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Models of the QCD effective action

43.1 Introduction

Our purpose is to briefly present the general features of different models of the low-energy
hadronic interactions based on the effective action of QCD using a well-defined set of
approximations. In this chapter, we shall follow closely the discussions in [500]. The chiral
symmetry of the underlying QCD theory implies that the generating functional �(v, a, s, p)
of the Green’s functions of quark currents:

ei�(v,a,s,p) = 1

Z

∫
DGµ det �D exp

(
−i

∫
d4x

1

4
�Gµν

�Gµν

)
, (43.1)

with: �D the Dirac operator

�D = γ µ(∂µ + igs Gµ) − iγ µ(vµ + γ5aµ) + i(s − iγ5 p) ; (43.2)

Gµ is the gluon field, �Gµν the gluon field strength tensor; and vµ, aµ, s, p external field
sources; the normalization factor Z is such that �(0, 0) = 1, admits a low-energy represen-
tation:

ei�(v,a,s,p) = 1

Z

∫
DU exp

[
i
∫

d4x Leff(U ; v, a, s, p)

]
, (43.3)

in terms of an effective Lagrangian Leff(U ; v, a, s, p) with U (x) a 3 × 3 unitary matrix
containing the octet of pseudoscalar fields (π, K , η). However, the single term in Leff

which is known from first principles, is the one associated with the existence of anomalies
in the fermionic determinant [510]. The corresponding effective action is the Wess and
Zumino [508,509] functional that we have discussed in the previous section. All possible
other terms in Leff, are not fixed by symmetry requirements alone. The desire is to build
some effective dynamical QCD models with a mimimum set of parameters that can fix
the different coupling constants of the effective chiral Lagrangian, and that are needed for
making progress in the phenomenology of non-leptonic flavour dynamics. In the following,
we shall list the following models:

� QCD in the large–Nc limit.
� Low-lying resonances dominance models.
� The constituent chiral quark model.
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43 Models of the QCD effective action 425

� Effective action approach models.
� The extended Nambu and Jona-Lasinio Model (ENJL model.)

43.2 QCD in the large–Nc limit

43.2.1 Large Nc counting rules for mesons

The study of QCD in the limit of large Nc was suggested by t’Hooft [520], soon after the
discovery of asymptotic freedom, as an attempt to get an insight into the non-perturbative
aspects of QCD. The large Nc limit of QCD corresponds to the case where the number of
colours is sent to infinity and the QCD coupling αs sent to zero in such a way that:

Ncαs = constant . (43.4)

Therefore the Green’s function of the theory is proportional to a power of Nc [520–522].
Denoting by Gqw the general connected Green’s function containing q quark currents and
w winding number densities:

Gqw = 〈0|T J1(x − 1) · · · Jq (xq )Q(y1) · · · Q(yw)|0〉connect (43.5)

with:

Ji = ψ̄�iψ , Q(x) = g2

8π2
Tr (Gµν G̃µν) , (43.6)

where �i is neutral colour matrices acting on the spin and quark flavours. For large Nc, the
Green’s function behaves as:

Gqw = O(
N 2−w

c

)
, q = 0

= O(
N 1−w

c

)
, q �= 0 . (43.7)

This counting rule holds only for generic momenta, but is modified by, for example,
the exchange of an η′ pole, which at zero momentum produces an additionnal power of
Nc (M2

η′ ∼ 1/Nc in the chiral limit). This counting rule can be understood in the following
way: the leading contributions to the Green’s functions containing quark currents (q �= 0)
arise from graphs with a single quark loop (planar diagrams with the quark loop running at
the edge of the diagram). These graphs are given by the functional integral over the gluon
field of the product of the form Tr

(
�i1 S�i2 S . . . �iq S

)
, where i1, . . . iq is some permutation

of 1, . . . , q and where S denotes the quark propagator in the presence of the gluon field. In the
chiral limit, the propagator is flavour independent, and the leading contribution to the Green’s
function depends on the flavour of the current only through the trace Tr

(
λi1 , . . . , λiq

)
where

λi is the flavour factor in the matrix �i . From Eq. (43.7), one can deduce the large-Nc

behaviour of the generating functional:

Z (v, a, s, p, θ ) = N 2
c f0(θ/Nc) + Nc f1(v, a, s, p, θ/Nc) + O(1) , (43.8)

where the functional f0(α) and f1(v, a, s, p, α) are independent of Nc. One can deduce the
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426 IX QCD non-perturbative methods

counting rule for one particle matrix elements [522]:

〈0|J |meson〉 = O(
N 1/2

c

)
, 〈0|J |glueball〉 = O(1) ,

〈0|Q|meson〉 = O(
N−1/2

c

)
, 〈0|Q|glueball〉 = O(1) . (43.9)

Every additional meson in a vertex brings a suppression factor 1/N−1/2
c . Therefore, three-

meson amplitudes are of order 1/N−1/2
c , four-meson amplitudes are of order 1/Nc, . . . . Loop

corrections in the meson sector are suppressed by powers of 1/Nc, and are consistent with
a semiclassical expansion in powers of h̄.

