Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T11:17:13.976Z Has data issue: false hasContentIssue false

Energy transfer in turbulent polymer solutions

Published online by Cambridge University Press:  22 May 2007

C. M. CASCIOLA
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Roma, Italy
E. DE ANGELIS
Affiliation:
Dipartimento di Meccanica e Aeronautica, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Roma, Italy

Abstract

The paper addresses a set of new equations concerning the scale-by-scale balance of turbulent fluctuations in dilute polymer solutions. The main difficulty is the energy associated with the polymers, which is not of a quadratic form in terms of the traditional descriptor of the micro-structure. A different choice is however possible, which, at least for mild stretching of the polymeric chains, directly leads to an L2 structure for the total free-energy density of the system thus allowing the extension of the classical method to polymeric fluids. On this basis, the energy budget in spectral space is discussed, providing the spectral decomposition of the energy of the system. New equations are also derived in physical space, to provide balance equations for the fluctuations in both the kinetic field and the micro-structure, thus extending, in a sense, the celebrated Kármán–Howarth and Kolmogorov equations of classical turbulence theory. The paper is limited to the context of homogeneous turbulence. However the necessary steps required to expand the treatment to wall-bounded flows of polymeric liquids are indicated in detail.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benzi, R., DeAngelis, E. Angelis, E., Govindarajan, R. & Procaccia, I. 2003 Shell model for drag reduction with polymer additive in homogeneous turbulence. Phys. Rev. E 68, 016308.Google ScholarPubMed
Bird, R. B, Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, Vol. II Kinetic Theory. Wiley-Interscience.Google Scholar
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale by scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95, 024503.CrossRefGoogle ScholarPubMed
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A. 2001 Turbulent energy scale budget equations in a fully developed channel flow. J. Fluid Mech. 430, 87109.CrossRefGoogle Scholar
De Angelis, E., Casciola, C. M. & Piva, R. 2000 Wall turbulence in dilute polymers solutions. CFD J. 9, 1.Google Scholar
De Angelis, E., Casciola, C. M. & Piva, R. 2002 DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Computers Fluids 31, 495507.CrossRefGoogle Scholar
De Angelis, E., Casciola, C. M., La'vov, V. S., Piva, R. & Procaccia, I. 2003 Drag reduction by polymers in turbulent channel flows: Energy redistribution between invariant empirical modes. Phys. Rev. E 67, 056312.Google ScholarPubMed
De Angelis, E., Casciola, C. M., Piva, R. & Mariano, P. M. 2004 Microstructure and turbulence in dilute polymer solutions. In Advances in Multifield Theories of Continua with Substructure (ed. Capriz, G. & Mariano, P. M.). Birkhauser.Google Scholar
De Angelis, E., Casciola, C. M., Benzi, R. & Piva, R. 2005 Homogeneous isotropic turbulence in dilute polymers. J. Fluid Mech. 531, 110.CrossRefGoogle Scholar
deGennes, P. G. Gennes, P. G. 1990 Introduction to Polymer Dynamics. Cambridge University Press.Google Scholar
van Doorm, E., White, C. M. & Sreenivasan, K. R. 1999 The decay of grid turbulence in polymer and surfactant solutions. Phys. Fluids 11, 23872393.CrossRefGoogle Scholar
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behavior of polymers in wall flows. J. Fluid Mech. 514, 271280.CrossRefGoogle Scholar
El-Kareh, A. W. & Leal, L. G. 1989 Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J. Non-Newtonian Fluid Mech. 33, 257287.CrossRefGoogle Scholar
Fouxon, A. & Lebedev, V. 2003 Spectra of turbulence in dilute polymer solutions. Phys. Fluids 15, 20602072.CrossRefGoogle Scholar
Hill, R. J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 343, 379388.CrossRefGoogle Scholar
Hinze, O. J. 1959 Turbulence. McGraw-Hill.Google Scholar
Housiadas, K. D., Beris, A. N. & Handler, R. A. 2005 Viscoelastic effects on higher order statistics and on coherent structures in turbulent channel flow. Phys. Fluids 17, 035106.CrossRefGoogle Scholar
Luchik, T. S. & Tiederman, W. G. 1987 Turbulent structure in low-concentration drag-reducing channel flows.J. Fluid Mech. 190, 241263.CrossRefGoogle Scholar
L'vov, V. S., Pomialov, A., Procaccia, I. & Tiberkevich, V. 2004 Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 92, 244503.CrossRefGoogle ScholarPubMed
Lumley, J. L. 1967 The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Wave Propagation (ed. Yaglom, A. M. & Tatarsk, V. I.). Nauka, Moscow.Google Scholar
Lumley, J. L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polymer Sci., Macromol. Rev. 7, 263290.CrossRefGoogle Scholar
Marati, N., Casciola, C. M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Min, T., Yoo, J. Y. & Choi, H. 2001 Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 100, 2747.CrossRefGoogle Scholar
Moin, P. & Moser, R. D. 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, 471509.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics II. MIT Press.Google Scholar
Oberlack, M. 2001 A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299328.CrossRefGoogle Scholar
Sirovich, L., Ball, K. S. & Keefe, L. R. 1990 Plane waves and structures in plane channel flow. Phys. Fluids A 2, 22172226.CrossRefGoogle Scholar
Sreenivasan, K. R. & White, C. M. 2000 The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. J. Fluid Mech. 409, 149164.CrossRefGoogle Scholar
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743755.CrossRefGoogle Scholar
denToonder, J. M. J. Toonder, J. M. J., Hulsen, M. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M. 1997 Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. 337, 193231.Google Scholar
Vaithianathan, T. & Collins, L. R. 2003 Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J. Comput. Phys. 187 121.CrossRefGoogle Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21, 625656.CrossRefGoogle Scholar
Warholic, M. D., Massah, H. & Hanratty, T. J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exps. Fluids 27, 461472.CrossRefGoogle Scholar