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On Vojta’s 1 + ε Conjecture

Xi Chen

Abstract. We give another proof of Vojta’s 1 + ε conjecture.

1 Introduction

In [V1] and [V2], P. Vojta conjectured the following.

Conjecture 1.1 (1 + ε Conjecture) Let π : X → B be a flat family of projective curves

over a projective curve B with connected fibers. Suppose that X has at worst quotient

singularities. Then for every ε > 0, there exists a constant Nε such that

(1.1) ωX/B ·C ≤ (1 + ε)(2g(C) − 2) + Nε(Xb ·C)

for every irreducible curve C ⊂ X that dominates B, where ωX/B is the relative dualizing

sheaf of X/B, Xb is a general fiber of X/B and g(C) is the geometric genus of C.

Remark 1.2 From the number-theoretical point of view, one can think of X as an

algebraic curve Xk over the function field k = K(B) and the multi-section C ⊂ X as

an algebraic point pC on Xk = Xk ⊗ k. The logarithmic height h(pC ) and discrimi-

nant ∆(pC ) of pC are defined to be

h(pC ) =
ωX/B ·C

deg(K(C)/K(B))
and ∆(pC ) =

2g(C) − 2

deg(K(C)/K(B))
,

respectively, where deg(K(C)/K(B)) = Xb ·C , obviously. With these notations, (1.1)

can be put in the form

(1.2) h(pC ) ≤ (1 + ε)∆(pC ) + Nε.

Note that the definition of the height h(pC ) depends on the choice of the birational

model X of Xk. However, it is not hard to see that (1.2) holds regardless of the choice

of the birational model (see below).

Vojta proved that (1.1) holds with 1 + ε replaced by 2 + ε. This conjecture was

settled recently by K. Yamanoi [Y]. M. McQuillan later gave an algebro-geometric

proof. However, we find his proof quite hard to follow. Inspired by his idea, we will
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give another proof of this conjecture and generalize it to the log case. Compared to

his proof, ours is more elementary.

It seems natural to study a (generalized) log version of the 1 + ε conjecture. For a

log variety (X, D) and a curve C ⊂ X that meets D properly, we define iX(C, D) to be

the number of the points in ν−1(D), where ν : C̃ → C ⊂ X is the normalization of

C .

Theorem 1.3 Let π : X → B be a flat family of projective curves over a projective curve

B with connected fibers. Suppose that X has at worst quotient singularities and D ⊂ X

is a reduced effective divisor on X. Then for every ε > 0, there exists a constant Nε such

that

(1.3) (ωX/B + D) ·C ≤ (1 + ε)(2g(C) − 2 + iX(C, D)) + Nε(Xb ·C)

for every irreducible curve C ⊂ X that dominates B and C 6⊂ D.

Conventions We work exclusively over C and with analytic topology wherever pos-

sible.

2 Reduction to (P1 × B, D)

As a first step in our proof, we will reduce Theorem 1.3 to the case (P1 × B, D). This

was also done in Yamanoi’s proof [Y].

It is not hard to see that (1.3) continues to hold after applying birational trans-

forms and/or base changes to X/B. That is, we have the following.

Lemma 2.1 Let π : X → B and D be given as in Theorem 1.3.

(i) Let f : X ′
99K X be a birational morphism and D ′ be the proper transform of D

under f . Then (1.3) holds for (X, D) if and only if it holds for (X ′, D ′).

(ii) Let B ′ → B be a finite map from a smooth projective curve B ′ to B, f : X ′
=

X ×B B ′ → X be the base change of the family X, and D ′
= f −1(D). Then (1.3)

holds for (X, D) if and only if it holds for (X ′, D ′).

The constants N ′
ε for (X ′, D ′), though, might be different from Nε for (X, D).

Proof For part (i), it is enough to argue for X ′ being the blowup of X at one point p.

Let C ′ ⊂ X ′ be the proper transform of C ⊂ X. Then

(ωX/B + D) ·C = (ωX ′/B + D ′ + rE) ·C ′

for some constant r, where E is the exceptional divisor of f . On the other hand, we

have

E ·C ′ ≤ X ′
b ·C ′

= Xb ·C = deg(C),

where X ′
b and Xb are the fibers of X ′ and X over a point b ∈ B, respectively. Conse-

quently,

(2.1) |(ωX/B + D) ·C − (ωX ′/B + D ′) ·C ′| ≤ |r| deg C.
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Also, it is obvious that g(C) = g(C ′) and

(2.2) |iX(C, D) − iX ′(C ′, D ′)| ≤ E ·C ′ ≤ deg(C).

Then part (i) follows from (2.1) and (2.2).

For part (ii), let d be the degree of the map B ′ → B, R ⊂ B ′ be its ramification

locus and µr be the ramification index of a point r ∈ R. Let C ′
= f ∗(C). It is not

hard to see that

|d(ωX/B + D) ·C − (ωX ′/B ′ + D ′) ·C ′| ≤
∑

r∈R

(µr − 1) deg(C)(2.3)

|d(2g(C) − 2) − (2g(C ′) − 2)| ≤
∑

r∈R

(µr − 1) deg C(2.4)

and

(2.5) |d(iX(C, D)) − iX ′(C ′, D ′)| ≤
∑

r∈R

(µr − 1) deg C

Then part (ii) follows from (2.3)–(2.5).