43.2.2 Chiral Lagrangian in the large Nc-limit

It would be a major breakthrough, if one could derive the low-energy effective Lagrangian
of the interactions between Nambu–Goldstone modes in the large-Nc limit of QCD. To
analyse the large Nc behaviour of the effective Lagrangian, it suffices to expand the matrix
in terms of the meson fields and to look at the terms independent of these fields. The desired
results are obtained by comparing these terms with those in Eq. (43.8). As examples, one
obtains:

f = O(
N 1/2

c

)
, B = γ = O(1) , (43.10)

where γ quantifies the η − η′ mixing. For the non-vanishing coupling constants, one has
obtained the large Nc behaviour [499]:

O(
N 2

c

)
: L7 ,

O(Nc) : L1, L2, L3, L5, L8, L9, L10, H1, H2 ,

O(1) : 2L1 − L2, L4, L6 . (43.11)

So far, it has only been possible to obtain constraints among various coupling constants
in this limit; but not their values in terms, say, of �QCD. A typical example is the relation:

2L1 = L2 , (43.12)

which, as first noticed by Gasser and Leutwyler [499], follows in the large-Nc limit of QCD.
Unfortunately, nobody can claim as yet to be able to compute, say L2, in that limit. Often
in the literature, there appear statements about ‘large-Nc predictions’ but, in fact, they have
been all derived with some extra ad hoc assumptions.

An interesting approach to do approximate calculations within the framework of the
1/Nc-expansion is the one proposed by Bardeen, Buras and Gérard [524], which they
have applied extensively to the calculation of non-leptonic weak matrix elements. The
basic idea is to start with the factorized form of the four-quark operators in the effective
weak Hamiltonian, and to do one-loop chiral perturbation theory, keeping track of the
quadratic divergences which appear. If one was able to work with the full hadronic low-
energy effective Lagrangian, it would be possible to obtain a smooth matching between the
scale dependence of the Wilson coefficients, calculated at short distances, and the hadronic
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matrix elements calculated with the full hadronic low-energy effective Lagrangian. The
hope with the approach proposed by [524] is that the numerical matching of the quadratic
long-distance scale with the logarithmic short-distance scale, may turn out to be already a
good first approximation to the problem one would like to solve. The technology of their
approach is explained with detail in their papers.

43.2.3 Minimal hadronic ansatz to large Nc QCD

The hadronic spectrum predicted by large Nc–QCD seems a priori different from the real
world, as one expects here the presence of an infinite sum of narrow resonances with specific
quantum numbers [520]. This feature can be better understood from the Coleman–Witten
theorem [525] which states that if QCD at Nc = 3 is confined, and if confinement persists
for large Nc, then, in this limit, the chiral U (n f ) × U (n f ) invariance of the QCD Lagrangian
with n f massless flavours is spontaneously broken down to the diagonal U (n f ) subgroup.
Though, the real world has a much more complicated structure, one expects that the hadronic
world predicted by large Nc can give an approximate good prediction of this real world,
when observables in terms of spectral functions are involved, as in this case, one needs only
to know the global properties of the hadronic spectrum.

The left–right correlation function

Of particular interest for our purposes is the correlation function (Q2 ≡ −q2 ≥ 0 for q2

space-like):

�
µν

L R(q) = 2i
∫

d4x eiq·x 〈0|T(Lµ(x)Rν(0)†)|0〉 , (43.13)

with colour singlet currents:

Rµ (Lµ) = d̄(x)γ µ 1

2
(1 ± γ5)u(x) . (43.14)

In the chiral limit, (mu,d,s → 0 ,) this correlation function has only a transverse component

�
µν

L R(Q2) = (qµqν − gµνq2)�L R(Q2) . (43.15)

The self-energy like function �L R(Q2) vanishes order by order in perturbative QCD
(pQCD) and is an order parameter of ChSB for all values of Q2; therefore it obeys an
unsubtracted dispersion relation

�L R(Q2) =
∫ ∞

0
dt

1

t + Q2

1

π
Im�L R(t) . (43.16)

In large Nc–QCD, the spectral function 1
π

Im�L R(t) consists of the difference of an
infinite number of narrow vector and axial-vector states, together with the Goldstone pole
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of the pion:

1

π
Im�L R(t) =

∑
V

f 2
V M2

V δ
(
t − M2

V

) − F2
0 δ(t) −

∑
A

f 2
A M2

Aδ
(
t − M2

A

)
. (43.17)

The low Q2 behaviour of �L R(Q2), namely the long-distance behaviour of the correlation
function in Eq. (43.13), is governed by chiral perturbation theory:

−Q2�L R(Q2)|Q2→0 = f 2
0 +4L10 Q2+O(Q4) , (43.18)

where f0 is the pion coupling constant in the chiral limit, and L10 is one of the coupling
constants of the O(p4) effective chiral Lagrangian. The high Q2 behaviour of �L R(Q2),
that is, the short-distance behaviour of the correlation function in Eq. (43.13), is governed
by the operator product expansion (OPE) of the two local currents in Eq. (43.13) [1],

lim
Q2→∞

Q6�L R(Q2) =
[
−4π2 αs

π
+O(

α2
s

)]〈ψ̄ψ〉2 , (43.19)

which implies the two Weinberg sum rules:
∫ ∞

0
dtIm�L R(t) =

∑
V

f 2
VM2

V −
∑

A

f 2
AM2

A − F2
0 = 0 , (43.20)

and: ∫ ∞

0
dttIm�L R(t) =

∑
V

f 2
V M4

V −
∑

A

f 2
A M4

A = 0 . (43.21)

In fact, as pointed out in [526], in large Nc QCD, there exist an infinite number of
Weinberg-like sum rules. In full generality, the moments of the �L R spectral function with
n = 3, 4, . . . ,∫ ∞

0
dt tn−1

[
1

π
Im�V (t) − 1

π
Im�A(t)

]
=

∑
V

f 2
V M2n

V −
∑

A

f 2
A M2n

A , (43.22)

govern the short-distance expansion of the �L R(Q2) function;

�L R(Q2)|Q2〉∞ =
(∑

V

f 2
V M6

V −
∑

A

f 2
A M6

A

)
1

Q6
+

(∑
V

f 2
V M8

V −
∑

A

f 2
A M8

A

)
1

Q8
+ · · · .

