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Abs t r ac t . Phenomena of bifurcation in hydrodynamic stellar models of radial pulsation 
are reviewed. By changing control parameters of models, we can see qualitatively different 
pulsation behaviors in hydrodynamic models with transitions due to various types of 
bifurcation. 

In weakly dissipative models (classical Cepheids). the bifurcation is induced by modal 
resonances. Two types of the modal resonances found in models are discussed: The higher-
harmonic resonances of the second overtone mode in the fundamental mode pulsator and 
of the fourth overtone mode in the first overtone pulsator are relevant to observations. The 
subharmonic resonance between the fundamental and first overtone modes is confirmed in 
classical Cepheid models. 

In strongly dissipative models (less-massive supergiant stars), the bifurcation of non­
linear pulsation is induced by the hydrodynamics of ionization zones as well as modal 
resonances. The sequence of the bifurcation sometimes leads to chaotic behaviors in non­
linear pulsation. The transition routes from regular to the chaotic pulsations found in 
models are discussed with respect to the theory of chaos in simple dynamical systems: 
The cascade of period-doubling bifurcation is confirmed to cause chaotic pulsation in W 
Virginis models. For models of higher luminosity, the tangent bifurcation is found to lead 
intermittent chaos. 

Finally, hydrodynamic models for chaotic pulsation with small amplitudes observed in 
the post-AGB stars are briefly discussed. 

1. Introduction 

We can guess stellar parameters and physical properties of pulsating stars 
with comparison of observational data with corresponding outputs of hydro-
dynamic models. This is an important purpose for hydrodynamic modeling 
of pulsating stars. In linear models, only pulsation periods are used for these 
comparisons, while pulsation periods give us rich information in multimode 
pulsators, particularly in nonradial pulsators (Saio, 1992). In nonlinear mod­
els, however, we can use the time variations of magnitude and velocity, al­
though observations for these quantities are time consuming and the outputs 
for these quantities from hydrodynamic models depend on parameters for 
numerical treatments and assumptions used for simplifying hydrodynamic 
models. 

The pulsation behaviors in hydrodynamic models are changed qualita­
tively with transitions due to bifurcation of nonlinear pulsation. In my re­
view, we discuss these transitions in hydrodynamic models of radial pul­
sation for classical Cepheids and less-massive supergiant stars. Finally we 
discuss chaotic pulsations with small amplitudes in hydrodynamic models 
for the post-Asymptotic Giant Branch Stars. 
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2. Bifurcation in Weakly Dissipative Models (Cepheid Models) 

Bifurcation in nonlinear pulsations of weakly dissipative models (Cepheid 
models) is induced by modal resonances. There are two types of resonance: 
higher harmonic resonance and subharmonic resonance. 

2.1. HIGHER HARMONIC RESONANCES 

Modal resonance with the damped second overtone in the fundamental 
pulsator is well-known for a mechanism of the features in 10 days bump 
Cepheids (Simon and Schmidt, 1976). The higher harmonic component of 
the fundamental pulsation is induced in non-linear pulsation by this reso­
nance. Many hydrodynamic models have been built to reproduce the feature 
of bump (Simon and Davis, 1983; Takeuti et al., 1983; Aikawa, 1987; Car­
son and Stothers, 1988, Fadeyev, 1992). Recently, Buchler et al. (1990) have 
made an intensive survey of hydrodynamic models for bump features. They 
have reproduced the Hertzsprung progression of velocity curves observed in 
bump Cepheids nicely. 

Moskalik and Buchler (1990) have reported that other higher harmonic 
resonances of damped modes in the fundamental pulsator with Pj — mPn 

(where Pj and Pn are periods of the fundamental and n-th overtone modes, 
and m is an integer) are realized in their Cepheid models. 

According to analytical theories for these resonances (e.g., Takeuti and 
Aikawa, 1981), bifurcation of unstable pulsation from stable pulsation with 
the bump feature is predicted near the center of the resonance. Thus, we 
include this type resonance as a phenomenon of bifurcation. 

2.2. SUBHARMONIC RESONANCES 

The Floquet stability analysis (e.g., Iooss and Joseph, 1980) of limit cycles in 
Cepheid models has been performed by Moskalik and Buchler (1990). They 
confirm effects of subharmonic resonances between the fundamental mode 
and overtone modes with the condition Pj = m/2 Pn where m is an odd 
integer, for instance 3 or 5. In particular, they have found that subharmonic 
bifurcation with period doubling is induced by the subharmonic resonance 
between the fundamental and first overtone modes with the condition Pj = 
3/2Pi, when both the modes have unstable limit cycles. Instead of limit 
cycles, the model has stable periodic oscillation with a period of twice the 
fundamental period. This type of the subharmonic resonance is found in 
other Cepheid models (Moskalik and Buchler, 1991). 

