_{j}$ and $E_{i} \in[M, M]$ by [8].

Let

$$
\begin{aligned}
& P_{1}=P_{1}^{(2)}+\sum_{n=3}^{\infty} Q_{1}^{(n)}+D_{1}+E_{1}, \\
& P_{2}=P_{2}^{(2)}+\sum_{n=3}^{\infty} Q_{2}^{(n)}+D_{2}+E_{2} \\
& P_{3}=\sum_{n=3}^{\infty} Q_{3}^{(n)}+D_{3}+D_{4}+E_{3}+E_{4}
\end{aligned}
$$

All assertions except the last are clear. If $P \backsim Q \backsim R$ with $V V^{*}=Q V^{*} V=R$ then $P X Q=P X V R V^{*} Q$ so that $P M Q=P M R M Q$. We apply this technique to each $\mathrm{I}_{n}$ summand ( $n \geqq 3$ ), to the II, summand, and to the infinite summand. For example, examine $C_{4}{ }^{(1)} . C_{4}{ }^{(1)}=Q_{1}{ }^{(4)}+Q_{2}{ }^{(4)}+Q_{3}{ }^{(4)}$ where $Q_{3}{ }^{(4)}=$
$P_{3}{ }^{(4)}+P_{4}{ }^{(4)}$ and $Q_{1}{ }^{(4)} \backsim Q_{2}{ }^{(4)} \backsim P_{3}{ }^{(4)} \backsim P_{4}{ }^{(4)}$. We prove a few representative cases:
(i) $Q_{1}{ }^{(4)} M Q_{2}{ }^{(4)}=Q_{1}{ }^{(4)} M Q_{3}{ }^{(4)} M Q_{2}{ }^{(4)}$. For,
$Q_{1}{ }^{(4)} X Q_{2}{ }^{(4)}=Q_{1}{ }^{(4)} X V P_{3}{ }^{(4)} Q_{3}{ }^{(4)} V^{*} Q_{2}{ }^{(4)}$ where $V^{*} V=P_{3}{ }^{(4)}, V V^{*}=Q_{2}{ }^{(4)}$.
(ii) $Q_{1}{ }^{(4)} M Q_{3}{ }^{(4)}=Q_{1}{ }^{(4)} M Q_{2}{ }^{(4)} M Q_{3}{ }^{(4)}$. For,

$$
\begin{aligned}
& Q_{1}{ }^{(4)} X Q_{3}{ }^{(4)}=Q_{1}{ }^{(4)} X P_{3^{(4)}}+Q_{1}{ }^{(4)} X P_{4}^{(4)}= \\
& \quad Q_{1}{ }^{(4)} X V P_{2}{ }^{(4)} V^{*} P_{3}{ }^{(4)} Q_{3}{ }^{(4)}+Q_{1}^{(4)} X W P_{2}{ }^{(4)} W^{*} P_{4}{ }^{(4)} Q_{3}{ }^{(4)}
\end{aligned}
$$

where

$$
V^{*} V=P_{2}^{(4)}, V V^{*}=P_{3}^{(4)}, W^{*} W=P_{2}^{(4)}, W W^{*}=P_{4}^{(4)} .
$$

(iii) $Q_{3}{ }^{(4)} M Q_{3}{ }^{(4)}=Q_{3}{ }^{(4)} M Q_{1}{ }^{(4)} M Q_{3}{ }^{(4)}$. For, $Q_{3}{ }^{(4)} X Q_{3}{ }^{(4)}=P_{3}{ }^{(4)} X P_{3}{ }^{(4)}+P_{3}{ }^{(4)} X P_{4}{ }^{(4)}+P_{4}{ }^{(4)} X P_{3}{ }^{(4)}+P_{4}{ }^{(4)} X P_{4}{ }^{(4)}=$

$$
\begin{aligned}
& Q_{3}{ }^{(4)} P_{3}{ }^{(4)} X V P_{1}{ }^{(4)} V^{*} P_{3}{ }^{(4)} Q_{3}^{(4)}+Q_{3}{ }^{(4)} P_{3}{ }^{(4)} X W P_{1}{ }^{(4)} W^{*} P_{4}{ }^{(4)} Q_{3}{ }^{(4)} \\
& \quad+Q_{4}{ }^{(4)} P_{4}{ }^{(4)} X V P_{1}{ }^{(4)} V^{*} P_{3}{ }^{(4)} Q_{3}{ }^{(4)}+P_{4}{ }^{(4)} X W P_{1}{ }^{(4)} W^{*} P_{4}{ }^{(4)} Q_{3}{ }^{(4)}
\end{aligned}
$$

where

$$
V^{*} V=P_{1}^{(4)}, V V^{*}=P_{3}^{(4)}, W^{*} W=P_{1}^{(4)}, W W^{*}=P_{4}^{(4)} .
$$

Similar arguments work in the other cases.
Let $P_{i}, i=1,2,3$, be as in Lemma 14 and let $Q_{1}=P_{1}\left(I-\bar{P}_{3}\right), Q_{2}=$ $P_{2}\left(I-\bar{P}_{3}\right), Q_{3}=P_{1} \bar{P}_{3}, Q_{4}=P_{2} \bar{P}_{3}, Q_{5}=P_{3}$. By Lemma 12 there exists a central projection $D \in M$ such that the $\theta\left(Q_{i} D\right)$ are $\perp$ and the $\theta^{\prime}\left(Q_{i}(I-D)\right.$ are $\perp$ for $i=3,4,5$. (Note that $Q_{i} D-Z_{i} D \in\left[M_{D}, M_{D}\right] \subseteq[M, M]$.)

Lemma 15. $\theta\left(Q_{1}\right) \perp \theta\left(Q_{2}\right)$ and $\theta\left(Q_{1}\right)+\theta\left(Q_{2}\right)=\psi\left(I-\bar{P}_{3}\right)$.
Proof. $Q_{1}-Z_{1}\left(I-\bar{P}_{3}\right), \quad Q_{2}-Z_{2}\left(I-\bar{P}_{3}\right) \in[M, M]$ and $Q_{1}+Q_{2}=$ $I-\bar{P}_{3}$. Hence $Q_{1}-Z_{1}\left(I-\bar{P}_{3}\right)+Q_{2}-Z_{2}\left(I-\bar{P}_{3}\right) \in Z_{N} \cap[M, M]$. This implies $\phi\left(Q_{1}-Z_{1}\left(I-\bar{P}_{3}\right)+Q_{2}-Z_{2}\left(I-\bar{P}_{3}\right)\right) \in Z_{N}$. Hence $\theta\left(Q_{1}\right)+$ $\theta\left(Q_{2}\right) \in Z_{N}$. As before this implies $\theta\left(Q_{1}\right) \perp \theta\left(Q_{2}\right)$ since they are core-free.
$\theta\left(Q_{i}\right)=\theta\left(P_{i}\right) \psi\left(I-\bar{P}_{3}\right)$ so that $\theta\left(Q_{i}\right) \leqq \psi\left(I-\bar{P}_{3}\right), i=1,2 . \psi\left(I-\bar{P}_{3}\right)=$ $\psi\left(\bar{Q}_{1}\right)=\overline{\theta\left(Q_{1}\right)} \leqq \theta\left(Q_{1}\right)+Q\left(Q_{2}\right) \leqq \psi\left(I-\bar{P}_{3}\right)$.