Remark 2.2 We see from Lemma 2.1 that (1.2) holds regardless of the choice of

birational models X.

Remark 2.3 If (ωX/B + D) · Xb ≤ 0, (1.3) is trivially true. So we may assume that

(ωX/B + D) · Xb > 0.

We may also assume that D meets every fiber properly. Using Lemma 2.1, we can

apply the stable reduction to (X, D) and make X into a family of stable curves with

marked points Xb ∩ D on each fiber. The resulting X has at worst quotient singulari-

ties, and ωX/B + D is relatively ample over B.

Proposition 2.4 If (1.3) fails for some (X, D), then there exists δ > 0 and a log pair

(Y, R) such that (1.3) fails with (X, D, ε) replaced by (Y, R, δ), where R is a reduced

effective divisor on Y = P1 × B.

Proof By the above remark, we may assume that X is a family of stable curves with

marked points Xb ∩ D. In particular, ωX/B + D is relatively ample over B.

Since (1.3) fails for (X, D), there exists a sequence of irreducible curves C1,C2, . . . ,
Cn, · · · ⊂ X such that

(2.6) lim
n→∞

(
(ωX/B + D) ·Cn

Xb ·Cn

− (1 + ε)(2g(Cn) − 2 + iX(Cn, D))

Xb ·Cn

)
= ∞.

Taking a sufficiently ample line bundle L on X, we can map X → P1 with a very

general pencil in |L|. Combining this with the projection X → B, we obtain a ra-

tional map φ : X 99K Y = B × P1. We can make the following happen by taking L

sufficiently ample and the pencil sufficiently general:
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• The indeterminancy locus Iφ of φ consists of L2 distinct points on X, Iφ ∩Cn = ∅

for all n and Iφ ∩ D = ∅.
• Outside of Iφ, φ is finite. Let RX ⊂ X be the closure of the ramification locus of

φ : X\Iφ → Y , RY = φ(RX) be the proper transform of RX and

φ∗RY = 2RX + Rφ

outside of Iφ, where Rφ ⊂ X is a reduced effective divisor on X.
• φ is simply ramified along RX with multiplicity 2.
• φ maps Cn and D birationally to Γn = φ(Cn) and ∆ = φ(D), respectively, for all

n.

Since φ∗Cn = Γn, we have

(2.7) φ∗(ωY /B + RY + ∆) ·Cn = (ωY /B + RY + ∆) · Γn

On the other hand,

φ∗(ωY /B + RY + ∆) ·Cn = (φ∗ωY /B + 2RX + Rφ + φ∗
∆) ·Cn

(2.8)

= (φ∗ωY /B + RX + D) ·Cn + (RX + Rφ) ·Cn + Dφ ·Cn,

where

(2.9) φ∗
∆ = D + Dφ

for some effective divisor Dφ ⊂ X. By Riemann-Hurwitz,

(2.10) ωX/B = φ∗ωY /B + RX

holds outside of Iφ. Meanwhile, it is obvious that

(2.11) (RX + Rφ) ·Cn ≥ iY (Γn, RY )

and

(2.12) Dφ ·Cn ≥ iY (Γn,∆) − iX(Cn, D)

Combining (2.7) through (2.12), we obtain

(ωY /B + RY + ∆) · Γn − (1 + δ)
(

2g(Γn) − 2 + iY (Γn, R)
)

≥ (ωX/B + D) ·Cn − (1 + δ)
(

2g(Cn) − 2 + iX(Cn, D)
)

− δ(RX + Rφ + Dφ)Cn,

where R = RY ∪∆. Since ωX/B + D is relatively ample over B, there exist constants β
and γ > 0 such that

(RX + Rφ + Dφ)C ≤ γ(ωX/B + D + βXb)C
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for all curves C ⊂ Y . Thus, it suffices to take

δ =
ε

(1 + ε)γ + 1
.

Then

(ωX/B + D) ·Cn − (1 + δ)
(

2g(Cn) − 2 + iX(Cn, D)
)
− δ(RX + Rφ + Dφ) ·Cn

≥ (1 − δγ)(ωX/B + D) ·Cn − (1 + δ)
(

2g(Cn) − 2 + iX(Cn, D)
)

− βγδ(Xb ·Cn)

= (1 − δγ)
(

(ωX/B + D) ·Cn − (1 + ε)
(

2g(Cn) − 2 + iX(Cn, D)
))

− βγδ(Xb ·Cn)

Therefore,

lim
n→∞

(
(ωY /B + R) · Γn

Yb · Γn

− (1 + δ)
2g(Γn) − 2 + iY (Γn, R)

Yb · Γn

)
= ∞,

and Proposition 2.4 follows.

In the above proof, we have quite a bit of freedom to choose the map X 99K P1.

We can make R really “nice” by choosing L and the pencil of L sufficiently “general”.

Proposition 2.5 Let S be a finite set of points on B. In the proof of Proposition 2.4, for a

sufficiently ample L and a general pencil σ ⊂ |L| that maps X 99K P1, the corresponding

divisor R = RY + ∆ ⊂ Y = P1 × B has the following properties:

• For every fiber Yb of Y /B,

(2.13) iY (Yb, R) ≥ Yb · R − 1

and if the equality holds, b ∈ B\S and Xb is disjoint from the base locus Bs(σ) of σ;
• R is a divisor of normal crossing.