2.3. FIRST OVERTONE PULSATOR 

Antonello, Poretti and Redzzi (1990) have suggested that s-Cepheids are 
first overtone pulsators, and moreover the progression of light curves which 
is demonstrated as a trend in Fourier components obtained for light curves. 
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Fig. 1. Resonance lines in the HR diagram. Resonance lines for the fundamental and 
first overtone pulsators are drawn with labels of resonance conditions. The blue edges of 
the instability strip for the fundamental (BEf) and the first overtone mode (BEl) are also 
plotted. 

Recently Antonello (1991) has suggested that modal resonance of the first 
overtone pulsator with the fourth overtone mode for the mechanism of the 
progression in s-Cepheids. We examine this possibility. Fig. 1 displays the 
location of the resonance in the HR diagram using the Mass-Luminosity rela­
tion adapted from Chiosi (1990) and the augmented metal opacities (Simon, 
1982). Other resonance lines for the fundamental pulsator are also displayed 
in the figure. The factor for the augmented metal opacities is set so that the 
resonance for dump cepheids with Pj = 2P-2 is realized in the fundamental 
pulsator with periods around 10 days. 

The non-linear simulations for the first overtone pulsator with the sug­
gested resonance are performed by TGRID hydro code (Simon and Aikawa, 
1986) for models with M = 4.0 M©, L = 1316 X©, and the effective tem­
peratures are chosen for models to cover the resonance. 

Fig. 2 demonstrates light curves of the models as a function of effective 
temperature and they show a systematic trend, as shown in Fig. 3 for <foi 
and i?2i of the Fourier decomposition (see Simon and Lee, 1981 for definition 
of $2i and i?2i)- We conclude that the higher harmonic resonance in the first 
overtone pulsator can make the features of the resonance in light curves. 

This resonance with the damped fourth overtone mode in the first over­
tone pulsator is interesting also to the problem of double-mode Cepheids 
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Fig. 2. Light curves for the limit cycle models of the first overtone pulsators in the 
resonance. The effective temperature of models is labeled for each curve which is shifted 
vertically. 
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Fig. 3. The Fourier phases 1̂ 21 and Fourier amplitude ratios R21 versus linear period 
ratio, A / P i . 
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(Balona, 1985) which have similar periods with s-Cepheids. Buchler et al. 
(1990) found a Cepheid model which has unstable limit cycles for the funda­
mental and first overtone modes, and confirmed a persistent beat behavior. 
In their models, the fundamental mode is in a very close to the higher har­
monic resonance of damped second overtone mode, and they have suggested 
that the resonance lowers the fundamental mode amplitude and leads to 
destabilization of the limit cycle. If this reasoning is correct, the present 
resonance also will work for destabilization of the first overtone limit cycle. 

3. Bifurcation in Strongly Dissipative Models 
(less massive supergiant stars) 

Pulsations in strongly dissipative mpdels (less-massive supergiant stars) are 
characterized by appearance of irregular behaviors (e.g. Tuchman et al., 
1979; Fadeyev, 1982). 

Nakata (1987) has shown that a sequence of less-massive supergiant mod­
els has a transition from regular to irregular pulsations, when the mass of the 
models is reduced step by step. Recently, the irregular pulsation has been 
investigated with respect to deterministic chaos. We concentrate in this sec­
tion the bifurcation which leads irregular pulsations. It is well-known that 
there are universal routes from regular to irregular behaviors represented by 
simple mathematical models and confirmed by computer simulations and 
experiment measurements (Schuster, 1988). So far, there have been found 
two typical routes of transitions from regular to irregular pulsations in less-
massive supergiant star models: the period doubling cascade (Buchler and 
Kovacs, 1987) and the intermittency (Aikawa, 1987: Buchler et al., 1987). 

3.1. PERIOD DOUBLING CASCADE 

Buchler and Kovacs (1987) have shown that a model sequence for Population 
II Cepheids has transitions from regular to irregular pulsations through the 
period-doubling cascade, one of universal routes of transitions from regular 
to irregular behaviors in deterministic chaos. Models of the sequence have 
the following stellar parameters: M = 0.6M©, L = 500X0, and chemical 
composition: x = 0.745, z = 0.005. The effective temperature is a control 
parameter of the model sequence. The models with higher effective temper­
ature have stable limit cycles. They, however, show that the sequence suffers 
a subharmonic bifurcation, decreasing the effective temperature of models, 
step by step. At this point, the limit cycle becomes unstable, but the model 
has a stable periodic oscillation with a period of 21 times the period of 
unstable limit cycle. The sequence suffers another subharmonic bifurcation 
again, in the course of decrease of the effective temperature, and then has 
models with 22 periods. The subharmonic bifurcation repeats indefinitely ( 
the period doubling cascade ) and finally leads to chaotic pulsation. 
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Aikawa (1990) has demonstrated using TGRID hydro code that the pe­
riod doubling cascade in one of model sequences studied by Buchler and 
Kovacs (1987) is interrupted by the intermittency. Goupil et al. (1991) have 
suggested that analysis with higher dimension rather than the conventional 
first one-dimensional maps may reveal the nature of chaotic pulsation in this 
model. 

