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1. I n t r o d u c t i o n . Let G be a locally compact and (7-compact1 topological 
group and let H be a discrete subgroup of G.2 We shall use G/H to denote the 
space of right cosets Hx of H with the usual topology (cf. (8, pp. 26-28)) . Let 
/x be the left Haar measure in G. \x induces a measure in the space G/Hf this 
measure will, wi thout ambiguity in this paper, also be denoted by fx. If JJL{G/H) 
is finite, the group H is called a lattice. If the space G/H is compact, then H 
is certainly a lattice and is called a bounded lattice. These terms are an extension 
of the usage of the Geometry of Numbers , where G is the real ^-dimensional 
vector space Rn. In this case any lattice is generated by n linearly independent 
vectors, all lattices are bounded, and the whole family of lattices is permuted 
transit ively by the automorphisms of G (which are the non-singular linear 
transformations). The constant n(G/H) is called the determinant of H in this 
case. T h e family of all lattices in Euclidean space forms a locally compact 
topological space. In (7) Mahler proved the following 

SELECTION T H E O R E M . Let {Hn} be a sequence of lattices in Rn with the following 

properties 
(i) There is a neighbourhood V of the zero-vector e such that, for all n, 

HnnV= {e}, 
(ii) niG/Hn) is bounded above. 

Then there exists a subsequence \Hn>) of {Hn} which converges to a lattice H. 

Let now C7, H, and /* be as in the beginning. Mahler 's theorem suggests two 
définitions. [Notat ion: e is the uni ty of G, N the class of open sets containing 
e; K, ivK are closure and boundary of K\ \J, —, C\ denote the set union, 
difference, intersection. We use <p: G-^G/H for the natural mapping <p(x) = Hx.] 

D E F I N I T I O N 1. A sequence {Hn} of subgroups of G is called uniformly dis­
crete if Hn C\ V = {e} for a certain V G N and all n. 

D E F I N I T I O N 2. A sequence {Hn} of subgroups of G converges to a subgroup H 
if, given any compact set C and any V G N, 

Hr\CCHnV and Hn C\ C C HV 

holds for all bu t a finite number of n. 

Received April 27, 1959. 
JThat is, G is a countable union of compact sets. 
2As is well known, this implies that H is countable. 
3We give a precise definition of the induced measure in § 3. 
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Chabauty (2) has generalized Mahler's theorem by showing that a uniform­
ly discrete sequence {Hn} of subgroups of G has a subsequence converging to 
a discrete subgroup H and moreover 

(1) n(G/H) < liminf/x(G/Hn) 

so that H is a lattice if all the Hn are and fji(G/Hn) is bounded. 
In the classical case G = Rn, it is of course easy to show that 

(2) n(G/H) = lim »(G/Hn) 

and Chabauty has shown that in certain circumstances this is true also for 
topological groups G. In this paper we make a further contribution to this 
problem by proving that, if H is a bounded lattice, then a necessary and 
sufficient condition for (2) to hold is that G should be compactly generated4 

or that H should be finitely generated. We shall give an example due to 
M. Kneser showing that the boundedness of H is essential. Thus it might 
seem better to consider bounded lattices only, particularly since in Geometry 
of Numbers all lattices are bounded. Unfortunately however, a lattice which 
is a limit of bounded lattices need not be bounded. In § 6 we shall give an 
example of such a lattice where G is a homomorphic image of the group of 
2 by 2 matrices with determinant unity. 

2. Fundamental domain. As in (5) and (10) a Borel set P will be called 
a packing if P C\ hP = <j> for e ^ h Ç H and a Borel set C will be called a 
covering if HC = G. F is called a fundamental domain if it is both a packing 
and a covering. In cases of ambiguity we may refer to an iJ-packing, H-
covering, or ./^-fundamental domain. 

In this section we show, extending a result of Chabauty (1), and Siegel 
(9), that there is a fundamental domain F with fx(îrF) = 0, and also that if 
G/H is compact then there is such a fundamental domain with compact 
closure F. 

We shall overlap in places with Chabauty's results. We start with a lemma 
which shows that Chabauty's axiom (M) is always satisfied. 

LEMMA 2.1. If C is compact and U is open, C C U, then there is a Baire 
measurable open set V such that 

CCVCU, M(frF) = 0 . 

In particular, taking C = {e}, there is a fundamental system of neighbourhoods 
of the identity each of which has a frontier of measure 0. 

