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ON THE RANGE OF THE Y-TRANSFORM

Vu KIM TUAN

The ranges of the Y-integral transform in some spaces of functions are described.

1. INTRODUCTION

The Y-transform Yv is defined by [8, 6]

(1) f(x) = (Yvg){x) = I <fiyYv{xy)g{y) dy, x e R+ = (0, oo),
Jo

if the integral converges in some sense (absolutely, improper, mean convergence), where
Yv(x) is the Bessel function of the second kind [1]. The Y-transform Yv has been
considered in £^>p in [3, 6, 7]. In particular, it follows that in Li{R+) = £1/2,2 the
Y-transform Yv is bounded if \TZe v\ < 1, and if, moreover, 0 < \TZe v\ < 1, then the
range of the Y-transform Yv is L2(R+):

(2) \\Y*9K(R+)^C\\g\\L2{R+), \7leu\Kl,

(3) \\9\\Lj{R+)<C\\Yvg\\L2{R+), 0<\1leu\<l,

where C is an independent constant, (but different in distinct inequalities). The H-
transform Hv [8, 6] denoted by

(4) g(x) = (Uvf)(x) = f°° y/ZyHr(xy)f(y) dy, x G R+,
Jo

is the inverse of Y-transform Yv in L2{R+) if - 1 < Tie v < 0. If 0 < Tie v < 1
the inverse formula (4) should be replaced by formula (51) or, equivalently, (52). Here
Hv(x) is the Struve function [1]. The Y- and H-transforms are of importance in many
singular axially symmetric potential problems [6]. In this work we describe precisely
the range of the Y-transform in some spaces of functions. The range of the Y-transform
of functions with compact supports (analogous to the Paley-Wiener theorem for the
Fourier transform [5]) is also considered. It is worth remarking that our Paley-Wiener
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theorem (Theorem 2) is different from the classical ones describing Fourier transform
of compactly supported functions in terms of entire functions of exponential type [5].
(For the Hankel transform of compactly supported functions see [4].) The theorem
stated here involves the spectral radius [12] of some differential operator obtained from
the Bessel differential equation and having the kernel of the Y-transform as "eigen-
functions", (similar ideas have been applied in [2, 11] to the Fourier transform). Nev-
ertheless, its proof is straightforward, without referring to spectral theory. Since the
H-transform Hv is the inverse of the Y-transform Yv in all spaces we considered in this
paper, corresponding theorems on the range of the H-transform can be easily derived.

2. Y-TRANSFORM OF POLYNOMIAL DECREASING FUNCTIONS

We describe the range of the Y-transform on the space of functions g(y) square

integrable together with yng(y), n = 1,2,... (polynomial decreasing functions):

THEOREM 1. A /unction f(x) is the Y-transform Yv, 0 < \Re v\ < 1/2, of a

function g(y), square integrable together with yng(y), n = 1,2,... , if and only if

(i) f(x) is infinitely differentiate on R+;

(ii) (cP/dx2 + (l/x2)((l/4)-u2))nf(x), n = 0,1,..., belongs to L2(R+);

(iii) (d?/dx2 + (l/x2) ((1/4) - v2))nf(x), n = 0 , 1 , . . . , tends to 0 as x

tends both to 0 and to infinity;

(iv) X(d/dx)(d2/dx2 + (l/x2)((l/4)-v2))nf(x), n = 0 , 1 , . . . , is
bounded at 0;

(v) (d/dx) (cP/dx2 + (1/x2) ((1/4) - v2))nf{x), n = 0 , 1 , . . . , tends to 0 as
x tends to infinity;

(vi) The improper integrals

exist and vanish for all n = 1,2,... , as well as for n = 0 if —1/2 <

Tie v < 0.

PROOF: (a) Let yng{y) belong to L2(R+) for all n = 0,1,2,.. . , then yng{y)

belongs to £i(-R+) for all n - 0,1,2, Let f(x) be the Y-transform Yv, 0 <
|7£e u\ < 1/2, of g(y) (the Y-transform Yv of g(y) with other values of v also appears
in the proof, but it is not denoted by f(x)).