(43.23)

On the other hand, inverse moments of the �L R spectral function, with the pion pole
removed, (which we denote by Im�̃A(t),) determine a class of coupling constants of the
low-energy effective chiral Lagrangian.

For example:
∫ ∞

0
dt

1

t

[
1

π
Im�V (t) − 1

π
Im�̃A(t)

]
=

∑
V

f 2
V −

∑
A

f 2
A = −4L10 . (43.24)
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Moments with higher inverse powers of t are associated with couplings of composite
operators of higher dimension in the chiral Lagrangian. Tests of the two Weinberg sum
rules in Eqs. (43.20) and (43.21) and of the L10 sum rule in Eq. (43.24), albeit in a different
context to the one we are interested in here, have also been discussed in the literature, (see
e.g. [527,528], [33,34]).

The minimal ansatz

We shall now consider the approximation which we call the minimal hadronic ansatz to
large Nc–QCD. In the case of the left–right two-point function in Eq. (43.13), this is the
approximation where the hadronic spectrum consists of one vector state V , one axial-vector
state A and the Goldstone pion, with the ordering [526] MV < MA. This is the minimal
spectrum which is required to satisfy the two Weinberg sum rules in Eqs. (43.20) and
(43.21.) In this approximation, �L R(Q2) has a very simple form:

−Q2�L R(Q2) = f 2
0(

1 + Q2

M2
V

)(
1 + Q2

M2
A

)

= M2
A M2

V

Q4

f 2
0(

1 + M2
V

Q2

)(
1 + M2

A
Q2

) . (43.25)

This equation shows, explicitly, a remarkable short-distance ⇀↽ long-distance dual-
ity [529]. Indeed, with gA defined as:

M2
V = gA M2

A and z ≡ Q2

M2
V

, (43.26)

the non-local order parameters corresponding to the long-distance expansion for z〉0, which
are couplings of the effective chiral Lagrangian i.e.:

−Q2�L R(Q2)|z〉0 = f 2
0

{
1 − (1 + gA)z + (

1 + gA + g2
A

)
z2 + · · · } , (43.27)

are correlated to the local-order parameters of the short-distance OPE for z〉∞ in a very
simple way:

−Q2�L R(Q2)|z〉∞ = f 2
0

1

gA

1

z2

{
1−

(
1+ 1

gA

)
1

z
+

(
1 + 1

gA
+ 1

g2
A

)
1

z2
+ · · ·

}
;

(43.28)

in other words, there is a one-to-one correspondence between the two expansions by
changing

gA ⇀↽
1

gA
and zn ⇀↽

1

gA

1

zn+2
. (43.29)

The moments of the �L R spectral function, when evaluated in the minimal hadronic
ansatz approximation, can be converted into a very simple set of finite energy sum rules
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(FESR’s), corresponding to the OPE in Eq. (43.28):∫ s0

0
dt t2 1

π
Im�L R(t) = − f 2

0 M4
V

1

gA
, (43.30)

∫ s0

0
dt t3 1

π
Im�L R(t) = − f 2

0 M6
V

1+ 1
gA

gA
, (43.31)

∫ s0

0
dt t4 1

π
Im�L R(t) = − f 2

0 M8
V

1+ 1
gA

+ 1
g2

A

gA
, (43.32)

· · · · · · .

where the upper limit of integration s0 denotes the onset of the pQCD continuum which, in
the chiral limit, is common to the vector and axial-vector spectral functions. It is important
to realize that s0 is not a free parameter. Its value is fixed by the requirement that the OPE of
the correlation function of two vector currents, (or two axial-vector currents,) in the chiral
limit, have no 1/Q2 term, which results in an implicit equation for s0 [405,530]. In the
minimal hadronic ansatz approximation the onset of the pQCD continuum, which we shall
call s∗

0 , is then fixed by the equation

Nc

16π2

2

3
s∗

0 (1 + O(αs)) = f 2
0

1

1 − gA
. (43.33)

Also, the moments which correspond to the chiral expansion in Eq. (43.27) are given by
another simple set of FESR’s:∫ s0

0
dt

1

π
Im�̃L R(t) = f 2

0 , (43.34)

∫ s0

0

dt

t

1

π
Im�̃L R(t) = f 2

0

M2
V

(1+gA) , (43.35)

∫ s0

0

dt

t2

1

π
Im�̃L R(t) = f 2

0

M4
V

(
1+ gA+g2

A

)
, (43.36)

· · · · · · .

