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QUANTIZATION OF THE 4-DIMENSIONAL
NILPOTENT ORBIT OF SL(3,R)

RANEE BRYLINSKI

ABsTRACT.  We give a new geometric model for the quantization of the 4-dimen-
sional conical (nilpotent) adjoint orbit Oy of SL(3,R). The space of quantization isthe
space of holomorphic functions on €2 — {0}) which are square integrable with respect
to asigned measure defined by aMeijer G-function. We construct the quantization out
anon-flat Kaghler structure on €2 — {0}) (the universal cover of Og) with Kaehler
potential p = |2*.

1. Introduction. Itiswell-known that the universal cover SL(3, R) admitsaunique
faithful unitary representation, which wewill call H [, whose decomposition under the
maximal compact subgroup SU(2) is multiplicity-free. Theirreducible representations of
SU(2) which occur in H ¥ have spins 1/2,5/2,9/2. .. etc. Furthermore SL (3, R) ad-
mits no multiplicity-free unitary representation with spin ladder 3/2,7/2,11/2, ... but
does have two continuous families parameterized by R of multiplicity-free unitary rep-
resentations with spin ladders 0, 2,4, ...and 1, 3,5, . .. respectively (these then descend
to SL(3,R)). See[J], [S]], [R-S], and [T], as well as [B-C-H-W] for proposed physical
applications.

The geometric construction of H (3 in the spirit of geometric quantization, was ac-
complished by Rawnsley and Sternberg [R-S] who gave aFock spacetype model and by
Torasso [ T] who gave a Schroedinger type model. Indeed, in the method of orbits (orig-
inated by Kirillov on the geometric side and Dixmier on the algebraic side), H (4 cor-
respondsto the minimal nilpotent (i.e., conical) coadjoint orbit Og of SL(3, R) equipped
with its natural K-K-S symplectic form w. So O is the orbit of 3 x 3 matrices of rank 1
and square zero and Oy isa4-dimensional real symplectic manifold. A natural symplec-
tic model of O is obtained by reduction of the cotangent bundle phase space T*R? at the
zero value of the moment map T*R® — R, (p, q) — p - g, for the Hamiltonian R*-action
(p,d) — (pA~L, Ag). Then the Hamiltonian action of SL (3, R) and the (non-Hamiltonian)
fiberwise scaling action of R* on T*R2 survive the reduction to give the conical reduced
phase space Og and moment map (embedding) »: O — 3[(3, R). Asamanifold, O is
diffeomorphic to the quotient of R*—{0} by afreeaction of Z4. The component functions
of the map v then give aLie algebra g of observables on Og isomorphic to 3((3, R).
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The geometric quantization problem on O is to construct geometric models of the
irreducible unitary representationsof SL(3, R) attached to O. In particular, the quantiza-
tion processwill produce, for each representation, aHilbert spaceH of (possibly twisted
or generalized) functions on Ok and will convert the observablesin g into self-adjoint
operators on H consistent with Dirac’s rule that Poisson bracket of observables goes
over into commutator of operators. The construction of H along with its inner product
is equally asimportant as the conversion of observablesinto operators.

In this paper we present a new approach to the geometric quantization of Og. We con-
struct in Sections 4, 5 explicit Fock space type models H [™, m = 0, 1, 2, of the three
irreducible unitary representations attached to Og with spin ladders m/2,2+ m/2,4 +
m/2.... To do this we begin in Section 2 by fixing an SO(3)-invariant complex struc-
ture J on Og whichispolarizing and in fact makes Og into a (positive) Kaehler manifold.
Our modelsare explicit in that H [™ consists of holomorphic sections of ahomogeneous
holomorphic line bundle over Og and the positive-definite inner product is given by in-
tegration over Oy with respect to an explicit (signed) measure Y(z, Z)w? where w? is the
Liouville volume form. Then H [™ is exactly the space of holomorphic sections on Og
which are square integrable with respect to the positive measure |Y(z, 2)|w? obtained by
taking the absolute value of the weight function ¥(z,2) (see Section 5). The three irre-
ducible Hilbert spaces H @ H [ H [4 have reproducing kernels WI%, Wil W2 which
we computein Section 4 and find are given in terms of hypergeometric functions of type
1F>. To simplify matters, we passto the universal 4-fold cover Og of O (but thisis only
for technical convenience).