(a-i) We have [1]

(5) &Y"{X) = 2 ~ "
j=o
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Therefore,

2 [ . / 1/7T 7T\ 4 f — 1 / I/7T 7T\1 „ , ,.,[ ( ) + ( ) J + o ( /

(6)

where (a)n = F(a + n)/F(a) is the Pochhammer symbol [1]. The Bessel function of the
second kind Yv(y) has the asymptotics [1]

(7)

3
Consequently, ——[y/xyYv{xy)\, \TZe v\ < 1, as a function of y has the asymp-

ux
totics 0{yil2~\'R-ev^) in the neighbourhood of 0 and O(yn) at infinity. Hence,
dn

—-[y/xy~Yv(xy)]g(y), \lZe i/| < 1, as a function of y belongs to Li(R+) for all
ux
n = 0,1,2,. . . , and therefore, f(x) is infinitely differentiate on R+ .

(a-ii) Since Yv(x) satisfies the Bessel differential equation [1]

(8) x2u" + xu + (x2 - u2)u = 0,

the function y/xYu(x) is a solution of the equation

(9) x2u" + (x2 + i - j \ u - 0.

Therefore, we have

Consequently,

(11)

l^e V| < 1/2.

By using inequality (2) for the Y-transform (11) of y2ng(y) G Li(R+), we obtain that
[<P/dx2 + (l/x2) ((1/4) - v2)]nf{x), \1le v\ < 1/2, n = 0 , 1 , . . . , belongs to L2{R+).
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(a-iii) From (7) we see that the function ^/xyYy(xy), \~Re i/| < 1/2, has the
asymptotics x1/2""l'Re "I as x tends to 0, and is uniformly bounded on R+. Because
y2ng(y) € Li(R+), by applying the dominated convergence theorem [12] we have

* s [& + h ( i -v2)]" f{x) = (~1)n f ^^^yWn9(y) * = °>
(12) [Tee i/| < 1/2.

Since y/xyYy(xy), \R.e v\ < 3/2 , is uniformly bounded for x,y e [l,oo) and yng(y) €
£i(i?.(.), for every e > 0 and for every n, re = 0,1, . . . , one can choose b large enough
so that

oo

(13) / y/SyYv(xy)yng(y)dy
b

< e, \Ke v\ < 3/2,

uniformly with respect to i £ [l,oo). On the other hand, from (7) one can conclude
that the integral

(14) I ' s/yYv{y)dy, \Kev\<l/2,

Jax

is uniformly bounded for all non-negative a, 6 and x. Hence,

/
b -j rbz

y/xyYv{xy) dy = - s/yYv{y) dy, \TZe v\ < 1/2,
x Jax

tends to 0 uniformly in a, 6 for 0 ^ a < 6 < o o a s x tends to infinity. Consequently,

applying the generalised Riemann-Lebesgue lemma [8] we get
fb

(16) lim / y/x^Yy{xy)y2ng{y) dy = 0, 0 < b < oo, \Ue v\ < 1/2.
*—>°° Jo

Because e can be taken arbitrarily small, from (13) and (16) we obtain

(17) lim / \/xyYv{xy)yZng(y) dy = 0, (7?e v\ < 1/2.
' -Wo

Hence,

(18) Jim
X—»OO

= 0> ^ = 0,1,..., \neu\< 1/2.

(a-iv) Since [1]

(19) 2 ^
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we have

1°
(-I)'

2 Jo

The function T/XY^X) is uniformly bounded on [l,oo), andis of the order 0{x1^2~^nie '
on (0,1). Therefore, for x E (0,1),

dy /
Jo

,1/z

Jo

(21) ^Cx1'2-^^ ry
1/2-^e»

Jo

Hence, in the neighbourhood of 0 we have

- (°
x Jo

(22)

By combining (20) and (22), we obtain

(23)

/ y/xyYp{*y)g{y) dy
Jl/x

J>00

1 \g{y)\dy + C / |5(y)l<iy
Jl/x

\g{y)\dy.

, \TZeu\<l/2.

n = 0, l , . . . ; \TZev\ < 1/2.