Corollary. $\theta^{\prime}\left(Q_{1}\right)=\theta\left(Q_{2}\right)$.
Proof. $\theta^{\prime}\left(Q_{1}\right)=\overline{\theta\left(Q_{1}\right)}-\theta\left(Q_{1}\right)=\psi\left(I-\bar{P}_{3}\right)-\theta\left(Q_{1}\right)=\theta\left(Q_{2}\right)$.
For notation let $M_{i j}=Q_{i} M Q_{j}, N_{i j}=\theta\left(Q_{i}\right) M \theta\left(Q_{j}\right)$ for $i, j \in\{1,2\}$, and let $M_{i j}=Q_{i} D M Q_{j} D, \widetilde{M}_{i j}=Q_{i}(I-D) M Q_{j}(I-D), N_{i j}=\theta\left(Q_{i} D\right) N \theta\left(\theta_{j} D\right)$, and $\tilde{N}_{i j}=\theta^{\prime}\left(Q_{i}(I-D)\right) N \theta^{\prime}\left(Q_{j}(I-D)\right)$ for $i, j \in\{3,4,5\}$. Notice that if $X_{i j} \in M_{i j}(i \neq j)$ then $X_{i j}=\left[X_{i j}, Q_{j}\right] \in[M, M]$.

Lemma 16. $\phi^{-1}\left(\left(\sum_{i=1}^{5} N_{i i}+\sum_{i=3}^{5} \widetilde{N}_{i i}\right) \cap[N, N]\right)=$

$$
\left(\sum_{i=1}^{5} M_{i i}+\sum_{i=3}^{5} \tilde{M}_{i i}\right) \cap[M, M] .
$$

Proof. See [5, Lemma 26]. Note that $Z_{M} \subseteq \sum_{i=1}^{5} M_{i i}+\sum_{i=3}^{5} \tilde{M}_{i i}$.
Lemma 17. $\phi^{-1}\left(N_{i j}\right)=M_{i j}, \phi^{-1}\left(\widetilde{N}_{i j}\right)=\widetilde{M}_{i j}$ if $i \neq j$.

Proof. See [5, Lemma 27].
Lemma 18. $\sum_{i=3}^{5} \theta\left(Q_{i} D\right)=\psi\left(D \bar{P}_{3}\right), \sum_{i=3}^{5} \theta^{\prime}\left(Q_{i}(I-D)\right)=\psi\left((I-D) \bar{P}_{3}\right)$.
Proof. In [5, Lemma 13] replace $D$ by $D \bar{P}_{3}$, and the result follows.
Lemma 19. $\phi\left(\left(Z_{M_{11}}+Z_{M}\right) \cap[M, M]\right) \subseteq\left(N_{11}+Z_{N}\right) \cap[N, N]$.
Proof. If $A \in\left(Z_{M_{11}}+Z_{M}\right) \cap[M, M]$ then $[A, X]=0$ for all $X$ in

$$
\sum_{i \neq j ; i, j \geqq 2} M_{i j}+\sum_{i=1}^{5} M_{i i}+\sum_{i \neq j ; i, j \geqq 3} \tilde{M}_{i j}+\sum_{i \geqq 3} \tilde{M}_{i i} .
$$

Hence $[\phi(A), X]=0$ for all $X$ in

$$
\begin{aligned}
& \sum_{i \neq j ; i, j \geqq 2} N_{i j}+\left(\sum_{i=2}^{5} N_{i i}+\sum_{i=3}^{5} \widetilde{N}_{i i}\right) \cap[N, N]+\sum_{i \neq j ; i, j \geqq 3} \widetilde{N}_{i j} \\
& =\left(\sum_{i \neq j ; i, j \geqq 2} N_{i j}+\left(\sum_{i=2}^{5} N_{i i}+\sum_{i=3}^{5} \widetilde{N}_{i i}\right)+\sum_{i \neq j ; i, j \geqq 3} \widetilde{N}_{i j}\right) \cap[N, N] \\
& =\left\{S T S \mid T \in N, S=\theta\left(Q_{2}\right)+\sum_{i=3}^{5} \theta\left(Q_{i} D\right)+\sum_{i=3}^{5} \theta^{\prime}\left(Q_{i}(I-D)\right)\right\} \cap[N, N] \\
& =N_{S} \cap[N, N] .
\end{aligned}
$$

(Note that by Lemmas 15 and $18, S=I-\theta\left(Q_{1}\right)$.) In particular $[\phi(A), X]=0$ for all $X$ in $N_{S} \cap\left[N_{S}, N_{S}\right]=\left[N_{S}, N_{S}\right]$. Since $A \in \sum_{i=1}^{5} M_{i i}+\sum_{i=3}^{5} \widetilde{M}_{i i}$, $\phi(A)=B_{1}+C$ where $B_{1} \in N_{11}$ and $C \in N_{S}$ by Lemma 16. Thus $0=$ $[\phi(A), X]=\left[B_{1}+C, X\right]=[C, X]$ for all $X$ in $\left[N_{S}, N_{S}\right]$. By [3, Sublemma, p. 5] this implies $[C, X]=0$ for all $X$ in $N_{S}$, or that $C \in Z_{N_{S}}=Z_{S}$. Since $S=I-\theta\left(Q_{1}\right)$ we have $C=Z\left(I-\theta\left(Q_{1}\right)\right)$. Finally, $\phi(A)=B_{1}+C=$ $B_{1}-\theta\left(Q_{1}\right) Z+Z \in\left(N_{11}+Z_{N}\right) \cap[N, N]$.

Corollary. $\phi\left(\left(M_{11}+Z_{M}\right) \cap[M, M]\right) \subseteq\left(N_{11}+Z_{N}\right) \cap[N, N]$.
Proof. $M_{11}$ is abelian since $Q_{1}$ is an abelian projection. Hence $M_{11} \subseteq Z_{M_{11}}$.
We now extend $\phi \mid\left[M_{I-\bar{P}_{3}}, M_{I-\bar{P}_{3}}\right]$ to a Lie ${ }^{*}$-isomorphism of $\phi$ of $\sum_{1 \leqq i, j \leqq 2} M_{i j}$ into $N$, and then analyze $\phi$. We cannot proceed exactly as in Theorem 2 because of a lack of information about the image of $\sum_{1 \leqq i, j \leqq 2} M_{i j}$ under $\phi$.