In our models the observablesin g are converted into explicit (pseudo-differential)
operators on the subspaces HI™ < H M m e {0, 1,2}, of SU(2)-finite vectors. These
operators give the infinitesimal 3((3, R)-representations which then define the unitary
SL(3, R)-representations on H (M by exponentiation. The ladder decomposition under
SU(2) implies that the representation on H [ (but not on H [ or H @) is genuine in
that it does descend to a representation of SL(3, R). The construction of the operators
(and the occurrence of hypergeometric functions in computing the inner product) is an
instance of the more general construction we made with Bert Kostant in [B-K1,2,4].

The explicit quantization, the construction and properties of our signed measure, its
expression as a linear combination of the three reproducing kernels, and the resulting
realizations of the Hilbert spacesare our main results. In particular the weight function
7(z,2) of our measureisgiven by aMeijer G-function G sothatY(z,2) = G(p?/2) wherep
is the SO(3)-invariant homogeneouslinear Kaehler potential on Og. Our functiony(z, 2)
plays the role of the weight factor e 14/2 of Fock space. The appearance of these G-
functions in quantization of conical phase space seems quite significant to us. It should
also be noted that these G-functions arisein what is called “fractional calculus’—I thank
Aravind Asok for telling me about this theory.

In Section 6 we explain the relationship between our work here and the quantization
by Rawnsley and Sternberg [R-S]. In particular we recover their quantization and write
down the explicit operators giving their 31(3, R)-representations. It turns out (see Sec-
tion 6) that there is a nice family of SO(3)-invariant complex polarizations of O each
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of which givesrise to a Kaehler manifold structure on Oy with Kaehler form w. In each
case the universal cover of O is SO(3)-equivariantly biholomorphic to €2 — {0} and
the Kaehler potential p is amultiple of |z/* for some k. Corresponding to each of these
polarizations we construct a quantization (our “correspondence” here is at least heuris-
tic) where 3((3,R) acts by skew-adjoint operators. In each case, the skew-symmetric
matrices, which form the Lie subalgebraf = 30(3), quantize into the corresponding
Hamiltonian vector fields; this reflects the SO(3)-equivariance of the polarization. The
heart of the matter then is the quantization of the symmetric matrices—these form a 5-
dimensional subspacey in 3[(3, R). The Rawnsley-Sternberg caseis then the case where
p = |z]? sothat O, isflat and the Hilbert space of quantization isthe classical Fock space
constructed out of the measuree~12*l|dzdZ. Their quanti zation operatorsfor the symmet-
ric matrices are given by an unexpected kernel. Our caseisthe onewhere p = 2|z]*—the
factor 2 isinessential but the exponent 4 isimportant asit correspondsto p being linear
on Ok (cf. [B2)]).

Our quantization generalizes a different aspect of the oscillator representation of the
metaplectic group on classical Fock space. In our approach the symmetric matrices cor-
respond on the classical level to real partsf +f = 2Ref of holomorphic functions and
on the quantum level to operatorsi(f + Tr) where Tt is the adjoint of multiplication by
the holomorphic function f.

| thank Frangois Ziegler for some very interesting conversationswhile | was writing
this paper and for insisting that | work out precisely the relationship of my approachwith
that of Rawnsley and Sternberg. | further thank him and Alex Astashkevich for helpful
comments on the preprint.

In [B2], [B3] and subsequent papers we will show how the picture of quantization
developed in this paper applies to the quantization of arbitrary conical (i.e., nilpotent)
orbits of any real semisimple Lie group.

It would be extremely interesting to construct intertwining operators between our
§E(3, R)-representation on H [ and the other known models. The intertwining oper-
ators over to the Rawnsley-Sternberg model should follow from our work in Section 6,
but the construction of intertwinors with Torasso’s model seems a challenging problem.
Torasso has raised this question as well.

2. Kaehler Polarization and the Algebra of Classical Observables. \We consider
€2 with homogeneouslinear complex coordinate functions o and z; and standard Hermi-
tian inner product with norm |z = |z|? +|z.|?. Let J be the standard complex structure
on C? and set

p = 2|Z* = 2(|20|* + |za|?)%.

Thenw = iaEp is a smooth closed differential 2-form on C2. Explicitly we have w =
ik 1(0;0kp) dz; dz, with

21 (ao&p aoip):4(2|zo|21|zl|2 2% )
' 010gp 0101p 2071 |20)? + 2|z1|2 )
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Then det(d;d,p) = 16p and
(2.2 w A w = —16p dzydzy dz; dz;.
Thisimplies that w is non-degenerate on

Z=c*-{0}

while w is singular at the origin. Furthermore the Hermitian matrix in (2.1) is positive
definite. Thusweget aKaehler manifold structure(Z, J, w) with pz = p beingtheKaehler
potential.