(a-v) Let \TZe u\ < 3/2. For every e > 0 choose 6 so that the inequality (13) holds.
Because (xy) ' Yv(xy), \TZe u\ < 3/2 , is uniformly bounded for x,y 6 R+, xy ^ 1,
then

(24)

Hence,

(25)

r
Jo

/ ' '

lira
,1/x

/

Jo

yn\g{y)\dy.

dy = 0, \1Ze v\ < 3/2.
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Let

/ s/^yYv{xy)dy, y>l/x
(26) *(* ,»)=<

t 0, y ̂  I/a;.

Then <&(x,y) is uniformly bounded. The integral

(27) / VyYv{y)dy, [Re v\ < 3/2,

is uniformly bounded for all non-negative o, 6 and x such that az ^ 1. Hence,

(28) / *(x,y)dy=- f VyYv(y)dy, [Re v\ < 3/2,

tends to 0 uniformly in a, 6 for 0 ^ o < i < o o a s i tends to infinity. Consequently,
applying again the generalised Riemann-Lebesgue lemma [8] we get

,6

(29) lim / $(x,y)yng(y)dy = 0, 0 < 6 < oo,
x-"x> Jo

,6

/
Jo

This means that

fb

(30) lim / y/x~yYv(xy)yng(y) dy = 0, 0 < 6 < oo, \He v\ < 3/2.
*/1 IX

Because e can be taken arbitrarily small, from (13), (25) and (30) we obtain

(31) lim / y/ZyYv(xy)yn+1g(y)dy=0, n = 0 ,1, . . . , \TZe v\ < 3/2.

If [Re v\ < 1/2, then \Tle v =p 1| < 3/2. Hence,

/•OO

lim /
Jo

(32) lim / y/xljYv+1(xy)y2n+1g(y)dy = O, \TUv\<l/2.
x^°° Jo

Applying now formulas (20), (31) and (32), we have

(a-vi) The special case —1/2 < TZe u < 0 has been proved in [3]. We give here a
proof valid for all the range of v. Integral (11) converges uniformly with respect to x
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on every compact subset of R+ . Therefore, one can interchange the order of integration
in the following formula to obtain

/
l/N

(34) = ( - l ) n ^y2n-"-1/2g(y) C x"Yv{x)dxdy, 0<N< o o .
Jo Jy/N

The last inner integral in (34) is uniformly bounded for all nonnegative N and y,
provided that \Re v\ < 1/2. For y2n~"~1/2g(y) G L1{R+) under the restriction Tie v <
0, and n ̂  1 otherwise, one can apply the dominated convergence theorem to obtain

(35)

lim / x"-1/2 \-^ + ̂ ( \ - v 2 \ \ f{x)dx

= (-l)n f y2n""1/2g{y) [ x"Yu{x) dxdy, n = 0,1,...; -1/2 < lie v < 0,
./o Jo

n= 1,2,...; 0 ̂ Tle v < 1/2.

Applying now the formula [1]

(36) Tle(fj, + v) > - 1 , lie fi< 1/2,

with /j, = v, we see that the inner integral on the right hand side of (35) equals 0.
Hence,

(37) n=l,2,...,0<ftei/<l/2.

(b) Suppose now that / satisfies conditions (i)-(vi) of Theorem 1. Then [d2 /dx2 +
(1/x2) ((1/4) - »2)}nf(x), n = 0,1,..., belongs to L2(R+).

(b-i) Let -1/2 <Tlev<0 and gn(y) be the H-transforms HU, -1/2 < Tie v <
0, of [cP/dx2 + (l/x2)({l/4) - v2))nf(x), n = 0 , l , . . . . Then

(38) gn{y) = | ^ y H , ( a » ) [ ^ + ̂  Q - «^2)] f{x)dx, n = 0 , 1 , 2 , . . . ,
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where the integrals are understood in the L2(R+) norm. Put

(39) , n = 0 ,1 ,2 . . . .