Proof Let G(k, |L|) be the Grassmanian {Pk ⊂ |L|}. For each pencil σ ∈ G(1, |L|),

we use the notation φσ for the rational map X 99K Y induced by σ and RX,σ for the

closure of its ramification locus. Let φσ,b : Xb → P1 be the restriction of φσ to Xb and

let RX,σ,b = RX,σ ∩ Xb be the ramification locus of φσ,b.

For L sufficiently ample and for each b ∈ B, we see by simple dimension counting
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that each of

{σ : φσ(p1) = φσ(p2) = φσ(p3) for three distinct points p1, p2, p3 ∈ D ∩ Xb},

{σ : φσ(p1) = φσ(p2) = φσ(p3) for p1 6= p2 ∈ D ∩ Xb and p3 ∈ RX,σ,b},

{σ : φσ(p1) = φσ(p2) and Xb ∩ Bs(σ) 6= ∅, for p1 6= p2 ∈ D ∩ Xb},

{σ : φσ(p1) = φσ(p2), where p1 ∈ D ∩ Xb and

φσ,b ramifies at p2 ∈ RX,σ,b with index ≥ 3},

{σ : φσ(p1) = φσ(p2) and Xb ∩ Bs(σ) 6= ∅, where p1 ∈ D ∩ Xb and p2 ∈ RX,σ,b},

{σ : φσ(p1) = φσ(p2), where p1 6= p2 ∈ RX,σ,b and

φσ,b ramifies at p2 with index ≥ 3},

{σ : φσ(p1) = φσ(p2) and Xb ∩ Bs(σ) 6= ∅, where p1 6= p2 ∈ RX,σ,b},

{σ : φσ,b ramifies at p1 6= p2 ∈ RX,σ,b with indices ≥ 3},

{σ : φσ,b ramifies at p1 ∈ RX,σ,b with index ≥ 3 and Xb ∩ Bs(σ) 6= ∅}, and

{σ : φσ,b ramifies at p1 ∈ RX,σ,b with index ≥ 4}

has codimension two in G(1, |L|), and hence (2.13) follows. The same dimension

count also shows that Yb meets R transversely for b ∈ S and σ general. Hence if the

equality in (2.13) holds, b 6∈ S.

Already by (2.13), we see that R has at worst double points as singularities. We can

further show that the singularities Rsing of R are all nodes.

Let D =
∑

Di , where Di ’s are irreducible components of D, which are sections of

X/B by our assumption on X. And let ∆σ,i = φσ(Di) and RY,σ = φσ(RX,σ). To show

that R has normal crossing, it is suffices to verify the following:

• ∆σ,i and ∆σ, j meet transversely for all i 6= j;
• ∆σ,i meets RY,σ transversely for all i;
• RY,σ is nodal.

It is easy to see that the monodromy action on the intersections ∆σ,i ∩ ∆σ, j when

σ varies in G(1, |L|) is transitive. Therefore, to show that ∆σ,i and ∆σ, j meet trans-

versely, it suffices to show that they meet transversely at (at least) one point, i.e.,
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• there exists σ ∈ G(1, |L|), pi ∈ Di and p j ∈ D j such that ∆σ,i and ∆σ, j meet

transversely at φσ(pi) = φσ(p j).

Similarly, the other two statements translate to

• there exists σ ∈ G(1, |L|), pi ∈ Di and q ∈ RX,σ such that ∆σ,i and RY,σ meet

transversely at φσ(pi) = φσ(q);
• there exists σ ∈ G(1, |L|) and q ∈ RX,σ,b for some b such that φσ,b has ramification

index 3 at q and RY,σ is smooth at φσ(q);
• there exists σ ∈ G(1, |L|) and q1 6= q2 ∈ RX,σ,b for some b such that RY,σ has a

node at φσ(q1) = φσ(q2).

None of these statements is hard to prove. We leave their verification to the reader.

Suppose that (1.3) fails for (X, D) and {Cn ⊂ X} is the sequence of irreducible

curves satisfying (2.6). We fix a positive (1, 1) form ω on X that represents c1(L) and

for every finite set of points S ⊂ B, we define

fω(S) = lim
r→0

lim
n→∞

(
1

L ·Cn

∑

b∈S

∫

Cn∩π−1(U (b,r))

ω

)
,

where U (b, r) ⊂ B is the disk of radius r centered at b. Of course, we need a metric

on B in order to define U (b, r). But it is obvious that the choice of metric on B is

irrelevant here. Although fω(S) depends on the choice of ω, the vanishing of fω(S)

does not depend on ω, i.e., if fω(S) = 0 for one ω, it vanishes for all choices of ω.

And it is easy to see that

(2.14)
∑

α

fω(Sα) ≤ 1

for any collection {Sα ⊂ B} of disjoint finite sets Sα.

Let us fix a sufficient ample line bundle L on X and let φσ : X 99K Y be the map

given by a pencil σ ⊂ |L| as in the proof of Proposition 2.5. This map gives rise to

another log pair (Y, R) with R satisfying the conditions given in the above proposi-

tion. Let Qσ ⊂ B be the finite set of points b where the equality in (2.13) holds.

This gives us a map from G(1, |L|) to BN/SN sending σ → Qσ , where N = |Qσ| and

BN/SN is the space of N unordered points on B. By Proposition 2.5, Qσ ∩ Qσ ′ = ∅

for two general pencils σ and σ ′. Combining this with (2.14), we see that the set

{σ : fω(Qσ) > r} is contained in a proper subvariety of G(1, |L|) for every r > 0.