If $A \in \sum_{1 \leqq i, j \leqq 2} M_{i j}$ define $\bar{\phi}(A)=\phi\left(A-A^{\#}\right)+\psi\left(A^{\#}\right)$. This is well defined since $M_{\left(I-\bar{P}_{3}\right)}$ is finite. If $A \in M_{i j},(i, j)=(1,2)$ or $(2,1)$ then $A^{\#}=0$ and $\bar{\phi}(A)=\phi(A)$. If $A \in M_{i i}$ then $A-A^{\#} \in\left(M_{i i}+Z_{M}\right) \cap[M, M]$ by $\left[6\right.$, Theorem 1] and by Lemma 19, $\bar{\phi}(A)=\phi\left(A-A^{\#}\right)+\psi\left(A^{*}\right) \in N_{11}+Z_{M}$. $\bar{\phi}$ is obviously ${ }^{*}$-linear. If $\bar{\phi}(A)=0$ then $\phi\left(A-A^{\#}\right) \in Z_{N} \cap[N, N]$ so that $A-A^{\#} \in Z_{M} \cap[M, M]$. Thus $A \in Z_{M}$ so that $A=A^{\#}$ and $0=\bar{\phi}(A)=$ $\phi\left(A-A^{\#}\right)+\psi\left(A^{\#}\right)=0+\psi\left(A^{\#}\right)$. Hence $A^{\#}=0$. This shows $\bar{\phi}$ is 1-1. $\bar{\phi}$ preserves brackets as in Theorem 2.

Defining mappings $\sigma_{0}$ and $\lambda_{0}$ as follows: if $A \in M_{i j},(i, j)=(1,2)$ or $(2,1)$ let $\sigma_{0}(A)=\bar{\phi}(A)=\phi(A)$. If $A \in M_{i i}(i=1,2)$ then $\bar{\phi}(A)=\sigma_{0}(A)+\lambda_{0}(A)$
where $\sigma_{0}(A) \in N_{i i}, \quad \lambda_{0}(A) \in Z_{N} . \quad \sigma_{0}$ and $\lambda_{0}$ are well defined for if $\sigma_{0}(A)+\lambda_{0}(A)=\sigma_{0}(B)+\lambda_{0}(B)$ then $\sigma_{0}(A)-\sigma_{0}(B) \in N_{i i} \cap Z_{N}=\{0\}$. $\sigma_{0}$ and $\lambda_{0}$ can be shown to be ${ }^{*}$-linear maps with $\sigma_{0}(A B)=\sigma_{0}(A) \sigma_{0}(B)$ for all $A, B \in M_{I-P_{3}}$ as in [5, Lemmas 18-22].

Lemma 20. $\sigma_{0}$ extends $\phi \mid\left[M_{I-\bar{P}_{3}}, M_{I-\bar{P}_{3}}\right]$ to $a *$-homomorphism of $M_{I-\bar{P}_{3}}$ into $N$.

Proof. We show that $\lambda_{0}$ annihilates brackets of elements in $M_{\left(Q_{1}+Q_{2}\right)}$. $\lambda_{0}[A, B]=\bar{\phi}[A, B]-\sigma_{0}[A, B]=[\bar{\phi}(A), \bar{\phi}(B)]-\left[\sigma_{0}(A), \sigma_{0}(B)\right]=\left[\sigma_{0}(A)+\right.$ $\left.\lambda_{0}(A), \sigma_{0}(B)+\lambda_{0}(B)\right]-\left[\sigma_{0}(A), \sigma_{0}(B)\right]=0$ since $\lambda_{0}(A) \in Z_{N}$. Hence $\phi[A, B]=\bar{\phi}[A, B]=\sigma_{0}[A, B]+\lambda[A, B]=\sigma_{0}[A, B]$.

We turn our attention to $M_{\bar{P}_{3}}$. By Lemma $14, Q_{i} M Q_{i}=Q_{i} M Q_{k} M Q_{j}$ for $i, j, k \in\{3,4,5\}$ so that we also have $Q_{i} D M Q_{j} D=Q_{i} D M Q_{k} D M Q_{j} D$ for $i, j, k \in\{3,4,5\}$. A similar relation will hold with $D$ replaced by $I-D$.

Lemma 21. Let $(i, j, k)$ be any permutation of (3, 4, 5). If $X_{i j} \in M_{i j}$, $X_{j k} \in M_{j k}$ then $\phi\left(X_{i j} X_{j k}\right)=\phi\left(X_{i j}\right) \phi\left(X_{j k}\right)$. If $X_{i j} \in \widetilde{M}_{i j}, X_{j k} \in \tilde{M}_{j k}$ then $\phi\left(X_{i j} X_{j k}\right)=-\phi\left(X_{j k}\right) \phi\left(X_{i j}\right)$.

Proof. If $i \neq j$ and $X_{i j} \in M_{i j}$ then $\phi\left(X_{i j}\right) \in N_{i j}$ by Lemma 17. Hence $\phi\left(X_{i j} X_{j k}\right)=\phi\left[X_{i j}, X_{j k}\right]=\left[\phi\left(X_{i j}\right), \phi\left(X_{j k}\right)\right]=\phi\left(X_{i j}\right) \phi\left(X_{j k}\right)$. If $i \neq j$ and $X_{i j} \in \widetilde{M}_{i j}$ then $\phi\left(X_{i j}\right) \in \tilde{N}_{j i} . \phi\left(X_{i j} X_{j k}\right)=\phi\left[X_{i j}, X_{j k}\right]=\left[\phi\left(X_{i j}\right), \phi\left(X_{j k}\right)\right]=$ $-\phi\left(X_{j k}\right) \phi\left(X_{i j}\right)$.

Lemma 22. $\phi$ is a homomorphism from the algebra generated algebraically by $M_{i j}+M_{j k}+M_{i k}$ into the one generated algebraically by $N_{i j}+N_{j k}+N_{i k}$, and the negative of an anti-homomorphism of the algebra generated algebraically by $\tilde{M}_{i j}+\widetilde{M}_{j k}+\widetilde{M}_{i k}$ into the one generated algebraically by $\widetilde{N}_{j i}+\widetilde{N}_{k j}+\widetilde{N}_{k i}$, where $(i, j, k)$ is a permutation of $(3,4,5)$.

Proof. It suffices to let $(i, j, k)=(3,4,5)$. If $X_{34} \in M_{34}, X_{45} \in M_{45}$, then by Lemma 21, $\phi\left(X_{34} X_{45}\right)=\phi\left(X_{34}\right) \phi\left(X_{45}\right)$. In all other cases $0=\phi(0)=$ $\phi\left(X_{i j} X_{k l}\right)=\phi\left(X_{i j}\right) \phi\left(X_{k l}\right)$ by Lemma 17.