A real or complex observableon Z is a smooth R-valued or C-valued function on Z.
The symplectic form w induces a Poisson bracket on the algebra C*(2) of real observ-
ables which then extends in a complex bilinear way to the algebra C*(Z, C) of com-
plex observables. In this way C>(Z) becomes a real form of the complex Lie algebra
C>(Z,C). Thereisanatural operation ¢ — ¢ of complex conjugation on C>*(Z, C). If 3
isany complex Lie subalgebraof C*(Z, C) suchthat 3 is stable under complex conjuga
tion, thenthe set {Re¢ | ¢ € s} isareal form of 3.

Next we compute the Poisson brackets among the four coordinate functions zy, zg, z3,
7. We have {7, z} = {7,z} = O and inverting (2.1) wefind

2.3 ({ZO'ZO} {21’30}) _ i(|20|2+2_|21|2 Ak )
{na} {znz}) 4\ -2z 2zf+af
(Hence the Poisson tensor on Z does not extend to C2, as it blows up at the origin.)

We write 7z = p; + ig; where pj and ¢ are real observables. It follows from (2.3) that
the algebra C[zy, Zo, 21, 21] = C[po, Yo, P1, d1] of complex polynomial observables does
not form aLie algebra under Poisson bracket.

Now Z is acomplex coneinside C? in that it is stable under the natural scaling action
of C* on C2. This gives the induced linear representation of C* on the observables. We
have the product decomposition C* = R* x St corresponding to the polar representation
s = re’ of complex numbers, where R* isthe group of positivereals. A (real or complex)
observable ¢ on Z is homogeneous of degree d if ¢(rm) = rimfor al r € R* and
m € Z. The potential p, and hence the Kaehler form w, is homogeneous of degree 4.
Consequently, the Poisson bracket of two homogeneous observables of degreesk and |
is homogeneousof degreek + 1 — 4. Thus

LEMMA 2.1. The homogeneousquartic real (or complex) observableson Z forman
infinite-dimensional real (or complex) Lie algebra under Poisson bracket.

REMARK 2.2. It is useful to compare our setup with the flat case. The flat Kaehler
structure on C? has Kaehler form whg = (i /2)(dzo dzg + dz;1 dz1) = dpodgo + dp; dgy
with Kaehler potential pnx = 3|22 and Poisson brackets

2.9 {Z,2}1a =17, 2312 =0  {Z,Z}na = —2i0j.

Theform w is homogeneous of degree 2. The homogeneous quadratic real (or complex)
polynomial observablesform amaximal finite-dimensional Lie subalgebrawhichis 10-
dimensional and isomorphic to $p(2, R) (or 3p(2, C)).
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ProPOSITION 2.3. Inside the Lie algebra of homogeneous quartic complex ob-
servables on Z we have a complex finite-dimensional Lie subalgebra g¢ isomorphic to
3((3, C) with basis

’UZ = 4 +§
= 2021/8p vl = 28 2023
(2.5) Xo = —|<|_zo|2 P2 wo= zgzz 22
X1 = 2120+/8p uL = 207, %zl
UZ = Z‘i +
These observables satisfy the bracket relations {Xo,%} = jx, {x1,x1} = —2X,

{Xo0, v} = juj, {v2, 2} = Xo Wherewe put X_x = X, v_k = v for k negative.
Thus we have a complex Cartan decomposition

(2. 6) gc = fc @ pe

wherefc = Cx; ®Cxo P Cx1 ~ 30(3,C) and pc = Cvo, G Cug P Cug P Cuy P Cu, carries
the irreducible 5-dimensional representation of f.

ProoF. Consider C" with its flat Kaehler structure as in Remark 1.2. We have a
natural symplectomorphism of C" with T*R" = R" x (R")* wherew = u + iv with
u,v € R" corresponds to (u,V'). Then {vj,w} = {uj,u} = 0and {vj,u} = Gjx. It
follows that the action of GL(n, R) on C" given by a- w = au +iav is Hamiltonian with
moment map »: C" — gl(n, R) defined by v(w) = uv'. Thenv is a GL(n, R)-equivariant
Poisson map and the pullback of the matrix coordinate function gy on gl(n, R) is the
function v*(gx) = ujvi on C". Thus the functions ujv give a basis of a Lie agebra of
real observablesisomorphicto g{(n, R).