These duality relations have been tested by comparing moments of the physical spectral
function 1/π Im�

exp
L R(t) determined from experiment (tau-decay data) to the predictions of

the minimal hadronic ansatz as shown in the RHS of Eqs. (43.30) to (43.32) and Eqs. (43.34)
to (43.36), where one finds that the tau-decay data is consistent with the simple pattern of
duality properties between short and long distances which follow from the minimal hadronic
ansatz of a narrow resonances in the large Nc limit of QCD.

43.2.4 Baryons in the large Nc limit

Many features of the baryon sector have been also understood using the 1/Nc expansion,
where a new SU (4) symmetry connects the u ↑, u ↓, d ↑, u ↓ states in the baryon (see
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e.g. the review of Manohar in [502]). A systematic computation of the 1/Nc corrections
then becomes possible, and some results obtained previously from the quark and Skyrme
models [3] can be proved to order 1/Nc or 1/N 2

c . However, in the large Nc limit, baryons are
more difficult to study than mesons, as the number of quarks in the baryon is Nc. Large Nc

counting rules for baryons were given by Witten [522]. In particular, if one assumes that the
baryon mass and axial coupling gA are of order Nc, one can deduce using a non-relativistic
quark model:

gA = Nc + 2

3
, (43.37)

which is equal to the well-known quark model prediction 5/3 for Nc = 3. Phenomenology
of multicolour QCD in the baryon sector using QCD spectral sum rules has been studied in
[531] for Nc flavour, and in [532] for two flavours. In the latter case (see the details of the
derivation in [532,3]), the Skyrme parameter has been obtained to be:

e � 9/N 1/2
c , (43.38)

in agreement with large Nc-expectations.

43.3 Lowest meson dominance models

There has been quite a lot of progress during the last few years in understanding the rôle
of resonances in ChPT. At the phenomenological level [533,534], it turns out that the
observed values of the Li -constants are practically saturated by the contribution from the
lowest resonance exchanges between the pseudoscalar particles; and particularly by vector-
exchange, whenever vector mesons can contribute. The specific form of an effective chiral
invariant Lagrangian describing the couplings of vector and axial-vector particles to the
(pseudo) Nambu–Goldstone modes is not uniquely fixed by chiral symmetry requirements
alone. When the vector fields describing heavy vector particles are integrated out, different
field theory descriptions may lead to different predictions for the Li -couplings. It has been
shown however that, if a few QCD short-distance constraints are imposed, the ambiguities
of different formulations are then removed [535]. The most compact effective Lagrangian
formulation, compatible with the short-distance constraints, has two free parameters: fπ
and MV . When the vector and axial-vector fields are integrated out, it leads to specific
predictions for five of the Li constants:

L (V )
1 = L (V )

2

/
2 = −L (V )

3

/
6 = L (V )

9

/
8 = −L (V +A)

10

/
6 = f 2

π

16M2
V

� 0.6 × 10−3 , (43.39)

in good agreement, within errors, with experiment. [See Table 42.1]
It is fair to conclude that the old phenomenological concept of vector meson dominance

(VMD) [14] can now be formulated in a way that is compatible with the chiral symmetry
properties and the short-distance behaviour of QCD.
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43.4 The constituent chiral quark model

This model was introduced by Georgi and Manohar [512], in an attempt to reconcile the suc-
cessful features of the constituent quark model [81], with the chiral symmetry requirements
of QCD. The basic assumption of the model is the idea that between the scale of chiral
symmetry breaking �χ and the confinement scale ∼ �QCD the underlying QCD theory,
may admit a useful effective Lagrangian realization in terms of constituent quark fields Q;
pseudoscalar particles; and, perhaps, ‘gluons’. The Lagrangian in question has the form:

LGM
eff = i Q̄γµ(∂µ + igs Gµ + �µ)Q

+ i

2
gA Q̄γ5γ

µξµ Q − MQ Q̄ Q

+ 1

4
f 2
π tr DµU DµU † − 1

4
�Gµν

�Gµν . (43.40)

Some explanations about the notation here are in order. Remember that under chiral
rotations (VL , VR), U transforms like: U → VRU VL . The unitary matrix U is the product
of the so-called left and right coset representatives: U = ξRξ

†
L and, without lost of generality,

one can always choose the gauge where ξ
†
L = ξR ≡ ξ . The coset representative ξ , (U = ξξ †,)

transforms as:

ξ → VRξh† = hξV †
L h ∈ SU (3)V , (43.41)

where h denotes the rotation induced by the chiral transformation (VL , VR) in the diagonal
SU (3)V . In Eq. (43.40) the constituent quark fields Q transform as:

Q → hQ, h ∈ SU (3)V . (43.42)

In the presence of external sources:1

�µ = 1

2
{ξ †[∂µ − i(vµ + aµ)]ξ + ξ [∂µ − i(vµ − aµ)]ξ †} (43.43)

and:

ξµ = iξ †DµUξ † . (43.44)

The free parameters of the theory are fπ , MQ , and gA. The QCD coupling constant is
assumed to have entered a regime (below �χ ,) where its running is frozen and is taken to
be constant.

The merit of this model is that it automatically incorporates the phenomenological suc-
cesses of the constituent quark model, in a way compatible with chiral symmetry. This model
indeed appears in practically all QCD low-energy models where quarks are not confined.
The weak point of the model is its ‘vagueness’ about the gluonic sector. In the absence of
a dynamic justification for the ‘freezing’ of the QCD running coupling constant, it is very
unclear what the ‘left out’ gluonic interactions mean; and in fact, in most applications, they
are simply ignored.