Then g^iv) tends to gn(y) in L2 norm as N —> oo. Let n ̂  1. Integrating (39) by
parts twice, we obtain

x=l/N

x=N

x=l/N

(40)

Using formulas [1]

Ox

I

= (1/2 - u\^-
V x

(41)

we have

(42)

i

(43)

i - i

(45)

(46) £ + ̂  (J -
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(47) +

(48) - y2 I" ^Hv(xy) \~ + ± (\ - A] f(x)dx

(49) + 21 "y"+*l2

•y'TTl (1/ + 1/^J

Here P(d/dx)f(N) means P(d/dx) f(x)\x=N. As TV tends to infinity, integral (49)
vanishes because of property (vi). Applying the asymptotic formula for the Stmve
function [1]

{ O(y~ll2), y->oo, TZei/<l/2,

we obtain that <JNyHv(Ny), |7£e v\ < 1/2, is uniformly bounded. The function

(d/dx) [cP/dx2 + (l/x2) ((1/4) - i ' 2)]""1 f(N) tends to 0 as N approaches infinity

(property (v)), therefore, the expression on the right hand side of (42) tends to 0 as N

approaches infinity. From (iv) we see that (d/dx) [d?/dx2 + (l/x2) ((1/4) — i '2)]""

f(l/N) has order 0(N), whereas function y/y/NHv(y/N) has order O(N-3I2-").
Hence, expression (43) approaches 0 as N tends to infinity. Function y/y/NHv(Ny)

has order O(N~1) , whereas the expression [d?/dx2 + (l/x2) ((1/4) - u2)}n~X f(N) is

o(l) (property (iii)), therefore, expression (44) is o(l). The function yy/Nyliv^i(Ny)

is 0(1), hence, property (iii) shows that (45) is o(l). Since y/NyHv(y/N) has the

order O(N~1'2-V) , and [d2/dx2 + (l/x2) ((1/4) - v2))n~X f(l/N) is o(l) (property

(iii)), expression (46) is also o(l). The function ys/y/NHv-i (y/N) has the order

O(N-1I2-"), hence, property (iii) shows that (47) is o(l).

Therefore, the right hand side of (42), as well as all functions (43) - (49), except

(48), vanish as N tends to infinity, whereas expression (48) converges to — y2gn-i(y^•

Consequently, gn(y) = -y2gn-i(y), and therefore, gn(y) = (-y2)ng0(y), n -

0 ,1 , . . . . Thus g(y) = go(y) such that y2ng(y) E L2(R+), n = 0 ,1 , . . . , is the H-

transform Hv of the function f(x) . But the H-transform H,, is the inverse of the

Y-transform Yv if —1/2 < TZe v < 0, so we obtain that and / is the Y-transform

Yv, -1 /2 < He v < 0, of a function g such that yng(y) E L2(R+), n = 0 , 1 , . . . .

(b-ii) Let now 0 < "Re u < 1/2. The inverse of the Y-transform Yv in the range

0 < Tie v < 1 has the form [3]
(51)

—,,—i ii d
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that can be expressed in an equivalent form

(52) J [ JJ

where the limit is understood in the L2(R+) norm. Putting

(53)

C
we see that gn{y) tends to some functions gn(y) in the £2 norm as N —> 00. Let
n ^ 1. Integrating (53) by parts twice and using formulae (40), (41) we obtain

When N tends to infinity integral (61) vanishes because of property (vi) and n ^ 1.
Reasoning the same as before, we can conclude that the right hand side of (54), as well
as all functions (55)-(59), vanish as N tends to infinity, whereas the expression (60)
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converges to -y2gn-i{y)- Consequently, gn{y) = -y2 g-n.-i{y), and therefore, gn(y) =
(-y2)ngo(y), n = 0 , 1 , . . . . Thus g(y) = gQ{y) such that y2ng(y) £ L2{R+), n =
0 , 1 , . . . , is the transform (52) of function f(x) . But transform (52) is the inverse of
the Y-transform Yv if 0 < 1Ze v < 1/2, so we obtain that and / is the Y-transform

YV1 0 < Tie v < 1/2, of a function g such that yng(y) £ L2(R+), n = 0,1,

Theorem 1 is thus proved. D

REMARK. The case IZe v = 0 has been excluded from Theorem 1. It was proved in

[3] that in this case the range of the Y-transform in L2(R+) is a proper subspace of

L2(R+).