Proof. Since the measure ix is regular, and the measure of any compact 
set is finite (4, §§ 64 and 52), we may assume, on replacing U by an open 
subset, if necessary, that n(U) < oo. Since the group G is a completely 
regular space (8, p. 29), a continuous function f(x) exists such that/Or) = 0 

4That is, have a compact set of generators. 
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for x e C,f(x) = 1 for x $ U. Let E(r) = {x:f(x) < r}. The function n{E{r)) 
is a monotonie function of the real variable r, and therefore has at most 
countably many discontinuities. Let r0 be a value at which it is continuous. 
Then 

E(f0) = H [W'.Wopen, W D E(r0)} C C\E(r). 
r>ro 

Hence 

n(E(r0)) < n(E(r0)) < limM(E(r)) = n(E(r0)). 

This completes the proof, since V = E(r0) is a Baire set. 

The following two lemmas are easily verified: 

LEMMA 2.2. If A,B are packings and C = (A — HB) \J B, then C is a 
packing and HC = HA \J HB. 

LEMMA 2.3. 

BC\îvA Cîr{A r\B)\JhB. 

We begin now the construction of a fundamental domain. Our final result 
will be as follows. 

THEOREM 1. There is a fundamental domain F such that 
(i) M(fr/0 = 0 ; 

(ii) If G/H is compact, there exists a fundamental domain F satisfying (i) 
such that also F is compact. 

The proof of this Theorem is closely modelled on that of Siegel (9). 

Proof. Since G is locally compact and H is discrete, we can, by Lemma 2.1, 
choose V G N so that n(îrV) = 0 , F is compact, and V is an iJ-packing. 
Since G is c-compact, G C ^ Vxt for some sequence {xt} C G. Define Fi = Vxi, 
Fn = Vxn - H{Vxx \J . . . U Fxw_i). Let F = \J Fn. Then clearly F is an 
^-packing, since Fn is and since Fm C\ hFn = 0. Also i^T7 = G, for if g £ G, 
there is a least integer w such that g G HVxn and then g Ç HFn C fl*^. Thus 
T7 is a fundamental domain. 

To show that nifrF) = 0, set Cn = Vxi U . . . \J Vxn-\. Then îrCn C frFxi 
U . . . U frF*„_i, so /*(frC„) = 0. Also 

-p» = Vx» - ^ c w = Vxn - u (&cn n Vxn). 
htH 

If empty terms are dropped from the last union, only those h remain for 
which h G VxnCn-1. Since VxnCn~

l is a bounded set, the number of h is finite, 
say hi, . . . hr, and we have 

Fn = Vxn - (AiCn U • • • U *rC„) 
r 

yu(fr^) < M ( f r ^ n ) + 2 M(frft4C„) = 0. 
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By Lemma 2.3, Vxn H f rF C (r(Vxn H F) U (rVxn = frFn P\ frFxn . T h u s 
M(fr^) < Z»(Vxn r\ irF) = 0. 

In the case when G/H is compact , G/H can be covered by a finite union 
(f(Vxi) U . . . U<£>(Fxw), so F = F\\J . . .\J Fn will be a fundamental 
domain. Since F is then contained in the bounded set Cn+u it is itself bounded. 
This completes the proof of Theorem 1. 

We conclude this section with a slightly more precise form of the s t a t emen t 
of Theorem 1. This is required for a later application. 

LEMMA 2.4. If S is any covering, then there is a fundamental domain contained 

in S. 

Proof. Let F be any fundamental domain. We have F C HS. T h u s F is a 
union of /^-translates of subsets of 5 and therefore F is also a disjoint union 
of /z-translates of subsets of S, say F = h\S\ U h2S2 W . . . . I t is obvious t h a t 
Fo = 5 i U ^2 U . . . is a fundamental domain contained in 5 . 

3. T h e i n d u c e d m e a s u r e i n G/H. Since we regard the group II as a 
group of permuta t ions acting on G by left t ranslat ion, it follows t h a t each 
i î -o rb i t is a right coset Hx. This is why we use G/H for the space of right 
cosets, instead of the more usual homogeneous space of left cosets. On the 
space G/H the group G acts transit ively by right t ranslat ion. If A(x) is the 
real-valued function defined on G by the relation /JL(EX) = A(x) • n(E), then 
it follows from the criterion in (11, p. 45) t h a t there is a measure jK on Borel 
subsets Ë of G/H such t h a t fi(Ëx) = fî(Ë) • A(x). For our purposes it is more 
convenient to define JJL directly from the natura l mapping (p:G—>G/Hf 

(<p(x) = Hx), as follows: If F is any fundamental domain, define 

viM) = n{<p-l{E) r\ F). 