1 The original formulation of the model of Georgi and Manohar [512] was in fact made without external fields.
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43.5 Effective action approach models

The basic idea in this class of models is to make some kind of drastic approximation to
compute the non–anomalous part of the QCD-fermionic determinant in the presence of
external vµ and aµ fields, but with the external s and p fields frozen to the quark matrix:

s + i p = M = diag(mu, md , ms) . (43.45)

Although the integral over the quark fields in Eq. (42.16) can be done explicitly, we do
not know how to perform analytically the remaining integration over the gluon fields. A
perturbative evaluation of the gluonic contribution would obviously fail in reproducing the
correct dynamics of Spontaneous Chiral Symmetry Breaking (SCSB). A possible way out
is to parametrize phenomenologically the SCSB and make a weak gluon-field expansion
around the resulting physical vacuum. The simplest parametrization [413] is obtained by
adding to the QCD Lagrangian the chiral invariant term:

�LQCD = −MQ(q̄ RUqL + q̄ LU †qR) , (43.46)

which serves to introduce the U field, and a mass parameter MQ , which regulates the IR
behaviour of the low-energy effective action. In the presence of this term the operator q̄q
acquires a vacuum expectation value; therefore, Eq. (43.46) is an effective way to generate
the order parameter due to SCSB. Making a chiral rotation of the quark fields, QL ≡
u(φ)qL , Q R ≡ u(φ)†qR , with U = u2, the interaction Eq. (43.46) reduces to a mass-term
for the dressed quarks Q; the parameter MQ can then be interpreted as a constituent-quark
mass.

The derivation of the low-energy effective chiral Lagrangian within this framework has
been extensively discussed by [413]. In the chiral and large-NC limits, and including the
leading gluonic contributions, one gets:

8L1 = 4L2 = L9 = NC

48π2

[
1 + O(

1/M6
Q

)]
,

L3 = L10 = − NC

96π2

[
1 + π2

5NC

〈
αs
π

GG
〉

M4
Q

+ O(
1/M6

Q

)]
, (43.47)

where the positive sign of the corrections helps for a better agreement with experiments. Due
to dimensional reasons, the leading contributions to theO(p4) couplings only depend on NC

and geometrical factors. It is remarkable that L1, L2 and L9 do not get any gluonic correction
at this order; this result is independent of the way SCSB has been parametrized (MQ can
be taken to be infinite). Table 43.1 compares the predictions obtained with only the leading
term in Eq. (43.47) (i.e. neglecting the gluonic correction) with the phenomenological
determination of the Li couplings. The numerical agreement is quite impressive; both the
order of magnitude and the sign are correctly reproduced (notice that this is just a free-
quark result!). Moreover, the gluonic corrections shift the values of L3 and L10 in the right
direction, making them more negative.
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Table 43.1. Leading-order (αs = 0) predictions for the Li ’s, within the
QCD-inspired model in Eq. (43.46). The phenomenological values are shown in

the second row for comparison. All numbers are given in units of 10−3

L1 L2 L3 L9 L10

L th
i (αs = 0) 0.79 1.58 −3.17 6.33 −3.17

Lr
i (Mρ) 0.4 ± 0.3 1.4 ± 0.3 −3.5 ± 1.1 6.9 ± 0.7 −5.5 ± 0.7

The results in Eq. (43.47) obey almost all relations in (43.39). In the same way, one also
obtains a relation between the quark constituent mass and the pion decay constant [413]:

f 2
π = Nc

16π2
4M2

Q

[
log

�2

M2
Q

+ π2

6Nc

< αs
π

GG >

M4
Q

+ 1

360Nc

< g3GGG >

M6
Q

+ · · ·
]

.

(43.48)

The authors mention that the gluon condensate appearing here has nothing to do with the
one from QCD spectral sum rules phenomenology, which is hard to digest as the quantity
〈αs G2〉 has a very weak scale dependence. This approach has been also extended to the
estimate of four-fermion non-leptonic weak operators, which the interested readers can find
in [537]. Analogous result has been derived in [538] using a variational mass expansion.

43.6 The Extended Nambu–Jona-Lasinio Model

There have been many suggestions in the literature proposing that Nambu and Jona-
Lasinio [539]-like models are relevant models for low-energy hadron dynamics. In e.g.
[540,541], one assumes that at intermediate energies below or of the order of the sponta-
neous chiral symmetry breaking scale �χ , the leading operators of higher dimension which,
after integration of the high-frequency modes of the quark and gluon fields down to the scale
�χ , become relevant in the QCD Lagrangian, are those which can be cast in the form of
four-fermion operators, i.e.:

LQCD =⇒ Lχ

QCD + LS,P + LV,A + · · · , (43.49)

where:

LS,P = 1

Nc

8π2

�2
χ

GS

∑
i, j

(
q̄ i

RqL j
)(

q̄ j
LqRi

)
, (43.50)

and:

LV,A = − 1

Nc

8π2

�2
χ

GV

∑
i, j

[(
q̄ i

Lγ µqL j
)(

q̄ j
LγµqLi

) + L ↔ R
]
. (43.51)

Here i , j denote u, d , and s flavour indices and summation over colour degrees of
freedom within each bracket is understood; qL ,R ≡ 1

2 (1 ± γ5)q. The couplings GS,V are
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dimensionless functions of the UV integration cut-off �. They are expected to grow as
� approaches the critical value �χ , where spontaneous chiral symmetry breaking occurs.
(This is the reason why the operators LS,P and LV,A become relevant). In QCD, and with
the factor N−1

c pulled out, both couplings GS and GV are O(1) in the large-Nc limit. These
constants are in principle calculable functions of the ratio �/�QCD. In practice however,
the calculation requires non-perturbative knowledge of QCD in the region where � � �χ ,
and we shall take GS and GV , as well as �χ , as independent unknown parameters. The χ

index in Lχ

QCD means that only the low-frequency modes � ≤ �χ of the quark and gluon
fields are to be considered from now onwards.