3 . Y-TRANSFORM OF SQUARE INTEGRABLE FUNCTIONS WITH COMPACT SUPPORTS

Now we describe the Y-transform of square integrable functions with compact
supports (the Paley-Wiener theorem for the Y-transform).

THEOREM 2 . A function f is the Y-transform Yv, 0 < \He v\ < 1/2, of a
square integrable function g with compact support on [0, oo) if and only if f satisfies

conditions (i)-(vi) of Theorem 1 and moreover,

(62) lim U - j + - j ( T -v2 ) fix)\ =<rg <oo,

where

(63) erg=sup{y: y£ suppg},

and the support of a function is the smallest closed set outside which the function

vanishes almost everywhere [12].

PROOF: (a) Let f(x) be the Y-transform of g(y) £ L2(R+) and <r9 < oo:

(64) /(*) = / 9 ^/xljYv(xy)g(y) dy, 0 < [Re v\ < 1/2.
Jo

One can assume that <rg > 0, otherwise it is trivial. Since <rg < oo we have yng(y) £
L2(R+) for all n = 0 , 1 , 2 , . . . . Therefore, / satisfies conditions (i)-(vi) of Theorem 1.
Furthermore,

(65) \— + — l - - u

Consequently, applying the inequality (2) for the Y-transform (65), we obtain

(66)

https://doi.org/10.1017/S0004972700017792 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017792


340 V.K. Tuan [12]

Hence,
(67)

On the other hand, since <x9 is the least upper bound of the support of g, for every
e, 0 < e < <jg, we have

(68) 1 dy > 0.

Consequently, using now inequality (3) for the Y-transform (65), we get

lim

(69) = o-o - e.

Because e can be chosen arbitrarily small, from (69) and (67) we obtain (62).

(b) Suppose now that / satisfies the conditions of Theorem 1, and the limit in (62)

exists and equals a < oo. Applying Theorem 1 we see that / is the Y-transform Yv

of a function g with <rg defined by (63) such that yng(y) E I/2(R+), n = 0 , 1 , . . . .

We prove that crg < oo and moreover, a — <rg. Theorem 1 implies that (11) holds.

Therefore, using inequalities (2) and (3) we obtain

(70) C-1 \\y

Hence,

(71) * nh-

Consequently,

(72) lim lly
v ' n->oo "

Suppose that <rg > a. Then there exists a positive £ such that

= a.

(73) \9(y)\2dy>0.f
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We have

yin \g(y)\2 dy \

(• /•<» 1 l / (4n)

(74) ^(<r + e ) j i m j / |5(y)|2 dy \ =V + E.

This is impossible. Hence, ag ^ <r and therefore, the function (/ has a compact support.

Suppose now that crg < a. Then there exists a positive e such that

(75) r \g(y)\2dy = 0.
Jcr—c

We have

= hm Wy^giytJ^Uli^{ Tyin\g(y)\2dy
T.—OO

(76) ^(CT —e)lim < / \g{y)\ dy} = a — t.

This is also impossible. Hence, <rg ^ a, and consequently, <jg = <r < oo. Theorem 2 is

thus proved. D

REMARK. If a function / satisfies conditions of Theorem 1, then the limit (62) always

exists. It equals to infinity if / is the Y-transform Yv of a function g with unbounded

support.

4 . Y-TRANSFORM OF ANALYTIC FUNCTIONS

We consider now the Y-transform Yv of functions analytic in some angle.

THEOREM 3 . T i e Y-transform Yv, — 1 < He v < 1, maps t i e space of all func-

tions g(z), regular in the angle —a < argz < /3, wiere 0 < a, 0 ^ n; of the order

Ol\z\ a~*\ for small z, and Ol\z\~ c) for large z, where a < 1/2 < b, uniformly

for any small positive e in any angle interior to the above; and satisfying conditions