I t follows from (5, Theorem 1, Corollary) , applied to the measure space 
(P~1(E) and the group H of t ransformations of this space, t h a t this expression 
does not depend on the part icular fundamental domain chosen. We shall, 
for S d G, use S/H to denote <p(S) and we shall write \x for p. 

We conclude this section with three lemmas which will be useful later. 
Before s ta t ing the first lemma, we note t h a t if G\ is any open subgroup 

of G, the same measure \x, b u t with its domain of definition restricted to G\ 
will serve as a H a a r measure on G\. 

L E M M A 3.1. If Gi is an open subgroup of G and Hi = Hi C\ H, then /x(Gi// / i) 
= »(Gi/H). 

Proof. Let F\ be a fundamental domain for Hi in G\. Then hFi r\ Fi ^ </>, 

h Ç H, implies h G FiFi~x C Gi, so h G H\ and h = e. T h u s Fi is an H-

packing. If F is a fundamental domain for II in G, then, so is F* = FiU(F 

— HFi), by Lemma 2.2. By our definition of induced measure, 

n{G,/H) = »(F* n GO = M(/-\) = nid/Hi). 
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L E M M A 3.2. If Hi C H and H:Hi denotes the index of Hi in H, then we 

have 

lx{G/Hi) = (H:HMG/H). 

Proof. Let F be an iJ-fundamental domain and let X be a complete system 

of representatives of left cosets of Hx in H. One checks t h a t XF is an Hx-

fundamental domain and our result follows then since X = H: Hi. 

LEMMA 3.3. If H C Gi, where Gi is an open subgroup of G, then 

»(G/H) = (G:G1)^(G1/H). 

Proof. If Gi is not unimodular, neither is G and fx(G/H) = }x{Gi/H) = oo 
(9, Lemma 5) . Suppose next t ha t Gi is unimodular, bu t not G. Then, since 
Gi is open, JJL is also the Haar measure for Gi and we have A(x) = 1 for x £ G\. 

However, if A(x) 9e 1, where x £ G, then A(xn) ^ 1 for each natural n. All 
the elements xn must then belong to different left cosets of Gi and hence 
G: Gi = co. Again both sides are infinite. 

The remaining case to consider is when G is unimodular. Then, if F is an 
iJ-fundamental domain for Gi and X is a complete system of representat ives 
of right cosets of Gi, we verify t ha t FX is an ^ - fundamen ta l domain for 
G. Since G is unimodular our result follows from X = G: G±. 

LEMMA 3.4. If Gi is an open subgroup of G, then 

n(G/H) < (G'.GJ^Gi/H). 

Proof. Let Hi = GiC\H. By Lemmas 3.1, 3.2, and 3.3 we have 

viG/Hi) = (G:Gi)»(Gi/Hi) = (GidMd/H), 

^G/Hi) = (H:Hi)»(G/H) > »(G/H). 

This proves the lemma. 

LEMMA 3.5. If K is an open subgroup of G and HK is also a subgroup, then 

n{HK/H) = p{K/Kr\H). 

Proof. Let F be a (K C\ H)-fundamental domain for the group K. One 
checks t ha t F is an iJ-fundamental domain for HK. 

4. L i m i t s of d iscrete s u b g r o u p s . In this section we assume G/H compact . 
We consider the following two closely related questions: 

I. In wha t groups G does the relation lim Hn = H imply lim n(G/Hn) 
= /JL(G/H) for any uniformly discrete sequence of subgroups {Hn}? 

I I . Under wha t circumstances does lim Hn = H imply lim /JL(G/Hn) = 
ix(G/H) if {Hn) is restricted to be a uniformly discrete sequence of lattices! 

Our answer to I is complete, given by the theorem below. As to question II 
we give a little extra information in Theorem 3. Another kind of answer was 
found by Chabau ty and we present in § 5 an al ternative proof of his result 
(our Theorem 4). 
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T H E O R E M 2. The following four statements are equivalent: 

(i) G is compactly generated. 

(ii) H is finitely generated. 

(iii) If {Hn} is a sequence of discrete subgroups, lim Hn = H, then 

lim sup ii(G/Hn) < ix(G/H). 