Notice that in QCD, couplings of the type LS,P and LV,A appear naturally from gluon
exchange between two QCD colour currents. Using Fierz rearrangement, one has in the
large-Nc limit:

g2
s

∑
a

(
q̄γ µ λa

2
q

) (
q̄γµ

λa

2
q

)
⇒ 1

Nc

8π2

�2
χ

4
αs Nc

π

∑
i, j

(
q̄ i

RqL j
)(

q̄ j
LqRi

)

− 1

Nc

8π2

�2
χ

αs Nc

π

∑
i, j

[(
q̄ i

Lγ µqL j
)(

q̄ j
LγµqLi

)

+ L ↔ R
]
; (43.52)

i.e.; GV = GS/4 = αs Nc/π in this case. The two operators LS,P and LV,A have, however,
different anomalous dimensions, and it is therefore not surprising that GS �= 4GV for the
corresponding physical values.

If furthermore, one assumes that the relevant gluonic effects for low-energy physics are
those already absorbed in the new couplings GS and GV , then:

Lχ

QCD ⇒ i q̄ �Dq (43.53)

in Eq. (43.49) with �D the Dirac operator given in Eq. (43.2), where now the gluon field Gµ

plays the rôle of an external colour field source. There is no gluonic kinetic term any longer.
As is well known from the early work of Nambu and Jona-Lasinio [539], the operator

LS,P, for values of GS > 1, is at the origin of the spontaneous chiral symmetry breaking. This
can best be seen following the standard procedure of introducing auxiliary field variables to
convert the four-fermion coupling operators into bilinear quark operators. For this purpose,
one introduces a 3 × 3 auxiliary field matrix M(x) in flavour space; the so called collective
field variables, which under chiral-SU (3) transform as:

M → VR MV †
L ; (43.54)

and uses the functional integral identity:

exp

[
i
∫

d4x
1

Nc

8π2

�χ

GS

∑
i, j

(
q̄ i

RqL j
)(

q̄ j
LqRi

)]

=
∫

DM exp

[
i
∫

d4x

{
−(q̄ L M†qR + h.c.) − Nc

�2
χ

8π2

1

GS
tr M M†

}]
. (43.55)
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By polar decomposition:

M = ξ Hξ †, (43.56)

with ξξ † = U unitary and H hermitian.
Next, we look for translational-invariant solutions, which minimize the effective action;

∂�eff

∂ M

∣∣∣∣
H=<H>=MQ ,ξ=1;v=a=s=p=0.

= 0 .

The minimum is reached when all the eigenvalues of < H > are equal, i.e., < H >=
MQ1; and the minimum condition leads to

Tr

(
x

∣∣∣∣ 1

�D
∣∣∣∣ x

)
= −2MQ Nc

�2
χ

8π2

1

GS

∫
d4x . (43.57)

The trace in the LHS of this equation is formally proportional to < ψ̄ψ >. The calculation,
however, requires a regularization, with �χ the UV cut-off. We choose the proper time
regularization. [See e.g. [540] for technical details.] Then:

< ψ̄ψ >= − Nc

16π2
4M3

Q�

(
−1,

M2
Q

�χ

)
; (43.58)

and the minimum condition in Eq. (43.57) leads to the so-called gap equation:

MQ

GS
= MQ

{
exp

(
− M2

Q

�2
χ

)
− M2

Q

�2
χ

�

(
0,

M2
Q

�2
χ

)}
. (43.59)

The functions:

�

(
n − 2, x ≡ M2

Q

�2
χ

)
=

∫ ∞

x

dz

z
e−z zn−2 ; n = 1, 2, 3, . . . , (43.60)

are incomplete gamma functions. Equations (43.58) and (43.59) show the existence of two
phases with regards to chiral symmetry. The unbroken phase corresponds to the trivial solu-
tion MQ = 0, which implies < ψ̄ψ > = 0. The broken phase corresponds to the possibility
that the coupling GS increases as we decrease the UV cut-off � down to �χ , allowing
for solutions to Eq. (43.59) with MQ > 0 and therefore < ψ̄ψ > �= 0 and negative. In
this phase the Hermitian auxiliary field H (x) develops a non-vanishing vacuum expecta-
tion value, which is at the origin of a constituent chiral quark mass term [see the RHS of
Eq. (43.55)]:

−MQ(q̄ LU †qR + q̄ RUqL ) = −MQ Q̄ Q , (43.61)

like the one which appears in the Georgi–Manohar model [512]; and like the one proposed
in the effective action approach of [413]. In the presence of the operator LV,A, we need two
more auxiliary 3 × 3 complex field matrices Lµ(x) and Rµ(x) to rearrange the Lagrangian in
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Eq. (43.49) into an equivalent Lagrangian which is only quadratic in the quark fields. Under
chiral (VL , VR) transformations these collective field variables are chosen to transform as
follows:

Lµ〉VL LµV †
L , Rµ〉VR RµV †

R .

