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Low-dimensional materials have unique intrinsic properties as a result of their electronic wave-function 
confinement in one or two dimensions. For example, the electronic properties of single-walled carbon 
nanotubes (SWCNTs) entirely depend on the rolling direction of the graphene sheet. Unfortunately, the 
synthesis of nanotubes with selective chirality remains a challenge despite enormous efforts during the 
past decades. Another way to obtain specific properties is to introduce heteroatom dopants into the 
lattice [1]. Although covalently bound nitrogen (N) [2], boron (B) [2], silicon (Si) [3] and germanium 
(Ge) [4] have been demonstrated in graphene, direct evidence for SWCNTs is for the most part missing, 
except for N substitution [5]. 
 
We present here atomic-scale evidence of the substitution of Si heteroatoms in graphene and carbon 
nanotubes through Ar plasma irradiation assisted with simultaneous laser irradiation. Scanning 
transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy allow us to 
directly identify the heteroatoms, their bonding environment and configuration in the materials. A 
graphene-SWCNTs heterostructure was used as a target material, with nanotubes synthesized using a 
floating catalyst method and dry-deposited on graphene [6]. The samples were introduced into the 
vacuum system connected to the Nion UltraSTEM 100 microscope in Vienna [7], and characterized at 
atomic resolution. Due to typical hydrocarbon contamination, the samples were cleaned with laser [8] 
(6 W, 445 nm power tunable diode laser) in the microscope column at a pressure of ~10-10 mbar. Clean 
areas of pristine graphene and SWCNTs are shown in Fig. 1a and Fig. 2a, respectively. The samples 
were next transferred (in vacuum) to a manipulation setup, where Ar plasma was ignited in a microwave 
cavity and accelerated to a total kinetic energy of ~50 eV towards the sample with simultaneous high-
power laser irradiation. 
 
Ar ion impacts lead to the production of defects in both graphene and carbon nanotubes. At ion energies 
used here, mostly single and double vacancies are expected [9]. The simultaneous laser heating keeps 
the samples clean and provides thermal energy for C and Si atoms of the remaining contamination to be 
released and diffuse on the sample. After plasma treatment, atomic-scale analysis reveals that indeed a 
large number of Si atoms has entered both structures. We found both 3- and 4-coordinated Si atoms in 
SWCNTs [10] as shown in Fig. 2(b-c) as well as in graphene [3]. Fig. 1b shows plasma-irradiated 
graphene with substituted Si atoms. The concentration of Si atoms in graphene and SWCNTs was found 
to be 0.3% and 0.1%, respectively [10]. The recurrence of 3- and 4-coordinated configurations was 
found to be 69% and 37% in SWCNTs [10], respectively, in a good agreement with the predicted ratio 
of single and double vacancies created by 50 eV Ar irradiation [9,11].   
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Figure 1. Atomically resolved images (STEM medium angle annular dark field (MAADF)) of (a) 
pristine graphene and (b) plasma-irradiated graphene (bright atoms are Si). 
 

 
 
Figure 2. STEM/MAADF images of (a) a pristine SWCNT, (b) 3-coordinated Si atom and (c) 4-
coordinated Si atom in plasma-irradiated SWCNTs. 
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