(iv) If {Hn} is a uniformly discrete sequence of subgroups, lim Hn = H, then 

lim »(G/Hn) =p(G/H). 

Proof. We have proved in a recent paper t h a t (i) implies (ii) (see 6) . Sup­
pose (ii) holds. I t follows from Theorem 1 (ii) t h a t there exists an ijT-funda-
menta l domain F with compact closure F. If T is the finite set of generators 
of H, then the compact set T U F is obviously a set of generators of G. Hence 
(ii) implies (i) and so (i) and (ii) are equivalent . By Chabau ty ' s inequali ty 
(1), (iii) implies (iv). T h u s it remains to prove t h a t (iv) implies (ii) and 
t h a t (i) implies (iii). 

Proof that (iv) implies (ii). Suppose t h a t (ii) is false. Then H being count­
able let its elements be enumera ted hi, hi, . . . , and let Hn be the subgroup 
generated by the elements hi, . . . , hn. If C is a compact set, C C\ H is finite 
and if no is the largest value of r for which hr lies in C, we have C Pi H = Cr\Hn 

for n > no. T h u s lim Hn = H. However, the index H: Hn is infinite, otherwise 
H would have a finite system of generators given by hi, . . . , hn together with 
a complete system of representat ives of the iJ^-cosets. I t follows from L e m m a 
3.2 t h a t n(G/Hn) = oo for all n. Bu t n(G/H) < oo, so (iv) is false. 

Proof that (i) implies (iii). Let ^ b e an i7-fundamental domain with compact 
closure F, such t h a t n(frF) = 0. We have n(G/H) = n(F) = n(F). Let e > 0. 
We have to show tha t , for sufficiently large n, ii(G/Hn) < ix(G/H) + e. Choose 
V Ç N, V compact , so t h a t 

(3) fJi(VF) <»(F) + e. 

Let D be a compact system of generators of G. Replacing D by D \J D~l, if 
necessary, we may assume t h a t 

oo 

(4) U Dk = G. 

T h e set VFDF 1 is compact , so there is a finite number of elements hi, . . . , hr 

of H in it. We have VFD C HF; bu t hF C\ VFD = 0 unless h G VFDF-1, 
t h a t is, unless h is one of the elements hi, . . . , hr. I t follows t h a t 

(5) VFD C hF KJ . . . \J hrF. 

Since lim Hn = H, there is a number no, such tha t , for n > no, Hn V con­
ta ins each of the elements hi, . . . , hT, and hence from (5), VFD C HnVF. 
But Hn is a subgroup, Hn = Hn

k for each integer k, and thus 

VFDk C HnVFD1*-1 C • • . C H^VFD C Hk
nVF = HnVF. 
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Thus G = HnVF by (4). Hence VF is an i^-covering and by the theorem 
on packings and coverings in (5) it follows from (3) that 

fx(G/Hn) <f,(VF)< »{G/H) + e. 

To state our next theorem briefly, it is convenient to have another definition. 
A pair (G, H) consisting of a locally compact o--compact group G and a discrete 
subgroup H with G/H compact will be called a tractable pair if the following 
condition holds. Given any uniformly discrete sequence {Hn} of lattices in G 
such that limlZ» = H, then \im n(G/Hn) = n(G/H). 

THEOREM 3. If G contains an open compactly generated subgroup K such 
that for h Ç H 

(6) hKh~l = K 

then (G, H) is tractable if and only if (H, H) is tractable. 

Proof. It is quite clear that if (H, H) is not tractable, then (G, H) is not 
tractable. For there will be a sequence {Qn} of subgroups of H of finite index 
such that lim Qn = H, but H: Qn > 1 for infinitely many n. By Lemma 3.2, 
M(G/Ç„) = (H: Qn)fi(G/H) > 2UL(G/H) for infinitely many n. Thus (G, H) is 
not tractable. 

We now assume therefore, that (H, H) is tractable and our aim is to 
prove that (G, H) is tractable. We shall show that if {Hn} is a sequence of 
lattices in G and lim Hn = H, then 

(7) lim sup ix(G/Hn) <v(G/H). 

Hence for a uniformly discrete sequence {Hn} of lattices we have by (1), 
lim /JL(G/Hn) = fx(G/H), that is, (G, H) is tractable. 