Then, the following functional identity follows:

exp

(
−i

∫
d4x

1

Nc

8π2

�2
χ

GV

∑
i, j

[(
q̄ i

Lγ µqL j
)(

q̄ j
LγµqLi

) + L ↔ R
])

=
∫
DLµ DRµ exp

[
i
∫

d4x

{
q̄ Lγ µLµqL + Nc

�2
χ

8π2

1

GV

1

4
tr LµLµ + L ↔ R

}]
.

(43.62)

It is convenient to trade the auxiliary field matrices Lµ(x) and Rµ(x) by new vector field
matrices:

W (±)
µ = ξ Lµξ † ± ξ †Rµξ ,

which transform homogeneously under chiral transformations (VL , VR); i.e.:

W (±)
µ 〉hW (±)

µ h† ,

with h the SU (3)V rotation induced by (VL , VR). The fermionic determinant can then be
obtained using standard techniques, like for example the heat kernel expansion we described
earlier. When computing the resulting effective action, there appears a mixing term between
the fields W (−)

µ and ξµ. One needs a new redefinition of the auxiliary field W (−)
µ :

W (−)
µ 〉Ŵ (−)

µ + (1 − gA)ξµ ,

in order to diagonalize the quadratic form in the variables W (−)
µ and ξµ. It is this mixing

which is at the origin of an effective axial coupling of the constituent quarks with the
Nambu–Goldstone modes:

1

2
igA Q̄γ µγ5ξµ Q ,

a term like the axial coupling which appears in the Georgi–Manohar model. but with a
specific form for the axial coupling constant gA:

gA = 1

1 + GV
4M2

Q

�2
χ

�
(
0,

MQ

�2
χ

) . (43.63)

In terms of Feynman diagrams this result can be understood as an infinite sum of con-
stituent quark bubbles, with a coupling at the end to the pion field. These are the diagrams
generated by the GV four-fermion coupling to leading order in the 1/Nc expansion. The
quark propagators in these diagrams are constituent quark propagators, solution of the
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Schwinger–Dyson which is at the origin of the gap equation in Eq. (43.59). In the limit
where GV = 0, gA = 1; but in general [542], gA �= 1 to leading order in the 1/Nc expansion.

Kinetic terms for the auxiliary field variables are also generated by the functional integral
over the quark fields Q and Q̄. The resulting Lagrangian, after wave-function rescaling of
the auxiliary fields, has the form of a constituent chiral quark model, with scalar S(x), vector
V (x), and axial-vector A(x) field couplings:

LE N J L
eff = i Q̄γ µ

(
∂µ + �µ − i√

2 fV

Vµ

)
Q − MQ Q̄ Q

+ i

2
gA Q̄γ5γ

µ

(
ξµ −

√
2

f A
Aµ

)
Q − 1

λS
Q̄S(x)Q

+ 1

2
tr
[
∂µS∂µS − M2

S SS
]

− 1

4
tr[(∂µVν − ∂νVµ)(∂µV ν − ∂νV µ) − 2MV VµV µ]

− 1

4
tr
[
(∂µ Aν − ∂ν Aµ)(∂µ Aν − ∂ν Aµ) − 2M2

A Aµ Aµ
]

+ 1

4
f 2
π trDµU DµU † + O(p4)terms , (43.64)

where �µ and ξµ are the same as those defined in Eqs.(43.43) and (43.44), and the coupling
constants and masses are now expressed in terms of only three input parameters. As input
parameters, we can either fix: GS , GV , and �χ ; or the more physical parameters:

MQ , �χ , gA . (43.65)

The coupling constants are then:

f 2
π = Nc

16π2
4M2

Q gA�
(
0, M2

Q/�2
χ

)
,

f 2
V = Nc

16π2

2

3
�

(
0, M2

Q/�2
χ

)
,

f 2
A = Nc

16π2

2

3
g2

A

[
�

(
0, M2

Q/�2
χ

) − �
(
1, M2

Q/�2
χ )

]
,

[3pt]λ2
S = Nc

16π2

2

3

[
3�

(
0, M2

Q/�2
χ

) − 2�
(
1, M2

Q/�2
χ

)]
; (43.66)

and the masses:

M2
V = 6M2

Q

gA

1 − gA
,

M2
A = 6M2

Q

1

1 − gA

1

1 − �

(
1,M2

Q/�2
χ

)
�

(
0,M2

Q/�2
χ

)
,

M2
S = 4M2

Q

1

1 − 2
3

�

(
1,M2

Q/�2
χ

)
�

(
0,M2

Q/�2
χ

)
.

(43.67)
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Table 43.2. The Li -coupling constants in the ENJL model of [540], with gA

defined in Eq.(43.63), and �n ≡ �(n, M2
Q/�2

χ ). The second column gives the
results corresponding to the input parameter values in Eq. (43.68). The third

column gives the experimental values of Table 42.1.