J: yv+2n+1/2g(y) dy = 0, ne (-6/2 - Tie i//2 - 1/4, - a /2 - lie v/2 - 1/4),
Jo

(77) ^

I" y-v+2n+1/2g(y) dy = 0, ne (-6/2 + Tie i//2 - 1/4, - a / 2 + Tie v/2 - 1/4),
Jo

for all nonnegative integers n, if there exists such n, one-to-one onto the space of all

functions f(z), regular in the angle -fi < argz < a, of the order O(\z\1~b~j for
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small z, and 0(\z\1~a+e) for large z, uniformly for any small positive e in any ajigle

interior to the above; and satisfying conditions

f°°
/ xv-2n~1/2f(x)dx = 0, ne(a/2 + Tlev/2-l/4,b/2 + Tlev/2-l/4),
Jo

(78) ^

I as"+a»+s/a/(a.) j j . = o, n G (-4/2 - Re K/2 - 3/4, - o / 2 - Ke i//2 - 3/4),

for all nonnegative integers n, if there exists such n. (For example, if Tie v = 0, then
n = 0 always belongs to the interval (a/2 - 1/4,6/2 - 1/4) .J

PROOF: Let g(z) satisfy the conditions of Theorem 3. Then the function g(z) on
R+ belongs to Lz{R+) and its Mellin transform g*{s)

- l(79) g*{a)= [ x-lg{x)dx
Jo

is an analytic function of s, regular for a < Tie s < b; and

f O U-lP-yz™ •)

for every positive e, uniformly in any strip interior to a < 7£e s < 6 (see [8]). Let f(x)
be the Y-transform F,,, —1 < TZe v < 1, of <7(y). Since g(y) belongs to L2(R+), the
Parseval identity for the Y-transform Yv holds on the h'ne Tie s = 1/2 [6]:

F (- 4- — 4- -^ r ^1 _ - -i- ^
/ O 1 s r * / \ o » - l J - \ 4 " r 2 " r 2 / 1 V 4 2 ' 2) */-i D\
( 8 1 ^ f(S)=2

 r(_l_!Lj_lL\r(5,k__.\9(1-S)-
L \ 4 2 "•" 2 / A \ 4 ••" 2 2 /

Because of (77) the function g*(l — 3) equals 0 at the poles of function F(l/4 + v/2 + s/2)
T(l/4 - v/2 + s/2) in the strip 1-6 < Tie 3 < 1-a, if there exists one. Hence, from (81)
one can see that f*(s) is analytic in the strip 1 — b < Tie s < I — a. Furthermore, since
the function 2 '" 1 / 2 ( r (1/4 + i//2 + a/2) T (1/4 - v/2 + s/2)) j'(T ( -1/4 - i//2 + s/2)

F (5/4 + v/2 — s/2) J is uniformly bounded in any compact domain in the strip 1 — b <
Ties < 1-a, not containing the poles of function T(l/4 + v/2 + s /2)r( l /4 - v/2 + s/2),
and has at most only polynomial growth as Im s —> ±00, from (80) we see that function
/*(s) decays exponentially

f O ( e ^ - ^ I m ' ) ,

<82> rw"{o-<«^.)
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for every positive e, uniformly in any strip interior to 1 — b < He s < 1 — a. Hence,

its inverse Mellin transform / (z ) is regular for —/3 < argz < a , and of the order

Ol \z\ ~ ~ej for small z, and 0( \z\a~ °f for large z, uniformly in any angle interior

to the above angle for any small positive e [8]. Moreover, f*(s) has zeros at the poles of

the function T ( - l / 4 - u/2 + s/2)r(5/4 + u/2 - s/2) in the strip 1 -6 < Tie s < 1-a,

if there exists one. Hence (78) holds.

Conversely, let f(z) satisfy the conditions of Theorem 3. Then / (z) on R+ belongs

to L^(R+) and its Mellin transform (79) f*(s) is analytic in the strip 1 — 6 < Tie s <

1 — a and satisfies (82). Furthermore, because of (78) the function f*(s) vanishes at

the poles of the function T ( - l / 4 - u/2 + s /2)r(5/4 + u/2 - s/2) in the strip 1 - b <