Since the topology in H is discrete, our assumption that (H, H) is tractable 
means that, if {Qn} is a sequence of subgroups of H with the following properties: 

oo œ 

(8) (i) H = U D Qn, 
m=ln—m 

(ii) H:Qn< œ, 

then there is a number n0 such that H = Qn for n > no. 
Suppose now that {Hn} is a sequence of lattices in G such that lim Hn = H. 

To show (7) we shall associate with the sequence {Hn} a sequence {Qn} of 
subgroups of H which satisfies the conditions (8). We observe first that, by 
(6), HK and 

Mn = HnC\ HK, Pn = MnK, Qn = HnK H H 

are subgroups of G and moreover Pn is open. 

LEMMA 4.1. H: Qn = HK:Pn. 

https://doi.org/10.4153/CJM-1960-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-037-5


434 A. M. MACBEATH AND S. SWIERCZKOWSKI 

Proof. One checks easily t ha t any complete system of representat ives of 

left cosets of Qn in H is also a complete system of representat ives of left 

cosets of Pn in HK. 

L E M M A 4.2. For n > n0, Qn = H, Pn = HK. 

Proof. By Lemma 4.1 it is enough to show t h a t Qn = H. Since (H, H) is 
t ractable this follows if we show t h a t conditions (8) are satisfied. T o prove 
t h a t Qn has finite index, we note tha t , by Lemmas 3.1 and 3.3, 

(HK:Pn)n(Pn/Mn) = n(HK/Mn) = »(HK/Hn) < »(G/Hn) < » . 

Now Pn is for sufficiently large n a non-empty open set, so n(Pn/Mn) > 0, 
and by Lemma 4.1, Hn: Qn = HK: Pn < oo. 

T o show tha t (8) (i) holds we have to show tha t if h Ç H, then, for suffi­
ciently large n, h 6 Qn. T o see this we note t h a t K Ç N, so for sufficiently 
large n, hK C\ Hn ^ <t>, t h a t is, h G HnK. This proves our lemma. 

We are now in a position to prove (7). By Theorem 2, since K is compactly 
generated 

(9) lim sup fi(K/K H Hn) < fx(K/K n H). 

From Lemma 3.5, we have /JL(HK/H) = /JL(K/K P I H). If, in Lemma 3.5 we 
replace H by Mn so t ha t HK is replaced by Pn, we find t h a t ii(Pn/Mn) = M 
(K/K C\ Hn). From Lemma 3.1, we have id(Pn/Hn) = ju(Pn/A£n) since 
Pnr\Hn = Mn. Hence fi(Pn/Hn) = »(K/Kr\Hn) and subst i tu t ing in (9) 
we derive 

(10) lim sup fi(Pn/Hn) < fi(HK/H). 

For sufficiently large n we have, by Lemma 4.2, 

(11) n(HK/Hn) = n(Pn/Hn). 

Using (10), (11), and Lemmas 3.3 and 3.4, 

fi{G/H) = (G:HK)n(HK/H) > (G: HK) lim sup »(Pn/Hn) 

= (G: /ZZ) lim sup fx(HK/Hn) > lim sup n(G/H„). 

This completes our proof. 

5. A resu l t of C h a b a u t y . We shall give now an al ternat ive proof of a 
theorem of Chabau ty (1) which combined with (1) yields another kind of 
answer to our question I I . 

T H E O R E M 4. / / {Hn} is a sequence of lattices, lim Hn = H and there exists a 
set S of finite measure which is an Hn-covering for each n, then 

lim sup M(G/Hn) < n(G/H). 

Proof. Let F, Fn denote the H and ^ - f u n d a m e n t a l domains so t ha t 

n(G/Hn) = n(Fn), n(G/H) = M ( F ) . 
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By Lemma 2.4 we may assume Fn C S. From 5 C HF follows t h a t we can 
cover S, except for a set of arbitrari ly small measure, by a finite union 
h\FKJ . . . U hmF, ht Ç H. Since H = lim Hn it follows t h a t these sets in 
turn can be approximated by unions 

h[n)F U • • • U h™F, where h(f £ Hn. 

Therefore, for sufficiently large n, an arbitrari ly small par t of 5 remains 
uncovered by HnF. Hence, by Fn C S, we have lim [y.(Fn) — n(Fn C\ HnF)]=0. 
Since 

fi(Fn n HnF) = n(\J (FnHh F)) < E n(Fn H h F) = £ MC*" 1 ^» n F) 
\ Hn / Hn Hn 

= n(HnFnnF) = fi{F) 

the theorem follows. 