The Li couplings of O(p4) in the ENJL–model Fit 1 Experiment

L1 = Nc
16π2

1
48

[(
1 − g2

A

)2
�0 + 4g2

A

(
1 − g2

A

)
�1 + 2g4

A�2

]
0.85 0.7 ± 0.5

L2 = 2L1 1.7 1.2 ± 0.4

L3 = − Nc
16π2

1
8

{[(
1 − g2

A

)2
�0 + 4g2

A

(
1 − g2

A

)
�1+ −4.2 −3.6 ± 1.3

− 2
3 g4

A

[
2�1 − 4�2 + 3 1

�0
(�0 − �1)2

] }

L5 = Nc
16π2

1
4 g3

A[�0 − �1] 1.6 1.4 ± 0.5

L8 = Nc
16π2

1
16 g2

A

[
�0 − 2

3 �1

]
0.8 0.9 ± 0.3

L9 = Nc
16π2

1
6

[(
1 − g2

A

)
�0 + 2g2

A�1

]
7.1 6.9 ± 0.7

L10 = − Nc
16π2

1
6

[(
1 − g2

A

)
�0 + g2

A�1

] −5.9 −5.5 0.7

In the absence of the vector and axial-vector four-fermion-like coupling i.e., when
GV = 0: gA = 1, MV 〉∞ and MA〉∞. Then the vector and axial-vector interactions de-
couple, and the model becomes equivalent to the Constituent Chiral Quark Model of [512],
with gA = 1 and a non-trivial coupling to a scalar field.

The functional integration over the quark fields and the auxiliary S(x), V (x), and A(x)
fields results in an effective action among the Nambu–Goldstone boson particles, with all
the couplings fixed by the three parameters MQ , �χ , and gA. The explicit results one gets
for the Li constants which appear in the large-Nc limit at O(p4) in the chiral expansion
are shown in Table 43.2. The reason why the constant L7 does not appear in this table is
that, phenomenologically, this constant gets a large contribution from the integration of the
heavy singlet η′ particle. However, in the chiral limit, the mass of the η′ is induced by the
axial-U (1) anomaly, which only appears to next-to-leading order in the 1/Nc expansion.
By definition, the ENJL model, as formulated here, ignores this effect. In order to take
these next-to-leading effects in 1/Nc systematically, together with the chiral expansion,
one has to resort to a U (3) × U (3) formulation of the effective theory [543]. The constants
L4 and L6 are of next-to-leading order in the 1/Nc expansion; this is the reason why
they do not appear in Table 43.2 either. We also show in Table 43.2 the numerical results
of the fit 1 discussed in [540]. These results correspond to the set of input parameter
values:

MQ = 265 MeV , �χ = 1165 MeV , gA = 0.61 . (43.68)

The overall picture which emerges from this simple model is quite remarkable. The main
improvement with respect to the results obtained in the effective action approach model
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discussed in the previous section is on the constants L5 and L8, where the combined effect
of the vector and scalar degrees of freedom leads to rather simple results modulated by pow-
ers of the gA-constant, which agree very well with the phenomenological determinations.
One of the characteristic features of the ENJL model, is that it interpolates successfully
between pure VMD-type predictions and those of the constituent chiral quark model. A
nice illustration is the result for L9 in Table 43.2, where the first term is the one coming
from vector–exchange, whereas the second one comes from the chiral quark loop integral.

There is no difficulty to reproduce the anomalous Wess–Zumino–Witten functional within
the ENJL model [544] QCD two-point functions, beyond the low-energy expansion, have
also been evaluated in the ENJL model [541]. This involves calculations to leading order in
the 1/Nc expansion (i.e., an infinite number of chains of fermion bubbles; but no loops of
chains) and to all orders in powers of momenta Q2/�2

χ . As a result, vector and axial-vector
correlation functions have a VMD-like form, but with slowly varying couplings and masses.
For the transverse invariant functions for example, the results are:

�
(1)
V (Q2) = 2 f 2

V (Q2)M2
V (Q2)

M2
V (Q2) − Q2

, (43.69)

and:

�
(1)
A (Q2) = 2 f 2

π (Q2)

Q2
+ 2 f 2

A(Q2)M2
A(Q2)

M2
A(Q2) − Q2

, (43.70)

where:

f 2
V (Q2) = 4

Nc

16π2

∫ 1

0
dxx(1 − x)�

(
0, xQ ≡ [MQ2 + x(1 − x)Q2]/�2

χ

)
. (43.71)

The product:

2 f 2
V (Q2)M2

V (Q2) = Nc

�2
χ

8π2

1

GV
(43.72)

is scale invariant. With:

gA(Q2) = 1

1 + GV
4MQ2

�2
χ

∫ 1
0 dx�(0, xQ)

, (43.73)

the other couplings are fixed by:

f 2
A(Q2) = g2

A(Q2) f 2
V (Q2) , (43.74)

and the relations

f 2
V (Q2)M2

V (Q2) = f 2
A(Q2)M2

A(Q2) + f 2
π (Q2) ,

f 2
V (Q2)M4

V (Q2) = f 2
A(Q2)M4

A(Q2) , (43.75)

where the last two equalities are the Q2-dependent version of the first- and second-Weinberg
sum rules [26]. In the case of the scalar two-point function there appears a pole in the
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Q2-summed expression at:

MS = 2MQ . (43.76)

The case of the other two-point functions is somewhat more involved because they mix
through the four-fermion interaction terms. In principle, the ENJL model can be applied
to obtain a systematic calculation of the low-energy constants of the weak non-leptonic
Lagrangian (BK -parameter, . . .). These applications can be found in some more dedicated
reviews.
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