Consequently, the set

{
σ : fω(Qσ) > 0} =

∞⋃
n=1

{σ : fω(Qσ) > 1
n

}

is contained in a union of countably many proper subvarieties of G(1, |L|). In other

words, fω(Qσ) = 0 for a very general pencil σ. For a very general pencil σ, Cn are

disjoint from the base locus of σ. Hence L · Cn = Y p · Γn, where Γn = φσ(Cn) and
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Y p is a fiber of Y /P1. In addition, we have proved that Xb ∩ Bs(σ) = ∅ for b ∈ Qσ .

Hence fω(Qσ) = 0 implies

lim
r→0

lim
n→∞

(
1

Y p · Γn

∑

b∈Qσ

∫

Γn∩π−1
Y (U (b,r))

η

)
= 0,

where η is the pullback of a positive (1, 1) form on P1 representing c1(OP1 (1)) and

πY is the projection Y → B. By taking a subsequence of {Γn}, we may as well replace

lim by lim.

We may further apply a suitable base change to Y /B to make RY into a union of

sections of Y /B while preserving the other properties of (Y, R). So we finally reduce

the conjecture from (X, D, ε) to (Y, R, δ). Replacing (X, D, ε) by (Y, R, δ), we may

assume the following holds.

(A1) D ⊂ X = P1 × B is a normal-crossing divisor which is a union of sections of

X/B.

(A2) ωX/B + D is relatively ample over B.

(A3) For every fiber Xb of X/B,

(2.15) iX(Xb, D) ≥ Xb · D − 1.

(A4) There is a sequence of reduced and irreducible curves {Cn} on X that dominate

B and satisfy (2.6).

(A5) Let Q ⊂ B be the set of points b where the equality in (2.15) holds, i.e., Q =

π(Dsing), where Dsing is the singular locus Dsing of D; then

(2.16) lim
r→0

lim
n→∞

(
1

Xp ·Cn

∑

b∈Q

∫

Cn∩π−1(U (b,r))

w

)
= 0,

where Xp is the fiber of X over a point p ∈ P1 and w is the pullback of a positive

(1, 1) form on P1 representing c1(OP1 (1)).

3 Proof of Theorem 1.3

3.1 Lifts to the First Jet Space

Now we can work exclusively on (X, D) with (X, D) satisfying the hypotheses (A1)–

(A5) in the last section. As in Vojta’s proof of 2 + ε theorem, we start by lifting every

curve Cn ⊂ X to its first jet space.

Let ΩX(log D) be the sheaf of logarithmic differentials with poles along D and

TX(− log D) = ΩX(log D)∨ be its dual. Let Y = PTX(− log D) be the projectiviza-

tion of TX(− log D) with tautological line bundle L. Here we follow the traditional

convention that

PE = Proj(⊕ Sym• E∨) and H0(L) ∼= H0(E∨).

We have the basic exact sequence

(3.1) 0 −→ π∗
ΩB −→ ΩX(log D) −→ ΩX/B(D).
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Note that this sequence is not right exact; ΩX(log D) → ΩX/B(D) fails to be surjective

along Dsing.

Every nonconstant map ν : C → X from a smooth curve C to X can be naturally

lifted to a map νY : C → Y via the map

PTC (− log ν∗D) → PTX(− log D).

Suppose that ν maps C birationally onto its image. Then the natural map

ν∗
ΩX(log D) → ΩC (log ν∗D) induces a map

(3.2) ν∗
Y L → ΩC (log ν∗D).

Obviously, this map is nonzero, and ν∗
Y L is locally free; consequently, it is an injection.

Therefore, we have

deg ν∗
Y L ≤ deg ΩC (log ν∗D) = 2g(C) − 2 + iX(ν(C), D).

Hence (1.3) holds if

deg ν∗
Y (π∗

X(ωX/B + D) − (1 + ε)L) ≤ Nε deg(ν∗Xb),

where πX is the projection Y → X. Another way to put this is that

(3.3) G · (νY )∗C ≥ 0

for a sufficiently ample divisor M ⊂ B and every ν : C → X with ν(C) dominating

B, where

G = (1 + ε)L + π∗
BM − π∗

X(ωX/B + D),

where πB = π ◦ πX is the projection Y → B. Or in the context of our hypothesis A4,

we want to show that

(3.4) −G · Γn = O(deg Cn)

and thus arrive at a contradiction, where Γn ⊂ Y is the lift of Cn ⊂ X via its normal-

ization and deg Cn = Cn ·Xb. Here by O(deg Cn), we mean a quantity ≤ K deg Cn for

some constant K and all n.

Obviously, (3.3) holds if the divisor G is numerically effective (NEF). Unfortu-

nately, we cannot expect this to be true in general.

The map ΩX(log D) → ΩX/B(D) in (3.1) induces a rational map

PTX/B(−D) 99K Y.

Let ∆ ⊂ Y be the closure of the image of this map. As we are going to see, ∆ will play

a central role in our argument. Another way to characterize ∆ is the following.
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Lemma 3.1 We have

∆ =
⋃

b∈B

µY (Xb)

and a curve ν : C →֒ X is tangent to a fiber Xb if and only if νY (C) intersects ∆, where

µY : Xb → Y is the lifting of the embedding Xb →֒ X.