Next we restrict v to the complex quadric hypersurface Q C C" definedby w-w =0
wherew # 0. Thenw € Q iff u and v are orthogonal vectors with common non-zero
length. It follows that Q is an SL(n, R)-orbit in C" and a (locally closed) complex sub-
manifold. Furthermore v(Q) is the SL(n, R)-orbit Og C 3[(n, R) consisting of non-zero
rank 1 matrices of square zero and v gives a 2-to-1 covering map vq: Q — Og. Notice
that Q, being acomplex submanifold of C", inherits a Kaehler submanifold structure with
Kaehler potential po = 2|w|? from C".

Now vq isthe symplectic moment map for the transitive Hamiltonian SL(n, R)-action
on Q; i.e., the restrictions of the functions ujv to Q give aLie algebra s of observables
isomorphicto s[(n, R). The Cartan decomposition 3 = f +p wheref istheLie algebraof
the maximal compact subgroup SO(n) is as follows: f, which corresponds to the skew-
symmetric matrices, is the span of uvk — uy; = Imw;w and p, which corresponds to
the symmetric matrices, is the span of ujvi + Uy, = Tmww.

Now put n = 3. Identifying C3 = S°C? we havethe“ squaring” map €% — C2 defined
by

2.7) (20,22) — W= W(Z% 2222021,2% 22)
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where v/i = €"/4, This gives a holomorphic 2-to-1 covering map m: Z — Q so that we
now have a 4-fold covering

14 Q

(2.8) ZLQ—>OR.

Then 7*|w|? = 4|z]? and 0 7 pg = pz. Thus T issymplecticand g = 7*3 isisomorphic
to 31(3, R). We get the desired observables now by taking

Xy = Imwiws — i ImWsW, = UgVo — UpVy — i(UsVe — UpVa)
Xo = i Imwywz = i(Upvs — Ugvy)
1

vy = Z(Im (W5 — WE) +2i Imw,ws ) = %(U;;Vg — W1 +i(UpVs + Ugv))

and so on. ]
Plainly (and by construction) the Lie algebra g is stable under complex conjugation.
Notice that the span of {ixo, X1 + Xa,i(x1 — X1)} isisomorphic to $1(2) while the span of
{ixo, v+ Vg, i(v2 — 52)} isisomorphic to 3((2, R).
Recall that a set of observablesis called completeif the differentials everywhere span
the tangent spaces.

COROLLARY 2.4. Thereal formg = {Re¢ | ¢ € gc} of gc isisomorphicto 5((3, R)
and (2.6) induces the following Cartan decomposition where f = fc N g ~ %0(3) and
p=DpcNag:

(2.9 g=1{®np.

If v € p then v isthereal part of a holomorphic function f on Z so that
(2.10) v = Ref = %(f +£).

We may choosef to be homogeneous of degree 1, and then v determinesf uniquely.
Finally any basis of g is a complete set of eight observableson Z.

Let Og C 3((3,R) be the set of rank 1 non-zero matrices with square zero; thisis the
unique 4-dimensional nilpotent orbit of the adjoint (i.e., conjugation) action of SL(3, R).
(The term “nilpotent orbit” is used to indicate an orbit of nilpotent matrices.) Then Og,
being equivalent to a coadjoint orbit of SL(3,R), carriesthe SL (3, R)-equivariant K-K-S
symplectic form wg, . Let SL(3, R) be the simply-connected (double) covering group of
SL (3, R). Then we have the diagram

SL(3,R) D SU()

| |

SL(3,R) O SO@A)

where the vertical arrows are double covers and the inclusions give maximal compact
subgroups.
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COROLLARY 2.5. The infinitesimal Lie algebra action of the Hamiltonian vector
fields&,, ¢ € g, integratesto a transitive symplectic action of SL(3,R) on Z. The action
of the subgroup SU(2) givesthe Hamiltonian flow of f, isKaehler, preservesthe Kaehler
potential pz and identifies with the standard matrix action of SU(2) on Z = €2 — {0}.

The SL(3, R)-action is Hamiltonian with moment map vz: Z — 3((3, R) given by (2.8)
so that v gives a 4-to-1 SL(3, R)-equivariant symplectic covering

(2 11) vz.Z — OR.

Thus Z is realized, in an SL(3, R)-equivariant symplectic fashion, as the universal cov-
ering space of Og.

We call a(real or) complex vector field £ onacomplex manifold (X, 1) I-polarizedif £
preservesthe complex structure |. In this case, ¢ preserves the algebras of hol omorphic
and anti- holomorphlc functions and there is a unique holomorphic vector field 5 on X
such ¢(f) = §(f) for every holomorphic function f. Themap ¢ — g is complex linear
and preserves commutators.