6. E x a m p l e s . In this section we give three examples illustrating different 
possible properties of convergent sequences of discrete subgroups. 

Example 1. I t follows from Theorem 2 tha t , if G is compactly generated, 
G/Hn compact and lim Hn = H, then lim sup n (G/Hn) < /x (G/H). To show 
tha t this need not be true if G is not compactly generated, take G = H = Gi 
X Go X . . . X Gn X . . . , the weak direct product of a countable family of 
cyclic groups of order 2, with the discrete topology. Define Hn to be the set 
of all g = (gi, g2, . . . , gn, . . . , ) £ G with gw = e. Then n(G/Hn) = 2, 
l imfl» = i ï , M ( ^ / ^ ) = 1. 

Example 2. In this example G is a connected Lie group, and G/Hn is compact 
for each n, bu t G/H is not compact. Let G be the group of all linear t rans­
formations 

az + b 
w = — 

C3 + d 
where w, z are complex variables, a, 5, c, tZ are real and ad — be > 0. In 
addition to G we consider the set G\ of inversions, t ha t is, t ransformations 
of the form 

(az + b) 
w = 

(cz + d) ' 
where z is the complex conjugate, and a, 5, c, ^ are real with ad — be < 0. 
The set G U Gi is a group of transformations of the upper half-plane 3?z > 0 
on itself, and G is a normal subgroup of index 2. The topology is the natural 
one obtained from the variables a, b, c} d. 

Let P be the point i = y/ — 1, and let Q = ki(l < k < \ / 3 ) be a variable 
point on the imaginary axis. Let C(Q) be the circle through Q with centre 
on the positive real axis and cut t ing the imaginary axis a t an angle \ic. Let 
C(Q) cut \z\ = 1 in R and consider the curved triangle PQR, made up of 
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part of the imaginary axis and parts of the circles. As k varies between 1 
and \ / 3 , the angle at R will decrease continuously from ibr to 0. Thus there 
will be a sequence of points Qi, Q8, (?9, . . . , and corresponding points i?7, R$, 
RQ, . . . , such that the angles at R take the values \TT, ¥7r, iw. . . . 

It is easy to see that the subgroup Kn of G\ \J G, generated by the opera­
tions of inversion in the circles PRn, QnRn and reflection in the line PQn is a 
discrete subgroup of G U Gi. Let Kn C\ G = Hn. Regarded as a group of 
transformations of the complex plane, it has as a fundamental domain the 
interior of the curved triangle PQnRn, the reflection of this triangle in the 
line PQn, together with some of the boundary points of this region. It is one 
of the triangle groups well known in the theory of automorphic functions 
(2; 3). 

A ^-fundamental domain in G is the set of all mappings t of G such that 
tP lies in the fundamental domain in the s-plane just described. For each n, 
the closure of the triangle PQnRn lies in the interior of the upper half-plane, 
so G/Hn is compact. 

The limit H of the sequence Hn has a fundamental domain which is obtained 
in the same way from the triangle PQœRœ, where Qœ — iy/Z, Rœ — — 1, and 
the i^-angle of the curved triangle is zero. However, G/H is not compact 
because the closure of its fundamental domain contains the point Rœ, which 
is a boundary point of the upper half plane, and is not equal to tP for any 
t G G. 

Example 3. This example indicates that the conclusions of Theorem 2 cease 
to be true if G/H is not compact, even when G is connected and H finitely 
generated. The example was suggested to us in conversation by Professor 
Martin Kneser, and we are grateful to him for permission to include it here. 

Let P, Q, R, S be four points on the real axis in the order indicated. Consider 
the operations t\, t2l h, t\ of inversion in the circles on diameters SP, PQ, 
QR, RS. These generate a discrete subgroup H of G U G i which is a free 
product of four cyclic groups of order 2. Its fundamental domain in the 
upper half plane is the interior of the curved quadrilateral PQRS. Keep 
P, Q, S fixed and let R pass through a sequence of points tending to 5. The 
group H will tend to a limit Hm which is generated by inversions in the 
circles SP, PQ, QS. The fundamental domain in the half-plane is the tri­
angle PQS. 

Now in the hyperbolic plane, the area of triangles with zero angles is a 
constant. Since the quadrilateral PQRS is a union of two such triangles, its 
area is twice the area of the triangle PQS. Returning to the original group-
space, we deduce without difficulty that 

v(G/H C\ G) = 2n{G/Hm C\ G). 
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