Proof This is more or less trivial.

3.2 Some Numerical Results

Here we prove some numerical results on ∆, L, and G, which we are going to need

later. First of all, it is obvious that πX maps ∆ birationally onto X; indeed, by a

local analysis, we see that ∆ is the blowup of X along Dsing, i.e., the places where

ΩX(log D) → ΩX/B(D) fails to be surjective. In the lift of ν : C → X to νY : C → Y ,

if ν is a smooth embedding, we have (νY )∗L = ωC + ν−1(D), where ν−1(D) =

supp(ν∗D) is the reduced pre-image of D. Namely, (3.2) is an isomorphism. There-

fore, for every fiber Xb,

L · X̃b = 2g(Xb) − 2 + iX(Xb, D),

where X̃b ⊂ ∆ is the proper transform of Xb under ∆ → X. Applying this to all the

fibers Xb with Xb ∩ Dsing 6= ∅, we see that

(3.5) L
∣∣
∆

= π∗
X(ωX/B + D + π∗M) − E

for some divisor M on B, where E =
∑

q∈Dsing
Eq is the exceptional divisor of ∆ → X.

To determine M, we restrict everything to a section Xp = ρ−1(p) of X/B, where ρ is

the projection X → P1. For p general, the restriction of (3.1) to Xp
∼= B becomes

(3.6) 0 −→ ΩXp
−→ ΩX(log D)

∣∣
Xp

−→ OXp
(D) −→ 0.

Let ∆p be the proper transform of Xp under ∆ → X. Then we see from (3.6) that

the restriction of L to ∆p
∼= B is

(3.7) L
∣∣
∆p

= π∗
XD.

Comparing (3.5) and (3.7), we conclude that M is trivial and hence

L
∣∣
∆

= π∗
X(ωX/B + D) − E.

As a consequence,

G
∣∣∣
∆

=
(

(1 + ε)L + π∗
BM − π∗

X(ωX/B + D)
) ∣∣∣

∆

= επ∗
X(ωX/B + D) + π∗

BM − (1 + ε)E.

(3.8)
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Next, we claim that

(3.9) ∆ = L − π∗
BωB

This is obviously true if (3.1) is an exact sequence of locally free sheaves, i.e.,

Dsing = ∅. To see that this is true in general, we restrict everything to a smooth

curve C ⊂ X with C ∩ Dsing = ∅. By the above reason, (3.9) holds when restricted

to π−1
X (C). Such curves C obviously generate Pic(X) and hence (3.9) holds over Y .

By restricting (3.1) to each fiber Xb of X/B, we see that L is relatively NEF over B.

Moreover, the following holds.

Lemma 3.2 For all m ≥ k ∈ Z, mL − k∆ is relatively base point free over B and

(3.10) H1(m(L + π∗
BM) − k∆) = 0

for a sufficiently ample divisor M ⊂ B.

Proof Since c1(ΩX(log D)) = ωX + D, the restriction of ΩX(log D) to a fiber Xb
∼= P1

is

(3.11) ΩX(log D)
∣∣

Xb
= OP1 (β) ⊕ OP1 (γ),

where β + γ = α = (ωX/B + D) · Xb. By (3.1), we must have β, γ ≥ 0. Therefore,

(3.12) Yb
∼= P (OP1 (−β) ⊕ OP1 (−γ)) ,

and together with (3.9), we see that mL−k∆ is relatively NEF over B for m ≥ k. Also,

we see from the above argument that

H1(Yb, mL − k∆) = 0 ⇔ R1(πB)∗O(mL − k∆) = 0.

This implies

H1(m(L + π∗
BM) − k∆) = H1((πB)∗O(m(L + π∗

BM) − k∆))

= H1((πB)∗Lm−k ⊗OB(kωB + mM)).

By (3.12), Symn H0(Yb, L) = H0(Yb, Ln). Therefore,

H1(m(L + π∗
BM) − k∆) = H1(Symm−k(πB)∗L⊗OB(kωB + mM)).

It suffices to choose M such that all of M, ωB + M and (πB)∗L⊗OB(M) are ample

and (3.10) follows.

Remark 3.3 It is possible to give a more precise version of (3.10) on how ample M

should be in terms of ωB and D; however, we have no need of it here. Also, in the

above proof, we observe that L fails to be ample on Yb if and only if (3.11) splits as

(3.13) ΩX(log D)
∣∣

Xb
= OP1 ⊕ OP1 (α)

If (3.13) holds on a general fiber Xb, it holds everywhere, and this only happens when

D consists of α + 2 disjoint sections of X/B, in which case the conjecture is trivial.

Hence we may assume that L is ample on a general fiber of Y /B. This implies that

L + π∗
BM is big for a sufficiently ample divisor M ⊂ B, in addition to being NEF as

already proved. The same, of course, holds for mL − k∆ + π∗
BM when m > k.
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3.3 Bergman Metric

Given a line bundle L on a compact complex manifold X and sections s0, s1, . . . , sn ∈
|L| of L, we recall that the Bergman metric associated with {sk} is the pullback of the

Fubini-Study metric under the map X 99K Pn given by {sk}, i.e., the pseudo-metric

with associated (1, 1) form

w =

√
−1

2π
∂∂ log

( n∑

k=0

|sk|2
)

.