COROLLARY 2.6.  The Hamiltonian vector fields &, ¢ € f¢, are J-polarized and we
have

0 A 1/ 0 0 A 0
(2.12) Gu—ing  bo=p(ny—ags)  Ea—ing
The infinitesimal Hamiltonian action of f¢ integrates to a transitive holomorphic ac-
tion of SL(2, C) on Z which then commutes with the holomor phic scaling action of C*.
This SL(2, C)-action is the complexification of the SU(2)-action and identifies with the
standard matrix action.
SU(2) x St is the subgroup of SL(2, C) x C* which acts on Z by Kaehler automor-
phisms.

The last assertion follows because SU(2) x S' is the subgroup preserving the Kaghler
potential, and the Kaehler potential hereis determined uniquely by the added condition
that it is R*-homogeneous (see [B2]).

While the whole S' subgroup of C* preserves|z| and each observablex; in (2.5), only
the subgroup Z4 preserves the observables v;. Here we identify Z,, with the subgroup of
nth roots of unity in St. We conclude

COROLLARY 2.7. R* x Z4 is the full subgroup of C* = R* x S' whose scaling
action on Z commutes with the SL(3, R)-action. Furthermore the action of the 7, factor
is Kaehler and gives the group of deck transformations of (2.11).

Thus (2.11) realizes O as the quotient of the Kaehler manifold Z by a Kaehler action
of Z4. In this way, Og acquires a SU(2)-invariant Kaehler structure (Og, J, wo,) Where
wo, isthe SL(3, R)-invariant K-K-S symplectic form.

We note that the homogeneous quartic Kaehler potential p on Z descendsthrough the
covering (2.11) to ahomogeneouslinear Kaehler potential on Og.

https://doi.org/10.4153/CJM-1997-048-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-048-0

4-DIMENSIONAL NILPOTENT ORBIT 923

The Z-action induces a decomposition R (2) = ¢ _;R'%(Z) where R'(2) is the
space of holomorphic functions on Z which transform by the character x™ where
X(€™/?) = €7/, Then R¥(2) identifies with the space of holomorphic sections of a

holomorphic complex line bundle over Og.

3. The Complex Cotangent Bundle and Holomor phic Symbols. The complex
cotangent bundle T*Z has a canonical holomorphic symplectic form Q since Z is a
complex manifold. Then the real part ReQ is the canonical real symplectic form on
T*Z. Locally the picture looks as follows. T*Z admits local holomorphic coordinates
(z1,---+Z0, 1y - - -, Cn) Where(zy, . . ., z,) arelocal holomorphic coordinateson Zand Q =
Sh_q 0k A dz. Changing over to real coordinates we can write z = 01 + igp and
( = Pok—1 — Ipx and then ReQ = Zﬁll dpk A dgk. The forms Q and ReQ define
respectively Poisson brackets{ , }q and {, }req On the algebra R™ (T*Z) of holomor-
phic functionson T*Z and the algebra C*°(T*Z, C) of complex observableson T*Z. Then
{f.ate = {f,g}req for f,g € R¥(T*2). This follows, e.g., by calculating in local
coordinates.

We identify T*Z = Z x C? in the obvious way and then Q = d¢y A dzp + d(1 A dzy
where (o, (1 are the standard holomorphic coordinates on C2. Then

{7,230 =1{G:¢4}a=0 and {G,z}a = .

The holomorphic function

(3.1 N =20 +21(1

on T*Z isthe symbol of the holomorphic Euler vector field on Z
0 0
3.2 E=2z—+z—.
(3.2 gt ag,

Let T*Z be the open set of T*Z where A is non-vanishing.
The 1-form 6 = 5(0 — 0)p isasymplectic potential on (Z,w), i.e., # is asmooth real
1-form such that w = df. Let

(3.3) b:Z— TZ

be the section of the cotangent bundle defined by 6. Let H (2) = b*R™(T*Z) be the
algebra of complex observables on Z obtained by pullback of holomorphic functions
fromT*Z.