For the other part, if $\widetilde{X}_{34} \in \widetilde{M}_{34}, \widetilde{X}_{45} \in \widetilde{M}_{45}$ then $\phi\left(\widetilde{X}_{34} \widetilde{X}_{45}\right)=-\phi\left(\widetilde{X}_{45}\right)$ $\phi\left(\widetilde{X}_{34}\right)$ by Lemma 21. In all other cases $0=\phi(0)=\phi\left(\widetilde{X}_{i j} \tilde{X}_{k l}\right)=-\phi\left(\widetilde{X}_{k l}\right)$ $\phi\left(\widetilde{X}_{i j}\right)$ by Lemma 17.

Lemma 23. A von Neumann algebra $M$ is generated algebraically by $[M, M]$ if and only if $M$ has no abelian summands.

Proof. By [6], $[M, M]$ is the set of all finite sums of niloptent operators of index two. By [2], $M$ is algebraically generated by nilpotents of index two if and only if $M$ has no abelian summands.

Lemma 24. [ $\left.M_{\bar{P}_{3}}, M_{\bar{P}_{3}}\right]$ is linearly generated by $M_{i j}, \widetilde{M}_{i j},\left[M_{i j}, M_{j i}\right]$, and $\left[\tilde{M}_{i j}, \tilde{M}_{j i}\right]$ for $i \neq j, i, j \in\{3,4,5\} .\left[M_{I-\bar{P}_{3}}, M_{I-\bar{P}_{3}}\right]$ is linearly generated by $M_{i j}$ and $\left[M_{i j}, M_{j i}\right], i \neq j, i, j \in\{1,2\}$.

Proof. $\left[M_{\bar{P}_{3}}, M_{\bar{P}_{3}}\right]=\left[M_{\bar{P}_{3} D}, M_{\bar{P}_{3} D}\right]+\left[M_{\bar{P}_{3}(I-D)}, M_{\bar{P}_{3}(I-D)}\right]$.

$$
\begin{aligned}
{\left[M_{\bar{P}_{3} D}, M_{\bar{P}_{3} D}\right] } & =\left[\sum_{3 \leqq i, j \leqq 5} M_{i j}, \sum_{3 \leqq i, j \leqq 5} M_{i j}\right] \\
& =\sum_{i \neq j ; 3 \leqq i, j \leqq 5} M_{i j}+\sum_{i \neq j ; 3 \leqq i, j \leqq 5}\left[M_{i j}, M_{j i}\right]+\sum_{i=3}^{5}\left[M_{i i}, M_{i i}\right] .
\end{aligned}
$$

It suffices to show that $\left[M_{33}, M_{33}\right] \subseteq\left[M_{34}, M_{43}\right] . M_{33}=Q_{3} D M Q_{3} D=$ $Q_{3} D M Q_{4} D M Q_{3} D$. If $A, B \in M_{33}$ then $A=Q_{3} D A Q_{3} D=Q_{3} D A V O_{4} D V^{*} Q_{3} D$ and $B=Q_{3} D B Q_{3} D$. Thus $[A, B]=\left[Q_{3} D X Q_{4} D Y Q_{3} D, Q_{3} D B Q_{3} D\right]$ (for appropriate $X, Y)=$ $\left[Q_{3} D X Q_{4} D, Q_{4} D Y Q_{3} D B Q_{3} D\right]-\left[Q_{3} D B Q_{3} D X Q_{4} D, Q_{4} D Y Q_{3} D\right] \in\left[M_{34}, M_{43}\right]$.

The other parts of the lemma are proved similarly.
Corollary. $[N, N]$ is linearly generated by $N_{i j}, \tilde{N}_{i j},\left[N_{i j}, N_{j i}\right]$, and $\left[\tilde{N}_{i j}, \widetilde{N}_{j i}\right]$ for $i \neq j$.

Lemma 25. If $X_{i j}, \quad Y_{i j} \in M_{i j}, \quad X_{j i} \in M_{j i}$ then $\phi\left(X_{i j} X_{j i} Y_{i j}\right)=$ $\boldsymbol{\phi}\left(X_{i j}\right) \boldsymbol{\phi}\left(X_{j i}\right) \boldsymbol{\phi}\left(Y_{i j}\right)$ for $i \neq j, i, j \in\{3,4,5\}$. If $X_{i j}, Y_{i j} \in \tilde{M}_{i j}, X_{j i} \in \tilde{M}_{j i}$ then $\phi\left(X_{i j} X_{j i} Y_{i j}\right)=\phi\left(Y_{i j}\right) \phi\left(X_{j i}\right) \phi\left(X_{i j}\right)$ for $i \neq j, i, j \in\{3,4,5\}$.

Proof. Let $X_{34}, Y_{34} \in M_{34}, X_{43} \in M_{43}$. We will show that $\left[\phi\left(X_{34} X_{43} Y_{34}\right)-\right.$ $\left.\phi\left(X_{34}\right) \phi\left(X_{43}\right) \phi\left(Y_{34}\right)\right][N, N]=0$. This will imply the result by Lemma 23. By the Corollary to Lemma 24 it suffices to show that
(1) $\left[\phi\left(X_{34} X_{43} Y_{34}\right)-\phi\left(X_{34}\right) \phi\left(X_{43}\right) \phi\left(Y_{34}\right)\right] \phi\left(X_{i j}\right)=0$ for $i \neq j$ and $X_{i j} \in M_{i j}$ or $\tilde{M}_{i j}$. Since, by Lemma 17, both $\phi\left(X_{34} X_{43} Y_{34}\right)$ and $\phi\left(X_{34}\right) \phi\left(X_{43}\right)$ $\phi\left(Y_{34}\right)$ are in $N_{34}$, (1) will be true if $i \neq 4$ and $X_{i j} \in M_{i j}$ or if $X_{i j} \in \tilde{M}_{i j}$ for $i \neq j$. We need only check $X_{43}$ and $X_{45}$. (Note that $X_{41}=0$ since $Q_{4} \leqq \bar{P}_{3}$, $\left.Q_{1} \leqq I-\bar{P}_{3}\right)$.

$$
\begin{array}{ll}
\phi\left(X_{34} X_{43} Y_{34}\right) \phi\left(X_{45}\right)-\phi\left(X_{34}\right) \phi\left(X_{43}\right) \phi\left(Y_{34}\right) & \phi\left(X_{45}\right)  \tag{2}\\
& =(\text { by Lemma 21) } \\
\phi\left(X_{34} X_{43} Y_{34} X_{45}\right)-\phi\left(X_{34}\right) \phi\left(X_{43}\right) \phi\left(Y_{34} X_{45}\right) & \\
& =(\text { by Lemma 21) } \\
\phi\left(X_{34} X_{43} Y_{34} X_{45}\right)-\phi\left(X_{34}\right) \phi\left(X_{43} Y_{34} X_{45}\right) & \\
& =(\text { by Lemma 21) } \\
\phi\left(X_{34} X_{43} Y_{34} X_{45}\right)-\phi\left(X_{34} X_{43} Y_{34} X_{45}\right)=0 . &
\end{array}
$$

As for $X_{43}$, we can write $X_{43}=\sum_{i=1}^{n} X_{45}{ }^{(i)} X_{53}{ }^{(i)}$ by Lemma 14 . We have

$$
\phi\left(X_{43}\right)=\sum_{i=1}^{n} \phi\left(X_{45}{ }^{(i)}\right) \phi\left(X_{53}{ }^{(i)}\right)
$$

by Lemma 21. By the preceding argument we have (1) if $(i, j)=(4,3)$.