Alternatively, the Fubini-Study metric can be regarded as a metric of the line bundle

OPn (1) and the Bergman metric is correspondingly a pseudo-metric of L with w the

curvature form. In general, w is only a closed real current of type (1, 1) with the

following properties:

• it is C∞ outside of the base locus Bs{sk} of {sk};
• it represents c1(L) if {sk} is base point free;
• we always have

(3.14) ν∗w is C∞, ν∗w ≥ 0, and deg(ν∗L) ≥
∫

C

ν∗w

for any morphism ν : C → X from a smooth and irreducible projective curve C

to X with ν(C) 6⊂ Bs{sk}.

The indeterminancy of the rational map φ : X 99K Pn given by {sk} can be re-

solved by a sequence of blowups along smooth centers over Bs{sk}. That is, there

exists a birational map π : Y → X such that f = φ ◦ π is regular. Let s̃k be the

proper transform of sk under π. Then {s̃k} span a base point free linear system of

L̃ = f ∗OPn (1). Let w̃ be the Bergman metric associated with {s̃k}. Then w̃ = π∗w

outside of exceptional locus of π. Indeed, the current w is defined in the way of

〈w, γ〉 =

∫

Y

w̃ ∧ π∗γ

Then (3.14) follows easily.

3.4 Construction of the First Chern Classes

Let π∗
X(ωX/B + D) = αY p + π∗

BN for some divisor N ⊂ B, where Y p is a fiber of Y /P1.

We replace M by M + N and write G in the form

G = (1 + ε)L + π∗
BM − αY p.

Our purpose remains, of course, to show (3.4).

We write the left-hand side of (3.4) in the integral form:

(3.15) G · Γn =

∫

Γn

c1(G) =

∫

Γn\U

c1(G) +

∫

Γn∩U

c1(G),
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where U is an (analytic) open neighborhood of ∆. Here we have to work with the

forms that represent the first chern classes instead of cohomology classes themselves,

i.e., c1(G) refers to a (1, 1) form representing the first chern class of G; otherwise, the

integrals in (3.15) do not make sense. The construction of appropriate c1(G) is one

of the main parts of our proof. Basically, by a proper choice of c1(G) with

c1(G) = c1((1 + ε)L + π∗
BM) − c1(αY p)

we will show that both

−
∫

Γn\U

c1(G) and −
∫

Γn∩U

c1(G)

are of order O(deg Cn). The forms representing c1((1 + ε)L + π∗
BM) and c1(αY p) are

constructed via the Bergman metric mentioned above.

Let us first fix a sufficiently large integer m with mε ∈ Z; obviously, we may assume

ε ∈ Q . Since H0(mαY p) = H0(OP1 (mα)), a general pencil of mαY p is base point

free. To construct a form w representing c1(mαY p), it is enough to choose a base

point free pencil of mαY p with basis {s0, s1} and let

w =

√
−1

2π
∂∂ log

(
|s0|2 + |s1|2

)

be the Bergman metric associated with {s0, s1}. Obviously, w is C∞ and represents

c1(mαY p). Next we will construct a Bergman metric on the line bundle OY (m(1 +

ε)L + mπ∗
BM).

Let Si = {si = 0} for i = 0, 1 and let {σ0 j : j ∈ J} be a basis of the linear system

of m(1 + ε)L + mπ∗
BM consisting of sections σ with

σ
∣∣∣

S0

∈ H0(S0, m(1 + ε)L + mπ∗
BM − 2∆)

Or equivalently, σ0 j are the sections tangent to S0 along S0 ∩ ∆.

Lemma 3.4 For each j, there exists a section σ1 j of m(1 + ε)L + mπ∗
BM such that

s0σ1 j − s1σ0 j vanishes to the order of 2 along ∆, i.e.,

(3.16) s0σ1 j − s1σ0 j ∈ H0(m(1 + ε)L + mπ∗
BM + mαY p − 2∆).

In addition, {σ1 j} can be chosen to be a basis of the linear system consisting of sections

σ with

σ
∣∣∣

S1

∈ H0(S1, m(1 + ε)L + mπ∗
BM − 2∆).

Proof Let F0 be the subscheme of Y given by F0 = S0∩2∆. Then we have the Koszul

complex for the ideal sheaf IF0
of F0 ⊂ Y :

0 −→ O(−S0 − 2∆) −→ O(−S0) ⊕ O(−2∆) −→ IF0
−→ 0
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Obviously,

(3.17) Σ0 = H0(OY (m(1 + ε)L + mπ∗
BM)⊗ IF0

)

is exactly the linear system Span{σ0 j} generated by {σ0 j}. By Lemma 3.2,

H1(m(1 + ε)L + mπ∗
BM + mαY p − S0 − 2∆) = H1(m(1 + ε)L + mπ∗

BM − 2∆) = 0.

Therefore, AF + BG holds for

s1σ0 j ∈ H0(OY (m(1 + ε)L + mπ∗
BM + mαY p)⊗ IF0

).

That is, s1σ0 j = s0σ1 j + s2
∆

l j for some σ1 j , where ∆ = {s∆ = 0} and l j is a section of

OY (m(1 + ε)L + mπ∗
BM + mαY p − 2∆).