ProrosITION 3.1. Wehave b(Z) € T*Z and b is an embedding of Z into T*Z as
atotally real symplectic submanifold so that w = b*(ReQ). Then H (2) is a complex
Poisson subalgebra of C*(Z, €) and each observabley € H (Z) has a unique extension
to a holomor phic function ®(w) on T*Z. The resulting map

(3.4) ®:H 2) — RY(T*2)
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is an isomor phism of complex Poisson algebraswhere {¢, v}, = {®(¢), D)} .-
The observables z, Z,/p, Zz and p all liein H (Z) and their holomorphic extensions

are given by
- @) =2  PEy/8p) = i
.5 i T
) = pA,  PFE) = S

PROCOF. Thefirst paragraph is provenin [B2]. To prove the rest, we first compute

(3.6) 9= 10 - 9@l = 2273 2% — Zca).

k=0
It follows (see [B2]) that b*(G) = —4i|Z?Z and s0 b*(() = —iz+/8p. This gives
b*(3A) = p and b (i / (4N)) = Zz .

COROLLARY 3.2. Every observablein the Lie algebra g¢ (constructed in Proposi-
tion 2.3) liesin H (2) and hence extends uniquely to a holomor phic function on T*Z.
Explicitly we have, wherej = 0,1,2,3,4andk = 4 —j,

D(x1) = izGz _ »
(3.7) D(x0) = 5200 — 2161) P(vj-2) = 72'&5—1(6—/\12) 4,
CD()?]_) = iZ]_Co

Thus re = ®(qc) is a complex Lie subalgebra of R™ (T*Z) with respectto { , }o and
re ~ gc =~ 3((3,C).

Let Z bethe complex conjugate manifold (Z, —J). We may regard Z as atotally real
submanifold of Z x Z by means of the diagonal embeddingA:Z — Z x Z, A(2) = (z, 2).
Then all the polynomial observables on Z extend uniquely to holomorphic functions
on Z x Z. We denote the extensions of z and Z respectively by z (again) and wj. Then
20, Z1, Wo, W1 are holomorphic coordinate functionson Z x Z. The holomorphic extension
of |2 is

(3.8) Mz, W) = ZoWo + Z1Wj.
Let(Z x Z)O be the open set of Z x Zwhere \ is non-vanishing.

COROLLARY 3.3. The section b: Z — T*Z extends uniquely to a holomor phic map
B:Z x Z— T*ZwhereB(u,V) = (u, —4iA(U,V)v). Then Bz = 7 and B*¢ = —4iAW.
Also

(3.9) B*(D(g) — )2
We have B(Z x Z)° = T*Z. Therestricted map

(3.10) B(Zx2)°—TZ
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is a holomorphic 2-to-1 covering map of complex manifolds. Thus we may pull back the
canonical holomor phic symplectic form Q on T*Z to obtain the holomor phic symplectic
formQ* = B*Q on (Z x Z2)°.

PrROOF. Thefirst paragraph is immediate from Proposition 3.1. Then B(Z x Z)O C
T*Z because of (3.9). To prove the rest we essentially need to construct an inverse map
to (3.10). Thereisan obstructionto thisasonly the squareof A, not \ itself, isthe pullback
of afunction on T*Z. To remedy this, we construct acomplex manifold M which double
covers T*Z by “extracting a square root of A”. A model for M is the codimension 1
complex submanifold

M = {(w,t)| A(w) = —4it’} C T'Z x C*

and then the natural projection :M — T*Z is a holomorphic 2-to-1 covering. Now
we can lift B to a holomorphic map B: (Z x Z)° — M where B(m) = (B(m), )\(m))
since B*(\) = —4i)\? by (3.5) and (3.9). Then B clearly has an inverse and so is a bi-
holomorphic isomorphism. This gives our result asB = 7o B. L]

4. Reproducing Kernelsand Quantization of Observables. First we briefly dis-
cuss reproducing kernels and Wick-Berezin symbols. Let H be a separable pre-Hilbert
space with inner product ( , ); let H be the Hilbert space completion of H. Assumethat
H consistsof holomorphic functions on acomplex manifold (X, 1). Let X bethe complex
conjugate manifold (X, —I). Pick some (countable) orthonormal basis {s,} of H. If the
SUM 3= $h(2)sn(W) converges (absolutely and uniformly on compact sets) to a holomor-
phic function W(z, w) on X x X, then we say that H is a holomorphic reproducing kernel
Hilbert space with reproducing kernel W. It follows that (i) H consists of holomorphic
functionson X, (i) W(z, W) = >, ta(2)tn(W) for any orthonormal basis {t,} of H , (iii) the
function W, = W(z,w) liesin H for any w € X, and we have the reproducing property
(iv) (s,Ww) = s(w) for every s € H . The functions W,, are called the coherent states.
We may call W the reproducing kernel of (H,( , >) and write (H, W) for this pre-Hilbert
space.