The second statement is proved similarly. For example if $\widetilde{X}_{34}, \tilde{Y}_{34} \in \tilde{M}_{34}$, $\tilde{X}_{43} \in \tilde{M}_{43}$ and $\tilde{X}_{53} \in \tilde{M}_{53}$ then

$$
\begin{aligned}
& \phi\left(\tilde{X}_{34} \tilde{X}_{43} \tilde{Y}_{34}\right) \phi\left(\tilde{X}_{53}\right)-\phi\left(\tilde{Y}_{34}\right) \phi\left(\tilde{X}_{43}\right) \phi\left(\tilde{X}_{34}\right) \phi\left(\tilde{X}_{53}\right) \\
= & -\phi\left(\widetilde{X}_{53} \tilde{X}_{34} \tilde{X}_{43} \tilde{Y}_{34}\right)+\phi\left(\tilde{Y}_{34}\right) \phi\left(X_{43}\right) \phi\left(\tilde{X}_{53} \tilde{X}_{34}\right) \\
=- & -\phi\left(\widetilde{X}_{53} \tilde{X}_{34} \tilde{X}_{43} \tilde{Y}_{34}\right)-\phi\left(\tilde{Y}_{34}\right) \phi\left(\widetilde{X}_{53} \tilde{X}_{34} \widetilde{X}_{43}\right) \\
= & -\phi\left(\tilde{X}_{53} \tilde{X}_{34} \tilde{X}_{43} \tilde{Y}_{34}\right)+\phi\left(\tilde{X}_{53} \tilde{X}_{34} \widetilde{X}_{43} \widetilde{Y}_{34}\right)=0 .
\end{aligned}
$$

Lemma 26. Let $(i, j, k)$ be any permutation of ( $3,4,5$ ). If

$$
\sum_{s=1}^{n} X_{i j}{ }^{(s)} X_{j i}{ }^{(s)}=\sum_{i=1}^{m} X_{i k}{ }^{(t)} X_{k i}{ }^{(t)}
$$

where $X_{i j} \in M_{i j}$ then

$$
\sum_{s=1}^{n} \phi\left(X_{i j}{ }^{(s)}\right) \phi\left(X_{j i}{ }^{(s)}\right)=\sum_{i=1}^{m} \phi\left(X_{i k}{ }^{(t)}\right) \phi\left(X_{k i}{ }^{(t)}\right) .
$$

If

$$
\sum_{s=1}^{n} \tilde{X}_{i j}{ }^{(s)} \tilde{X}_{j i}{ }^{(s)}=\sum_{i=1}^{m} \tilde{X}_{i k}{ }^{(t)} \tilde{X}_{k i}{ }^{(t)}
$$

where $\widetilde{X}_{i j} \in \widetilde{M}_{i j}$ then

$$
\sum_{s=1}^{n} \phi\left(\tilde{X}_{j i}{ }^{(s)}\right) \phi\left(\tilde{X}_{i j}{ }^{(s)}\right)=\sum_{t=1}^{m} \phi\left(\tilde{X}_{k i}{ }^{(t)}\right) \phi\left(\tilde{X}_{i k}{ }^{(t)}\right) .
$$

Proof. We prove the second statement. The proof of the first is similar. Let $(i, j, k)=(3,4,5)$. We show that

$$
\begin{equation*}
\left(\sum_{s=1}^{n} \phi\left(\widetilde{X}_{43}{ }^{(s)}\right) \phi\left(\widetilde{X}_{34}{ }^{(s)}\right)-\sum_{i=1}^{m} \phi\left(\widetilde{X}_{53}{ }^{(t)}\right) \phi\left(\left(35^{5} \tilde{X}^{(5)}\right)\right)[N, N]=0\right. \tag{1}
\end{equation*}
$$

As before, we check elements of [ $N, N$ ] of the form $\phi\left(Y_{i j}\right), i \neq j$ where $Y_{i j} \in M_{i j}$ or $\tilde{M}_{i j}$. Since $\tilde{X}_{34}{ }^{(s)} \in \tilde{M}_{34}, \phi\left(\widetilde{X}_{34}{ }^{(s)}\right) \in \widetilde{N}_{43}$ and similarly $\phi\left(\widetilde{X}_{35}{ }^{(t)}\right) \in \widetilde{N}_{53}$, (1) will hold if $Y_{i j} \in M_{i j} i \neq j$ or if $Y_{i j} \in \widetilde{M}_{i j}$ with $j \neq 3$. We need only check the cases $\widetilde{Y}_{i j} \in \widetilde{M}_{i j}$ for $(i, j)=(4,3)$ or $(5,3)$.

$$
\begin{aligned}
\sum_{s=1}^{n} \phi & \phi\left(\widetilde{X}_{43}{ }^{(s)}\right) \phi\left(\widetilde{X}_{34}{ }^{(s)}\right) \phi\left(\widetilde{Y}_{43}\right)-\sum_{t=1}^{m} \phi\left(\widetilde{X}_{53}{ }^{(t)}\right) \phi\left(\widetilde{X}_{35}{ }^{(t)}\right) \phi\left(\tilde{Y}_{43}\right) \\
& =\sum_{s=1}^{n} \phi\left(\widetilde{Y}_{43} \widetilde{X}_{34}{ }^{(s)} \widetilde{X}_{43}{ }^{(s)}\right)+\sum_{t=1}^{m} \phi\left(\widetilde{X}_{53}{ }^{(t)}\right) \phi\left(\widetilde{Y}_{43} \widetilde{X}_{35}{ }^{(t)}\right), \text { by Lemmas 21, } 25 \\
& =\sum_{s=1}^{n} \phi\left(\widetilde{Y}_{43} \tilde{X}_{34}{ }^{(s)} \widetilde{X}_{43}{ }^{(s)}\right)-\sum_{t=1}^{m} \phi\left(\widetilde{Y}_{43} \widetilde{X}_{35}{ }^{(t)} \widetilde{X}_{53}{ }^{(t)}\right), \text { by Lemma 21 } \\
& =\phi\left(\sum_{s=1}^{n} \widetilde{Y}_{43} \widetilde{X}_{34}{ }^{(s)} \widetilde{X}_{43}{ }^{(s)}-\sum_{t=1}^{m} \widetilde{Y}_{43} \widetilde{X}_{35}{ }^{(t)} \widetilde{X}_{53}{ }^{(t)}\right)=\phi(0)=0 .
\end{aligned}
$$