3.2. INTERMITTENCY 

Aikawa (1987) performed more luminous model sequence of less-massive 
supergiant stars. The model parameters are: L = 3200?, Te = 5300 K, and 
chemical composition: x = 0.70, z = 0.02. The mass is a control parameter 
of the sequence. The results with LNA analysis are tabulated in Table I. The 
sequence shows different type of the transition from limit cycles to chaos, as 
shown in Fig. 4. 

TABLE I 

M/Me 

1.50 
1.46 
1.45 
1.43 
1.42 
1.40 

Pf 
27.755 
28.329 
28.476 
28.775 
28.927 
29.236 

•»? 
0.417 
0.421 
0.422 
0.424 
0.424 
0.425 

Px 
15.038 
15.271 
15.331 
15.453 
15.515 
15.640 

m 
-0.752 
-0.786 
-0.795 
-0.812 
-0.821 
-0.840 

a) The periods in units of days. 
b) The growth rates are defined as — 4ffw,-/wr. 

We shall make the one-dimensional return map for the hydrodynamic 
pulsation models. We pick up values of total pulsational kinetic energies 
at their maxima. During one oscillation, the quantity has two maxima at 
the expansion and contraction phases, and we pick up one at the expansion 
phase. Fig. 5 shows these return maps for chaotic pulsation in a model as 
well as stable limit cycles. 

It is shown from Fig. 5 that in chaotic pulsation with parameters close 
those to stable limit cycles, nonlinear pulsation stays at a 'ghost' limit cycle 
for a while, but gradually obtains pulsationally kinetic energies and finally 
moves away from the 'ghost' limit cycle, causing an outburst. By dissipation 
of the kinetic energies by shock waves, the pulsation is suddenly quenched. 
Then, the model repeats the previous process in a similar fashion. We inden-
tify this transition from limit cycles to chaotic oscillations in the hydrody­
namic models as the type I intermittency, another universal route in simple 
dynamical models with dissipations (Pomeau and Manneville, 1980). 
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Fig. 4. Variations of the radius at the photosphere for model c (above) and d (below). It 
is noted that model d shows irregular oscillations with outbursts at times, while model c 
has a stable limit cycle. 

Buchler et al. (1987) have demonstrated the intermittent chaos in Pop II 
Cepheid models. 

3.3. DISSIPATION STRUCTURE 

We shall discuss physical mechanisms for the transition. Aikawa (1987) has 
shown that the model which has stable limit cycles in the vicinity of the 
transition to the intermittent chaos has another unstable fixed point beyond 
a stable fixed point, and the transition from regular to irregular pulsation 
may be connected with disappearance of these fixed points (Tangent bifur­
cation). Aikawa (1988) shows these characteristics directly from the work 
integral of the nonlinear pulsations in one of models in question. It is shown 
that pulsation driving at the hydrogen ionization zones is strongly enhanced 
at amplitudes beyond the stable limit cycle. This additional driving makes 
the models to have another unstable fixed point. 

It is suspected that the dissipation structures at the ionization zones with 
shock wave dissipation, as discussed in Aikawa (1988) may be also respon­
sible for chaotic pulsations with other types of transition in less-massive 
supergiant models (see, Takeuti, 1987). 
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Fig. 5. The one-dimensional return maps for limit cycles (above) and irregular pulsation 
of model d (below). The latter model stays the bisectrix for a long time, following an 
outburst of large amplitudes. The oscillation is then suddenly quenched and restarts with 
a small amplitudes. The symbol (O) and (x) are for first and second cycles of this process. 
The data points at the outburst are numbered in chronological order. 