And (3.16) follows. Obviously, σ1 j are members of the linear sytem,

(3.18) Σ1 = H0(OY (m(1 + ε)L + mπ∗
BM)⊗ IF1

),

where IF1
is the ideal sheaf of the subscheme F1 = S1 ∩ 2∆ ⊂ Y . It is obvious that

H0(m(1 + ε)L + mπ∗
BM − 2∆) ⊂ Σ0 ∩ Σ1.

It is not hard to see that {σ1 j} spans the quotient

(3.19) Σ1/H0(m(1 + ε)L + mπ∗
BM − 2∆) = Span{σ1 j}.

Without loss of generality, we may assume that {σ0 j : j ∈ J} contains a subset

{σ0 j : j ∈ J∆}, which is a basis of H0(m(1 + ε)L + mπ∗
BM − 2∆), where J∆ ⊂ J.

Then it is enough to choose σ1 j = σ0 j for j ∈ J∆. Combining this with (3.19), we

see that {σ1 j} is a basis of Σ1.

Let σ1 j be the sections given in the above lemma. Together with {σ0 j} we have the

Bergman metric associated with {σi j : 0 ≤ i ≤ 1, j ∈ J}

γ =

√
−1

2π
∂∂ log

(∑

i j

|σi j |2
)

.

And we let η = γ − w.

Proposition 3.5 Let Σi be the linear system generated by {σi j : j ∈ J} as in (3.17)

and (3.18). For each i, the base locus of Σi is contained in (YQ ∪ Si) ∩ ∆, where Q =

π(Dsing) ⊂ B is the finite set defined in (A5) and YQ = π−1
B (Q).
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Proof Since H0(m(1 + ε)L + mπ∗
BM − 2∆) ⊂ Σi , the base locus Bs(Σi) of Σi is

contained in ∆ by Lemma 3.2. So it suffices to show that Bs(Σi) ⊂ YQ ∪ Si .

Let Fi = Si ∩ 2∆ be the subscheme of Y defined in the proof of Lemma 3.4. We

have the exact sequence

0 −→ OY (m(1 + ε)L + mπ∗
BM − 2∆) −→ OY (m(1 + ε)L + mπ∗

BM)⊗ IFi

−→ O∆(m(1 + ε)L + mπ∗
BM − Si)︸ ︷︷ ︸

O∆(mG)

⊗OY /I2
∆ −→ 0,

where I∆ = OY (−∆) is the ideal sheaf of ∆ ⊂ Y . Again by Lemma 3.2,

H1(OY (m(1 + ε)L + mπ∗
BM − 2∆)) = 0,

and hence we have the surjection

Σi ։ H0(O∆(m(1 + ε)L + mπ∗
BM − Si)⊗OY /I2

∆)

∼= H0(O∆(mG)⊗OY /I2
∆).

(3.20)

Composing the above map with

ϕ : H0(O∆(mG)⊗OY /I2
∆) → H0(O∆(mG)⊗OY /I∆) = H0(O∆(mG)),

we have a natural map f : Σi → H0(O∆(mG)). To show that Bs(Σi) ⊂ YQ ∪ Si , it

is enough to show that Bs( f (Σi)) ⊂ YQ, which is equivalent to Bs(Im(ϕ)) ⊂ YQ by

(3.20). For M ⊂ B sufficiently ample, we have the diagram

H0(O∆(mG)⊗OY /I2
∆

)

ϕ

²²

// // H0(∆b,O∆(mG)⊗OY /I2
∆

)

ϕb

²²

H0(O∆(mG)) // // H0(∆b,O∆(mG))

with rows being surjections when we restrict ϕ to each fiber ∆b of ∆/B. Therefore,

it suffices to show that

Bs(Im(ϕb)) = ∅

for all b 6∈ Q. This is more or less obvious, since we have the exact sequence

0 // I∆/I2
∆

// OY /I2
∆

// OY /I∆ // 0

O∆(−∆) O∆
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When we tensor the sequence by O∆(mG) and restrict it to ∆b
∼= P1 with b 6∈ Q, we

have

h1(∆b,O∆(mG − ∆)) = h1(OP1 ((mε − 1)α)) = 0

by (3.8) and (3.9). Consequently, ϕb is surjective and

Bs(Im(ϕb)) = Bs(H0(∆b,O∆(mG))) = Bs(H0(OP1 (mεα))) = ∅.

Remark 3.6 It is not hard to see that the above proposition continues to hold with

tangency 2 replaced by any µ ≤ mε. Moreover, being a little more careful, we can

actually show that

Bs(Σi) = X̃Q ∪ (Si ∩ ∆),

where X̃Q ⊂ ∆ is the proper transform of XQ = π−1(Q) under the map ∆ → X.

However, we have no need for these generalizations here.

By the above proposition, we see that the base locus of {σi j : i, j} is supported on

YQ ∩ ∆. Consequently, γ is a closed (1, 1) current that is C∞ on Y\(YQ ∩ ∆). By

(3.14),

(3.21) −mG · Γn ≤ −
∫

Γn

η = −
∫

Γn\U

η −
∫

Γn∩U

η ≤
∫

Γn\U

w −
∫

Γn∩U

η

The fact that the first integral has order O(deg Cn) is a consequence of the following

lemma.

Lemma 3.7 Let U ⊂ Y be an open neighborhood of ∆, w be a smooth (1, 1) form on

X and κ be a positive smooth (1, 1) form on B. Then there exists a constant AU > 0

such that at every point (p, v) ∈ Y\U

(3.22)
∣∣ 〈w, v ∧ v〉

∣∣ ≤ AU 〈π∗κ, v ∧ v〉
where p ∈ X and v ∈ TX,p(− log D).