A similar computation shows that

$$
\begin{equation*}
\sum_{s=1}^{n} \phi\left(\widetilde{X}_{43}{ }^{(s)}\right) \phi\left(\widetilde{X}_{34}{ }^{(s)}\right) \phi\left(\widetilde{Y}_{53}\right)-\sum_{t=1}^{m} \phi\left(\widetilde{X}_{53}{ }^{(t)}\right) \phi\left(\tilde{X}_{35}{ }^{(t)}\right) \phi\left(\widetilde{Y}_{53}\right)=0 . \tag{2}
\end{equation*}
$$

We are now in a position to define the extension of $\phi$ on $\left[M_{\bar{P}_{3}}, M_{\bar{P}_{3}}\right]$.
Definition. Let $\sigma_{1}$ and $\sigma^{\prime}$ be mappings of $M_{D \bar{P}_{3}}$ and $M_{(I-D) \bar{P}_{3}}$ into $N_{\psi\left(D \bar{P}_{3}\right)}$ and $N_{\psi\left((I-D) \bar{P}_{3}\right)}$, respectively, defined in the following manner:
(1) if $X \in M_{i j}(i \neq j), \sigma_{1}(X)=\phi(X) \in N_{i j}$ for $i, j \in\{3,4,5\}$;
(2) if $X \in M_{i i}$ and $X=\sum_{i=1}^{n} X_{i j}{ }^{(t)} X_{j i}{ }^{(t)}=\sum_{s=1}^{m} X_{i k}{ }^{(s)} X_{k i}{ }^{(s)}$ for $i, j$, $k \in\{3,4,5\}$ then

$$
\sigma_{1}(X)=\sum_{t=1}^{n} \phi\left(X_{i j}{ }^{(t)}\right) \phi\left(X_{j i}{ }^{(t)}\right)=\sum_{s=1}^{m} \phi\left(X_{i k}{ }^{(s)}\right) \phi\left(X_{k i}{ }^{(s)}\right) ;
$$

(3) if $\tilde{X} \in \widetilde{M}_{i j}(i \neq j), \sigma^{\prime}(\tilde{X})=\sigma(\widetilde{X}) \in \widetilde{N}_{j i}$ for $i, j \in\{3,4,5\}$;
(4) if $\tilde{X} \in \widetilde{M}_{i i}$ and $\widetilde{X}=\sum_{i=1}^{n} \widetilde{X}_{i j}{ }^{(t)} \widetilde{X}_{j i}{ }^{(t)}=\sum_{s=1}^{m} \widetilde{X}_{i k}{ }^{(s)} \tilde{X}_{k i}{ }^{(s)}$ then

$$
\sigma^{\prime}(\tilde{X})=-\sum_{t=1}^{n} \phi\left(\tilde{X}_{j i}{ }^{(t)}\right) \phi\left(\tilde{X}_{j i}{ }^{(t)}\right)=-\sum_{i=1}^{m} \phi\left(\tilde{X}_{k i}{ }^{(s)}\right) \phi\left(\tilde{X}_{i k}{ }^{(s)}\right)
$$

Extend $\sigma_{1}$ (respectively $\sigma^{\prime}$ ) to all of $M_{D \bar{P}_{3}}$ (respectively $M_{(I-D) \bar{P}_{3}}$ ) by linearity. These maps are well defined by Lemma 26. It is a straightforward computation to check that $\sigma_{1}$ and $\sigma^{\prime}$ are ${ }^{*}$-linear.

Lemma 27. $\sigma_{1}$ is an extension of $\phi \mid\left[M_{D \bar{P}_{3}}, M_{D \bar{P}_{3}}\right]$ to $M_{D \bar{P}_{3}}$, and $\sigma^{\prime}$ is an extension of $\phi \mid\left[M_{(I-D) \bar{P}_{3}}, M_{\left.(I-D) \bar{P}_{3}\right]}\right.$ to $M_{(I-D) \bar{P}_{3}}$.

Proof. $M_{D \bar{P}_{3}}$ is linearly generated by $X_{i j}$ and $\left[X_{i j}, X_{j i}\right.$ ] where $i \neq j$ and $X_{i j} \in M_{i j}, i, j \in\{3,4,5\}$. By definition, $\sigma_{1}=\phi$ on $M_{i j} . \sigma\left[X_{i j}, X_{j i}\right]=$ $\sigma\left(X_{i j} X_{j i}-X_{j i} X_{i j}\right)=\sigma\left(X_{i j} X_{j i}\right)-\sigma\left(X_{j i} X_{i j}\right)=\phi\left(X_{i j}\right) \phi\left(X_{j i}\right)-\phi\left(X_{j i}\right)$ $\phi\left(X_{i j}\right)=\phi\left[X_{i j}, X_{j i}\right]$ from the definition of $\sigma_{1}$ on $M_{i i}$.

Similarly $M_{(I-D) \bar{P}_{3}}$ is generated by $\widetilde{X}_{i j}$ and $\left[\widetilde{X}_{i j}, \widetilde{X}_{j i}\right]$ where $i \neq j$ and $\widetilde{X}_{i j} \in \widetilde{M}_{i j}, i, j \in\{3,4,5\}$. Again $\sigma^{\prime}=\phi$ on $\widetilde{M}_{i j} . \sigma^{\prime}\left[\widetilde{X}_{i j}, \widetilde{X}_{j i}\right]=\sigma^{\prime}\left(\widetilde{X}_{i j} \widetilde{X}_{j i}\right)-$ $\sigma^{\prime}\left(\widetilde{X}_{j i} \widetilde{X}_{i j}\right)=-\phi\left(\widetilde{X}_{j i}\right) \phi\left(\widetilde{X}_{i j}\right)+\phi\left(\widetilde{X}_{i j}\right) \phi\left(\widetilde{X}_{j i}\right)=\boldsymbol{\phi}\left[\widetilde{X}_{i j}, \widetilde{X}_{j i}\right]$.

Lemma 28. $\sigma_{1}$ is a homomorphism of $M_{D \bar{P}_{3}}$ into $N_{\psi\left(D \bar{P}_{3}\right)}$, and $\sigma^{\prime}$ is the negative of an anti-homomorphism of $M_{(I-D) \bar{P}_{3}}$ into $N_{\psi\left((I-D) \bar{P}_{3}\right)}$.