Let usexplain (i) in more detail asthisis akey point for us (cf. Corollary 4.4 below).
The (abstract) Hilbert space completion of H is the space H of seriesf = > chs,,
cn € C, such that 3, |cq|? converges. The content of (i) is that the holomorphicity of
Y implies that the seriesf = 3, ¢S, defines (by absolute and uniform convergence on
compact sets) a holomorphic function f. To see this we use the coherent states. Indeed,
Yy = Shs(W)s, is a holomorphic function on X since W is aready holomorphic on
X x X. Also W,, hasfinite norm as |Wy[> = Yo |s(W)[? = W(w,W). But then for f =
Shensh € H, (f, W) isfinite and given by (f,W,) = > cash(W) where the series
converges absolutely. We conclude that the seriesf = 3, ¢,s, definesf asafunction on
X and f(w) = (f, Ww). HenceH consists of functions on X. Now suppose a sequence f,
in H convergesto f with respect to || |. The Schwarz inequality gives

[fo(w) = FW)| < [[fo — Wl = Iifo — F| W (w, w).
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Hence f, converges to f pointwise and uniformly on compact sets. Consequently the
holomorphicity of thef, impliesthat f is holomorphic. This argument was adapted from
[F-K, proof of Proposition 1X.2.7, pp. 171-2]). _

Let (X x X)* be the open set where W is non-vanishing. Then (X x X)* contains the
diagonal Ax = {(z,i) | ze X} since W is positive on Ax. Notice that W correspondsto
the identity operator H — H in the obviousway.

We will say that a complex linear operator A:H — H is W-admissible if the quantity
AV (2 = Tn(Aty)(Dtn(w) defines a holomorphic function on X x X. Clearly such op-
erators may be unbounded. From now on we consider only W-admissible operators on
H.

The Wick-Berezin symbol ¢4 = ¢ of Aisgiven by theformula

(4.1) (A¥)(2) = ¢(z W)Wu(d)

so that ¢ isaholomorphic function on (X x X)*. The symbol of the adjoint operator A*
is

(4.2) Oa (2 W) = Pa(W, D).

If Ais multiplication by aholomorphic function f, i.e., if A= f, then ¢a(z, W) = f(2).

We can reverse our perspective and observe that via (4.1) a holomorphic function
#(z, W) defines a W-admissible complex linear operator A = A’: H — H with symbol ¢.
If € C(X, C) extendsto aholomorphic function ¢ on X x X sothat ¢(z,w) = ¢(z, 2),
thenwewill write T (¢) = T, for A?. Then (4.2) givesT * = T;. Noticethat the operator
T, isunchangedif wereplace (, ), or equivalently W, by any positive multiple.

Now we return to our situation. Let C[Z] = C[z, z1] be the algebra of holomorphic
polynomial functions on Z, with C,[Z] the subspace of homogeneous degree n polyno-
mials. The Kaehler action of SU(2) on Z (see Corollaries 2.5 and 2.6) gives a corre-
sponding SU(2) representation on C[Z]. This representation is completely reducible and
multiplicity-free. In fact C,[Z] carries the irreducible n + 1-dimensional representation
of SU(2). It follows that for any SU(2)-invariant Hermitian non-degenerate pairing on
C[Z], the spaces C,[Z], being inequivalent SU(2)-representations, are orthogonal. Fur-
thermore (by Schur’s Lemma) the pairing is unique on each space C,[Z] up to a scalar
in R*. We conclude that any reproducing kernel W on C[Z] is a seriesin the function A
defined in (3.8) so that
4.3 Yzw) = > %A”.

nez. nl

Thelinear action of Z4 on C[Z] (see Corollary 2.7) breaksup into adirect sum of joint

eigenspaces
C[Z] = HY g HY ¢ HIF g HIE

where HIM = ¢[Z] N R (2). Then HI™ = @7, Canvm[Z] Where Z. is the set of non-
negativeintegers.
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Foreachm = 0,1,2o0r 3, our goal is(if possible) to “ quantize” our real Lie algebra g,
or equivaently our complex Lie algebra g, of observablesinto an algebra of operators
on HIM Precisely, this means that we wish to construct a positive definite-Hermitian
inner product ( , ) on HI™ and acomplex linear quantization map

Q :gc — End HM

which together satisfy the Dirac axioms (cf. [Ki]):
(i) Q (2) istheidentity operator
(i) TheoperatorsQ (¢) and Q (¢) are adjoint
(iii) The operators satisfy

(4.4) Q ({6 v}) =i[Q (4).Q (v)]

(iv) Q (g) isacompleteset of operatorson HI™ (since g iscomplete by Corollary 2.4).