Tie s < 1 — a, if there exists one. Therefore, if we express /*(.s) in the form (81),

function g*(s) is analytic in the strip a < 1Ze s < b; and has the asymptotics (80)

for every positive e, uniformly in any strip interior to a < Tie s < b. Furthermore,

jf*(l - s) has zeros at the poles of the function T(l /4 + u/2 + s / 2 ) r ( l / 4 - u/2 + s/2)

in the strip 1 — b < lie s < 1 — a. Consequently, the inverse Mellin transform g(z) of

g*(s) satisfies the conditions of Theorem 3 and / is the Y-transform of g. D

If in Theorem 3 we take a = /3 and 0 < a < min{|i/ | , \u + 1| , \u - 1|}, then
in the strip 1/2 — a < 1Ze s < 1/2 + a there are no poles or zeros of the function

2.-i/2 ^ r ( 1 / 4 + v/2 + 5 / 2 ) r ( 1 / 4 _ v/2 + s/2^ j ( r (_!/4 _ v/2 + s/2) r (5/4 + v/2-

s/2) J , hence, we have

COROLLARY 1 . The Y-transform Yv, 0 < \TZeu\ < 1, is a bijection in the

space of all functions, regular in the angle |argz| < a , wiiere 0 < a ^ 7r; of or-

der O(\z\a~ ) ^o r small z, and O(\z\~a ' e) for large z, uniformly for any

small positive e, 0 < e < a, in any angle interior to the above, where 0 < a <

5. Y-TRANSFORM IN SOME OTHER SPACES OF FUNCTIONS

In [9, 10] the Y-transform is proved to be a bijection in some spaces of functions
M-crt^) introduced there. In this section the Y-transform in a space of functions
including the spaces A4~^(L) as special cases is considered.

Let $ be any linear subspace of either L\{R) or L2(R) having properties:

(i) if cf>{t) G * then <f>(-t) E $ ;

(ii) functions <p(t) = 2 '*r(l /2 + u/2 + it/2)T(l/2 - u/2 + it/2) sin (TT/2)

(it - u),0 < \7le u\ < 1, and <p~l(t) are multipliers of $ .

It is easy to see that y~1(—t) is also a multiplier of $ . The multipliers <p(t) and
<p~1(t) are infinitely differentiable and uniformly bounded on R, and their derivatives
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grow logarithmically. Therefore, many classical spaces on R are special cases of $
(for example, any L\ or £2 space with L^ -weights, the Schwartz space S(R), and
the space of infinitely differentiable functions with compact support [12]). On R+ we
define A^- 1 ($) to be the space of all functions g that can be represented in the form

(83) g[x) =

almost everywhere, where <j> £ $ (if 4> € Li(R) the integral should be understood as
the inverse Mellin transform in L2 [8]). The spaces M~^{L) [10] as well as the space
of functions considered in Corollary 1 are special cases of M. -1(3>).

THEOREM 4 . The Y-trajisform Yv, 0 < \Tle v\ < 1, is a bijection in M*1^).

PROOF: From (83) we see that if g £ M'1^) then g can be expressed in the
form of the inverse Mellin transform

1 fl/2+ioo
(84) g{x) = — / g*(s)x-'ds,

fl/2+ioo
/
Jl/2

where g*(l/2 + it) 6 $ . Using formula (36) we obtain that the Mellin transform (79) of
the function k(x) = <JxYv{x) is k*(s) — <p(i/2 — is). Applying the Parseval equation
for the Mellin transform

/.00 -1 /•1/2+too

(85) / k(xy)g(y) dy = — k*(s)g*(l - ,)x-da, 0<\Kev\<l,
J0 *nl Vl/2-ioo

that has been proved for g*'(l/2+it) £ L2{R) in [8] and g*(l/2 + it) £ L^R) in [9],

we obtain

(86) (Yvg)(x) = ^ y/x^Yv(xy)g(y)dy = ±- f°° <p(t)g*(l/2 - i^x'
Jo 27r J-oo

Since <p(t) and ip~1(—t) are multipliers of $ , then <p(t)g*(l/2 — it) belongs to $ if
and only if g*(l/2 + it) belongs to $ . Therefore, (Yvg)(x) £ M'1^) if and only if
g £ A ^ - 1 ( $ ) . Theorem 4 is thus proved. D
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