Proof. We show the anti-homomorphism part. The homomorphism proof is analogous. We must show that $\sigma^{\prime}\left(\widetilde{X}_{i j} \widetilde{X}_{k l}\right)=-\sigma^{\prime}\left(\tilde{X}_{k l}\right) \sigma^{\prime}\left(\widetilde{X}_{i j}\right)$ for $i, j, k$, $l \in\{3,4,5\}$.
(1) $i \neq j, k \neq l, j \neq k$. In this case $\tilde{X}_{i j} \tilde{X}_{k l}=0$ so $\sigma^{\prime}\left(\tilde{X}_{i j} \tilde{X}_{k l}\right)=0$. $\sigma^{\prime}\left(\widetilde{X}_{i j}\right) \in \widetilde{N}_{j i}$ and $\sigma^{\prime}\left(\widetilde{X}_{k l}\right) \in \widetilde{N}_{l k}$ so that $\sigma^{\prime}\left(\widetilde{X}_{k l}\right) \sigma^{\prime}\left(\widetilde{X}_{i j}\right)=0$.
(2) $i \neq j, \quad k \neq l, j=k$. If $i=l, \quad \sigma^{\prime}\left(\tilde{X}_{i j} \widetilde{X}_{j l}\right)=-\phi\left(\widetilde{X}_{j l}\right) \quad \phi\left(\tilde{X}_{i j}\right)=$ $-\sigma^{\prime}\left(\tilde{X}_{j l}\right) \sigma^{\prime}\left(\tilde{X}_{i j}\right)$ since $\sigma^{\prime}\left(\tilde{X}_{i j}\right)=\phi\left(\tilde{X}_{i j}\right)$ for $i \neq j$. If $i \neq l$ then $\sigma^{\prime}\left(\widetilde{X}_{i j} \tilde{X}_{j l}\right)=$ $\phi\left(\widetilde{X}_{i j} \widetilde{X}_{j l}\right)=-\phi\left(\widetilde{X}_{j l}\right) \phi\left(\widetilde{X}_{i j}\right)=-\sigma^{\prime}\left(\widetilde{X}_{j l}\right) \sigma^{\prime}\left(\widetilde{X}_{i j}\right)$.
(3) $i=j, k \neq l, i \neq k$. We can assume, in this case, that $\tilde{X}_{i i}=\tilde{X}_{i k} \tilde{X}_{k i}$. Then $\sigma^{\prime}\left(X_{i i} X_{k l}\right)=0$. Also $-\sigma^{\prime}\left(\tilde{X}_{k l}\right) \sigma^{\prime}\left(\tilde{X}_{i k} \tilde{X}_{k i}\right)=\phi\left(\tilde{X}_{k l}\right) \phi\left(\tilde{X}_{k i}\right) \phi\left(\tilde{X}_{i k}\right)=0$ since $\phi\left(\widetilde{X}_{k l}\right) \in \widetilde{N}_{l k}, \phi\left(\widetilde{X}_{k i}\right) \in \widetilde{N}_{i k}$ and $i \neq k$.
(4) $i=j, k \neq l, i=k$. We can assume, in this case, that $\tilde{X}_{i i}=\tilde{X}_{i l} \tilde{X}_{l i}$. Then $\sigma^{\prime}\left(\widetilde{X}_{i i} \widetilde{Y}_{i l}\right)=\sigma^{\prime}\left(\widetilde{X}_{i l} \widetilde{X}_{l i} \widetilde{Y}_{i l}\right)=\phi\left(\widetilde{X}_{i l} \widetilde{X}_{l i} \widetilde{Y}_{i l}\right)=\phi\left(\widetilde{Y}_{i l}\right) \phi\left(\widetilde{X}_{l i}\right) \phi\left(\widetilde{X}_{i l}\right)$ $=\sigma^{\prime}\left(\tilde{Y}_{i l}\right) \sigma^{\prime}\left(\tilde{X}_{l i}\right) \sigma^{\prime}\left(\tilde{X}_{i l}\right)=-\sigma^{\prime}\left(\tilde{Y}_{i l}\right) \sigma^{\prime}\left(\tilde{X}_{i l} \tilde{X}_{l i}\right)=-\sigma^{\prime}\left(\tilde{Y}_{i l}\right) \sigma^{\prime}\left(\tilde{X}_{i i}\right)$.
(5) $i \neq j, k=l$. This case is proved in a manner similar to (3) and (4).
(6) $i=j, k=l, i \neq k$. We can assume, in this case, that $\tilde{X}_{i i}=\tilde{X}_{i k} \tilde{X}_{k i}$ and $\widetilde{X}_{k k}=\widetilde{Y}_{k i} \widetilde{Y}_{t k} . \widetilde{X}_{i i} \widetilde{X}_{k k}=0$ so that $\sigma^{\prime}\left(\widetilde{X}_{i i} \widetilde{X}_{k k}\right)=0 . \sigma^{\prime}\left(\widetilde{X}_{i k} \widetilde{X}_{k i}\right) \quad \sigma^{\prime}\left(\widetilde{Y}_{k i} \widetilde{Y}_{i k}\right)=$ $\phi\left(\widetilde{X}_{k i}\right) \phi\left(\widetilde{X}_{i k}\right) \phi\left(\widetilde{Y}_{i k}\right) \phi\left(\widetilde{Y}_{k i}\right)=0$, since $\phi\left(\widetilde{X}_{i k}\right) \in \widetilde{N}_{k i}$, and $\phi\left(\widetilde{Y}_{i k}\right) \in \widetilde{N}_{k i}$.
(7) $i=j, k=l, i=k$. We can assume $\widetilde{X}_{i i}=\widetilde{X}_{i p} \widetilde{X}_{p i}, X_{k k}=\widetilde{Y}_{i p} \widetilde{Y}_{p i}(i \neq p)$. $\sigma^{\prime}\left(\widetilde{X}_{i i} \widetilde{X}_{k k}\right)=\sigma^{\prime}\left(\widetilde{X}_{i p} \widetilde{X}_{p i} \widetilde{Y}_{i p} \widetilde{Y}_{p i}\right)=-\sigma\left(\tilde{Y}_{p i}\right) \phi\left(\widetilde{X}_{i p} \widetilde{X}_{p i} \tilde{Y}_{i p}\right)=-\phi\left(\widetilde{Y}_{p i}\right) \phi\left(\widetilde{Y}_{i p}\right)$ $\phi\left(\widetilde{X}_{p i}\right) \phi\left(\widetilde{X}_{i p}\right)=-\sigma^{\prime}\left(\widetilde{Y}_{i p} \widetilde{Y}_{p i}\right) \sigma^{\prime}\left(\widetilde{X}_{i p} \widetilde{X}_{p i}\right)=-\sigma^{\prime}\left(\widetilde{X}_{k k}\right) \sigma^{\prime}\left(\widetilde{X}_{i i}\right)$.

