
Toward Quantitative
Defect Analysis Using HREM

David J. Smith, Arizona State University

The electron microscope has evolved to the level where it is now

straightforward to record high-resolution images from thin samples (MO to

20 nm) that are directly interpretable in terms of atomic arrangements.

Whilst recorded images necessarily represent two-dimensional projections

of the structure, many defects such as dislocations and interfaces may be

linear or planar in nature and this might be expected to be amenable to

detailed characterization. In this review, we briefly consider the recent

significant progress that has been made in quantitative defect analysis

using the high-resolution electron microscope and then discuss some

drawbacks to the technique as well as potential scope for further improve-

ments. Surveys of defect modeling for some small-unit-cell materials1 and

interfaces' have been recently published, and reference should be made to

other papers in this symposium for further examples.

The technique of structure imaging originated in the early 70s with

observations of large-unit-cell block oxides3'4. Image interpretation was

initially validated by prior knowledge of the crystal structure, whereas it

became commonplace in later studies to verify postulated structural

models on the basis of agreement between experimental micrographs and

calculated images, mostly simulated using the multislice algorithm5. The

comparisons were usually qualitative and somewhat subjective, but the

models were generally considered as more acceptable if an image "match"

was achieved for more than one micrograph from a through-focal series9.

It has, however, been established that the apparent locations of atomic

columns at aperiodic features such as interfaces may vary by as much as

0.03 nm depending on the defocus value7. If structure refinement to this

level of accuracy or better is desired, then improved methods for establish-

ing the actual defocus values used for image recording must therefore be

developed. In this regard, the use of automatic cross-correlation tech-
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niques to compare the Fourier coefficients of diffracted beams in reciprocal

space appears to be rapid, reliable and thus highly practical for evaluating

periodic image features in the vicinity of the defect of interest1. Some studies

have been published wherein the residual differences between experimental and

calculated images have been minimized significantly using least-squared refine-

ment methods, despite the need for correction of photographic nonlinearities

(see, (or example, Ref. 9). Neveriess, such successes are by no means

universal - as exemplified in recent work on GaxAI,.x. As where the serious

mismatch between image intensity, contrast and pattern appearance defied an

exhaustive search to establish a conclusive cause for the differences10.

There are several factors that clearly could markedly affect the reliability of

the refinement process, especially in achieving quantitative agreement between

experimental and simulated micrographs. For example, image simulation

programs utilize atomic scattering factors that may not be sufficiently accurate

and, because of limited sampling in reciprocal space, approximations are

invariably made for electron scattering in the vicinity of defects. On the practical

side, multiple and inelastic scattering, amorphous surface overlayers, and

electron irradiation damage may all influence the integrity of the recorded image

to a greater or lesser (unknown?) extent. For example, structural modification,

especially for atoms in the vicinity of lattice defects and surfaces, is inevitable in

the face of the high beam current densities required for image recording at very

high magnification. Total beam exposure should therefore be restricted when-

ever possible. Surface oxide or contamination layers, oftentimes caused by

sample preparation or even exposure to air, must degrade the appearance of the

final image which originates from electron transmission through the entire

projected sample. In the absence of signal averaging, which is obviously

inapplicable to aperiodic defects, image quantification can be substantially

improved through careful attention to minimizing surface generated noise

Inelastic scattering cannot be avoided nor can its effects be easily incorporated

into image simulations because of the lack of reliable information about the

energy (and angular) spread associated with scattering of electrons from
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defects. The use of energy imaging filters could, however, facilitate image
recording with only those electrons that have not lost energy in traversing
the specimen - loss of contrast from the out-of-focus energy-ioss electrons
could thereby be alleviated or possibly removed". In some special cases,
where the defect of interest is close to the edge of the sample, it might
instead be possible to utilize the off-axis electron hologram which is
energy-filtered13. Finally, whilst multiple scattering is difficult to incorporate
reliably into dynamic calculations, its effect can at least be minimized by
restricting imaging to very thin regions.

Several possibilities are available for improving the speed, reliability
and/or accuracy of the defect analysis. It is obvious, for example, that
digital recording with a slow-scan CCD camera provides a high DQE with
wide dynamic range, and hence better counting statistics (signal-to-noise
ratio) whilst also avoiding the nonlinearities associated with photographic
recording'15. However, for some applications the effective pixel size
referred to the sample needs to be of the order of 0.01 nm or smaller but
then the typical 1024x1024 pixel field of view could be considered as being
restrictive (although interpolation techniques to locate the exact positions
of contrast maxima and minima could be used to alleviate this limitation).
None of the defect analyses so far published appear to have been carried
out under computer-controlled operation of the microscope. Nevertheless,
it is abundantly clear that location of the coma-free axis for beam
alignment, adjustment of objective lens astigmatism and selection of
defocus can be routinely accomplished using computer control with greater
accuracy than that attainable by even the experienced microscope opera-
tor15. Subsequent defect refinement should thus be significantly simplified
since it would not be necessary to take extraneous factors into account 1°.
Improved image resolution is not likely to have a great impact on defect
analysis at this stage of development since it is really signal-to-noise
rather than resolution per se that determines the precision with which
atomic columns can be located. However, the extra flexibility of imaging in
additional projections should certainly facilitate the development of more

accurate three-dimensional defect models. Finally, it appears that more atten-
tion needs to be given to the structure refinement process itself, in particular the
problems of optimizing the recursive algorithm (what parameters/what accu-
racy?) and minimizing the residual discrepancy between experimental and
simulated images10. The possible influence on the refinement of factors unre-
lated either to the structure or the model has been pointed out:E, and some of the
issues relating to establishing uniqueness or "goodness of fit" have also been
discussed1.

In conclusion, defect analysis with the high-resolution electron microscope
has now reached the stage where truly quantitative comparisons with structural
models has become a reality. Applications to an increasing variety of materials
over the next several years can be safely predicted and evaluation of different
theoretical approaches to modeling might even be feasible17. •
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