Proof By Lemma 3.1, 〈π∗κ, v ∧ v〉 does not vanish for (p, v) 6∈ ∆ and hence the

function

f (p, v) =
〈w, v ∧ v〉

〈π∗κ, v ∧ v〉
is continuous on Y\∆. Then (3.22) follows from the compactness of Y\U .

Note that w is the pullback of a form on X; indeed, it is the pullback of a form

on P1. So Lemma 3.7 applies, and we conclude that w ≤ AU π∗
Bκ on Γn\U for some

constant AU depending only on U , where we choose κ to be a positive (1, 1) form on

B representing c1(OB(b)) for a point b ∈ B. Therefore,

(3.23)

∫

Γn\U

w ≤ AU

∫

Γn

π∗
Bκ = AU deg(Cn)

Next, we claim that η > 0 everywhere on ∆\YQ.
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Lemma 3.8 The current η > 0 at every point p ∈ ∆\YQ.

By (2.16), there exists an open neighborhood V of YQ such that

∫

Γn∩V

w ≤ ε(mαY p · Γn)

By the above lemma and the compactness of ∆\V , we see that η > 0 in U\V for

some open neighborhood U of ∆. The second integral in (3.21) becomes

−
∫

Γn∩U

η ≤ −
∫

Γn∩(U\V )

η +

∫

Γn∩V

w

≤ ε(mαY p · Γn) = mε(ωX/B + D) ·Cn + O(deg Cn)

(3.24)

Combining (3.23) and (3.24), we have

− G · Γn = ε(ωX/B + D) ·Cn + O(deg Cn) =⇒

−
(

(1 + ε)L + π∗
BM − (1 − ε)π∗

X(ωX/B + D)
)
· Γn = O(deg Cn).

Replace ε by ε/(2 + ε) and we are done. It remains to verify Lemma 3.8.

Proof of Lemma 3.8 At least one of s0(p) and s1(p) does not vanish. Let us assume

that s0(p) 6= 0 WLOG. Let r j = σ0 j/s0; r j is holomorphic at p, of course. Let

δ j = σ1 j − s1r j . By our construction of σ1 j , we see that δ j vanishes to the order 2

along ∆. We may write

γ =

√
−1

2π
∂∂ log

(∑

j

(|s0r j |2 + |s1r j + δ j |2)

)

=

√
−1

2π
∂∂ log(|s0|2 + |s1|2)

︸ ︷︷ ︸
w

+

√
−1

2π
∂∂ log

(∑

j

|r j |2
)

−
√
−1

2π
∂∂ log

(
1 +

∑

j

s1r jδ j + s1r jδ j + |δ j |2
(|s0|2 + |s1|2)

∑
j |r j |2

)
.

(3.25)

Basically, we want to show that the last term in (3.25) vanishes along ∆. Then

η
∣∣∣
∆

=

√
−1

2π
∂∂ log

(∑

j

|r j |2
)

locally at p, which is positive.

Since η is C∞ at p, it is enough to show that η > 0 at p when η is restricted to

every curve passing through p, i.e., to show that f ∗η > 0 at q for every noncon-

stant morphism f : C → Y from a smooth and irreducible projective C to Y with

f (q) = p. Indeed, it is enough to show the following:
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For every tangent vector ξ ∈ TY,p, there exists a morphism f : C → Y from a

smooth irreducible curve C to Y with f (q) = p, ξ ∈ f∗TC,q and f ∗η > 0 at q.

Therefore, we can also exclude the curves contained in a fixed proper subvariety of Y .

So we may assume that f (C) 6⊂ ∆ ∪W , where W ( Y is the subvariety such that

L · Γ = 0 for a curve Γ ⇔ Γ ⊂ W.

Such W exists because L is big and NEF (see Remark 3.3). Let ÔC,q
∼= C[[t]] be the

formal local ring of C at q and µ be its valuation, i.e., µ(tn) = n. Let µ( f ∗s∆) = λ,
where ∆ = {s∆ = 0}. Then µ( f ∗δ j) ≥ 2λ. And since {σ0 j} and hence {r j} are base

point free at p, we have

f ∗
(

s1r jδ j + s1r jδ j + |δ j |2
(|s0|2 + |s1|2)

∑
j |r j |2

)
= O(t2λ + t

2λ
+ |t|4λ).

Therefore, we obtain

√
−1

2π
f ∗∂∂ log

(
1 +

∑

j

s1r jδ j + s1r jδ j + |δ j |2
(|s0|2 + |s1|2)

∑
j |r j |2

)∣∣∣∣∣∣
t=0

= 0

by the Taylor expansion of the left-hand side. Consequently,

f ∗η
∣∣∣

q
=

√
−1

2π
f ∗∂∂ log

(∑

j

|r j |2
)∣∣∣∣∣∣

q

=

√
−1

2π
∂∂ log

(∑

j

| f ∗σ0 j |2
)∣∣∣∣∣∣

q

.

Since H0(m(1 + ε)L + mπ∗
BM − 2∆) ⊂ Σ0 and f (C) 6⊂ ∆ ∪ W , the linear system

f ∗Σ0 is big on C . Therefore, f ∗η > 0 at q and η > 0 at p.
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