Theorem 3. Let $\boldsymbol{\phi}:[M, M] \rightarrow[N, N]$ be a Lie ${ }^{*}$-isomorphism of $[M, M]$ onto $[N, N]$ where $M$ and $N$ are von Neumann algebras with no central abelian summands. There exists a map $\Pi: M \rightarrow N$ which extends $\phi$ and such that $\Pi=\sigma+\sigma^{\prime}$ where $\sigma$ is $a^{*}$-isomorphism of $M_{C}$ onto $N_{\psi(c)}$ and $\sigma^{\prime}$ is the negative of a ${ }^{*}$-antiisomorphism of $M_{I-C}$ onto $N_{\psi(I-C)}$ for an appropriate central projection $C \in M$.

Proof. By Theorem 2 it suffices to assume $M$ is not of type $\mathrm{I}_{2}$. Let $D, P_{1}, P_{2}$, $P_{3}$ be as above, let $C=I-\bar{P}_{3}+D \bar{P}_{3}$, and let $\sigma=\sigma_{0}+\sigma_{1}$.

In general if $\phi:[M, M] \rightarrow N$ is a Lie ${ }^{*}$-isomorphism where $M$ is a von Neumann algebra with no central summands, and $N$ is a *-algebra, and if II is an extension of $\phi$ to an associative *-homomorphism or *-anti-homomorphism of $M$, then $\Pi$ is $1-1$. For, suppose $A=A^{*}$ and $\Pi(A)=0$. Then $\Pi([A, B], B])=0$ for all self-adjoint $B$ in $M$. This implies that $\phi([[A, B], B])=$ 0 (since $\phi=\Pi$ on $[M, M]$ ) and thus $[[A, B], B]=0$. By $[7]$ this implies $A \in Z_{M}$, or ker $\Pi \subseteq Z_{M}$. But ker $\Pi$ is a two-sided ${ }^{*}$-ideal of $M$ and cannot be contained in $Z_{M}$ unless it is zero. The proof of this claim goes as follows:

Let $\mathscr{I}$ be a two-sided, *-ideal of $M$ contained in $Z_{M}$, and let $A=A^{*} \in \mathscr{I}$ with $\|A\| \leqq 1$. If $P$ is a core-free projection of $M$ then $P A=A P \in \mathscr{I} \subseteq Z_{M}$ and $P A \leqq P$. Thus $P A$ is central, self-adjoint, and so is equal to 0 since $P$ is core-free. Now choose a core-free $P$ with $\bar{P}=I$. Then $\bar{P}-P=I-P$ is corefree so that $0=A(I-P)=A-A P=A$.

Applying the above to $\sigma_{0}, \sigma_{1}$, and $\sigma^{\prime}$ we see that each of these is $1-1$.
$\Pi$ itself is an extension of $\phi$ to $M$ since $\sigma_{0}$ extends $\phi \mid\left[M_{I-\bar{P}_{3}}, M_{I-\bar{P}_{3}}\right]$ to $M_{I-\bar{P}_{3}}, \sigma$ extends $\phi \mid\left[M_{D \bar{P}_{3}}, M_{D \bar{P}_{3}}\right]$ to $M_{D \bar{P}_{3}}$, and $\sigma^{\prime}$ extends $\phi \mid\left[M_{(I-D) \bar{P}_{3}}\right.$, $\left.M_{(I-D) \bar{P}_{3}}\right]$ to $M_{(I-D) \bar{P}_{3}}$ and so $[N, N] \subseteq$ Range II. Moreover, since the image of $M$ under $\Pi$ is a ${ }^{*}$-subalgebra of $N$, the ${ }^{*}$-algebra generated by $[N, N]$ is contained in Range II. But this algebra is just $N$ by Lemma 23. Thus $\Pi$ onto. This implies that each of $\sigma_{0}, \sigma_{1}$, and $\sigma^{\prime}$ is onto.

Corollary. If $\phi: M \rightarrow N$ is a Lie *-isomorphism of $M$ onto $N$ where $M$ and $N$ have no central abelian summands, there exists a central projection $C$ in $M$ such
that $\phi=\sigma+\sigma^{\prime}+\lambda$ where $\sigma$ is $a^{*}$-isomorphism of $M_{C}$ onto $N_{\psi(C)}, \sigma^{\prime}$ is the negative of $a^{*}$-anti-isomorphism of $M_{I-C}$ onto $N_{\psi(I-C)}$ and $\lambda$ is a*-linear map of $M$ into $Z_{N}$ which annihilates brackets.

Provf. $\eta=\left.\phi\right|_{[M, M]}$ is a Lie *-isomorphism of $[M, M]$ onto $[N, N]$. Let $C$, $\sigma, \sigma^{\prime}$ be as in Theorem 3, and set $\lambda=\phi-\left(\sigma+\sigma^{\prime}\right) . \lambda$ is *-linear since both $\phi$ and $\sigma+\sigma^{\prime}$ are, and $\lambda$ annihilates brackets since $\phi=\sigma+\sigma^{\prime}$ on brackets.

We need to show that $\lambda(A) \in Z_{N}$ for $A \in M$. Since the ring generated by $[N, N]$ is $N$ and since $\phi$ maps $[M, M]$ on $[N, N]$, it suffices to show that $[\lambda(A), \phi(X)]=0$ for all $X$ in $[M, M] .[\lambda(A), \phi(X)]=\left[\phi(A)-\left(\sigma+\sigma^{\prime}\right)(A)\right.$, $\phi(X)]=[\phi(A), \phi(X)]-\left[\left(\sigma+\sigma^{\prime}\right)(A), \phi(X)\right]=\phi[A, X]-\left[\left(\sigma+\sigma^{\prime}\right)(A)\right.$, $\left.\left(\sigma+\sigma^{\prime}\right)(X)\right]$ (since $\phi=\sigma+\sigma^{\prime}$ on $\left.[M, M]\right)=\phi[A, X]-\left(\sigma+\sigma^{\prime}\right)[A, X]=$ $\phi[A, X]-\phi[A, X]=0$.

## References

1. J. Dixmier, Les algebres d'operateurs dans l'espace Hilbertien, Cahiers Scientifiques, Fas. XXV (Gauthier-Villars, Paris, 1969).
2. R. G. Douglas and D. M. Topping, Operators whose squares are zero, Rev. Roumaine Math. Pures Appl. 12 (1967), 647-652.
3. I. N. Herstein, Topics in ring theory (University of Chicago Press, Chicago, 1969).
4. R. A. Howland, Lie isomorphisms of derived rings of simple rings, Trans. Amer. Math. Soc. 145 (1969), 383-396.
5. C. R. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-737.
6. C. Pearcy and D. Topping, Commutators and certain II-factors, J. Functional Analysis 3 (1969), 69-78.
7. I. M. Singer, Uniformly continuous representations of Lie Groups, Ann. of Math. 56 (19.52), 242-247.
8. H. Sunouchi, Infinite Lie rings, Tôhoku Math. J. 8 (1956), 291-307.

University of Victoria, Victoria, British Columbia