3.4. DYNAMIC REGIMES IN THE HR DIAGRAM 

Kovacs and Buchler (1988) have demonstrated with investigation of tran­
sitions from regular to irregular pulsations of model sequences of different 
luminosities. The transition in lower luminosity sequences is induced by the 
period doubling cascade, and on the other hand, the intermittency for higher 
luminosity models. 
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4. Bifurcation in Pulsation Models for The Post -AGB 

4.1. PULSATION IN YELLOW SUPERGIANT STARS 

Pulsation in yellow supergiant stars (e.g. 89 Her and HD 161796) has the 
following characteristics: 

(1) Irregular pulsation with time scale of about 40 days, 
(2) small amplitudes about 0.2 mag., which is contrasted with irregular 
variables in red giant stars, 
(3) Some of them are suggested the post-asymptotic Giant Branch (post-
AGB) stars. 
The time variations of magnitude in 89 Her and HD161796, the pro­

totypes of this class have been obtained by Fernie through the Automatic 
Photometric Telescope (APT) Service since Fernie (1983). Recently, Zsoldos 
and Sasselov (1991) have claimed that complicated light variation in UU Her 
which used to be classified as this class can be explained by superpostion 
of two linear oscillators with slowly modulated amplitudes. Thus, we need 
careful examinations for analysis of the variations. 

4.2. LINEAR MODELS 

The observed effective temperature of these yellow supergiant stars indicates 
that these stars are located at bluer region outside the conventional insta­
bility strip for pulsating stars in the HR diagram. Aikawa (1991) has shown 
that less-massive supergiant stars (e.g. M < 1M©) with appropriate lumi­
nosities are unstable by overstable oscillations with higher overtone modes, 
while the modes have different properties from ordinary modes and must be 
related with strange modes (Gautschy and Glatzel, 1990), but the physical 
interpretation on the driving of the mode is unclear. 

4.3. PULSATIONS IN NONLINEAR REGIME 

Nonlinear simulations are performed for models of M = 0.8 MQ with se­
quences of models with different values of the effective temperature (Te = 
6000 K, 6300 K, 6600 K, 6900 K, 7200 K and 7500 K) to cover the region 
of the HR diagram for F type supergiant stars. The luminosity is a control 
parameter in this study and is changed with the range of 3500 LQ < L < 
7000 LQ. 

For all model sequences except for the sequence of Te — 6000 K, mod­
els with higher luminosities show chaotic pulsation with small amplitudes, 
while pulsation in lower luminosity models is rather regular. It is noted that 
subharmonic components of the driving mode are strongly enhanced in non­
linear pulsation in chaotic regime, and time variations with much longer time 
scale are induced in chaotic oscillations, compared with the linear period of 
about 10 days. 

We conclude that chaotic pulsation with small amplitudes can be gener-
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Fig. 6. The series of the one-dimensional return map for model sequence Te = 6300 K. 
Only higher luminosities part is drawn and luminosities of models are labeled for each 
map. Data of the Poincare section are made from data on magnitude at the photosphere 
at the time of maximum expansion of the same place. 

ated robustly in pulsation of less-massive supergiant stars located apparently 
at bluer region outside the conventional blue edge. 

The model sequence of Te = 6300 K is studies in detail to find out 
nature of chaotic pulsation. The model sequence shows much complicated 
transitions from regular to chaotic pulsations, as demonstrated in Fig. 6 as 
a series of the first return maps for the higher luminosity part in the model 
sequence. 

Plotting data of the Poincare section with 3D, we can see more clearly 
the structure of transition, as shown in Fig. 7 and so the transition may 
be understood in higher dimensional mappings. The properties are often 
appeared in the transitions to chaos in which universal routes are interrupted 
by periodic oscillations and other type routes (Arneodo et al., 1983). 

https://doi.org/10.1017/S0252921100014317 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100014317


BIFURCATION IN HYDRODYNAMIC MODELS 279 

4985 5000 
Fig. 7. 3D plots of the Poincare section data. Three successive data are plotted in three 
dimensional space. For model L = 4985L©, we can see a periodic oscillation with 9 period, 
and this periodic oscillation becomes divergent in model L = SOOOL©. 

5. Conclusions 

Phenomena of bifurcation in non-linear pulsation in hydrodynamic mod­
els are reviewed. It is pointed out that qualitatively different behaviors in 
nonlinear pulsation are realized with transitions due to bifurcation in hy­
drodynamic models. We may summarize as follows: 

(1) In weakly dissipative models (Cepheid Models), bifurcation in nonlin­
ear pulsation is induced by modal resonances in the fundamental and first 
overtone pulsators. Some of them are responsible for observed properties. 

(2) In strongly dissipative models (less-massive supergiant stars), there 
have been found two systematic routes of transition from regular to chaotic 
pulsations in hydrodynamic models: the period-doubling cascade and the 
tangential bifurcation. These transitions are induced by the dissipation struc­
ture of the ionization zones including shock waves generated in the region. 

(3) Models for chaotic pulsation with small amplitudes in the post-AGB 
stars are proposed. There are transitions from regular to irregular pulsa­
tions with small amplitudes in a wide range of stellar parameters. Thus, 
the transitions are robust for generation of chaotic pulsations with small 
amplitudes. 
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