We will add three more axiomsto the list:

(v) If theHamiltonianflow of ¢ isKaehler, (i.e., if £, preservesJ) thenQ (¢) = —i&,

(vi) If f isholomorphic then Q (f) is multiplication by f,i.e, Q (f) = f

(vii) (HI™, (, )) has aholomorphic reproducing kernel Wi,

The new axioms (v)—(vii), as well as our original choice of HI™ as the pre-Hilbert
space of quantization, of course depend on the choice of polarization. There are many
physical motivationsfor (v)—(vii). Infact (v) isbasicto polarization theory, (vi) isnatural
in twistor theory, and (vii) meansthat the quantization has coherent states. These axioms
arose in the context of quantizing the whole algebra C*>(Z, C), but also make sense for
Lie subalgebras of observables.

Now axioms (ii), (vi) and (vii) determine the quantization of antiholomorphic observ-
ables. In terms of the Wick-Berezin operators T (¢) discussed above we concludethat if
f is holomorphic then

(4.5) QM) =T).

But then the axioms and the value of WM completely determine the quantization of our
Lie algebra g since the observablesin g have such asimple form. Indeed by Corollar-
ies 2.4 and 2.5, we have the Cartan decomposition (2.9) and if the Hamiltonian flow of
x € f isKaehler while every v € p isgiven by (2.10).

To summarize this discussion, we make

DEFINITION 4.1.  An SU(2)-invariant Hermitian inner product ( , ) on HI™ with
reproducing kernel WM js quantum if the corresponding complex linear map Q : gc —
EndHIM defined by

Q (x) = —i&y if x € f

(4.6) Q)=f+T(f) ifv=Ff+fecpandfe[zZ]

is aquantization in that (HI™, Wi Q) satisfies axioms (i)~(vii).
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It follows easily now that WI™ is quantum iff Q as defined by (4.6) satisfies (4.4).
Moreover the definition (4.6) automatically ensures that (4.4) holds if ¢,v € f orif
¢ € f,¢) € p. ThusQ isaquantization iff (4.4) holds for al ¢, € b, so iff for all
v,v’ € p we have

4.7) &y = [T @, T @)].
Thisisaconditionon (, ), or equivalently on W™ which we completely analyzein our
next result.

THEOREM 4.2.  For m = 0,1 or 2, H™ admitsa quantum SU(2)-invariant Her mitian
inner product { , ). Thisinner product is unique up to multiplication by a positive scalar.
The corresponding reproducing ker nels are functions of A and given, up to positive mul-
tiples, by

2 _ Wiy — [ RVARY
WA = W) = 3Fa( 73 302037

However on HI¥, no SU(2)-invariant Hermitian inner product is quantum.

Here and throughout the paper we use the standard hypergeometric function notation
so that
,bq;X) — i (al)n"' (ap)n n

pFg(as, ... 3pi by, .. Zon! (bo)n - (B~

where (@), = a(a+1)---(a+n—1).

PROOF. At the outset, we may consider all cases simultaneously by considering an
SU(2)-invariant Hermitian inner product ( , ) on C[Z] with reproducing kernel W. Then
Y must be of the form (4.3) and

n!

(4.8) 1231° = 12)” = 0

We want to determine what condition W must satisfy in order that (4.7) holds for all
v,v" € p, or equivaently for all v,v" € pe. It suffices (see [B-K3, Lemma 3.6]) to
verify (4.7) in the one instance

(4.9) 8o = [T (2, T (2)]-

Letf, = Zand T, = T (f,) fora = 0,1. By (25) wehave T (vp) = fo + T1 and
T (v2) = f1 + Tp and (2.12) computes &y,. Clearly [fo,fi] = [To, T1] = 0, and so (4.9)
becomes

(4.10) [fo, To] — [f1, Ta] = —%(20:—20 - Zlg—zl)-
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In order to analyze (4.10) we will derive aformulafor T,. Indeed (4.1) gives
(4.11) TaWw = WaWy,

which, by homogeneity in the wp, w; variables, implies

Ta( Onsa A”*“) _ gy

(n+4)! ant

But Ef’—zaA = W, and we easily find:

04
(4.12) Ta= DE
where
(4.13) D= > Dpen and D, = Ch .
nez, dn+4

Here e, is the linear operator on C[Z] such that enf = npf if f € Cp[Z]. Set D, = O for
n<o0.
To find W, we compute out the relation (4.10) on each test function s, = z‘bz‘i € C[Z]
with n = j + k. Then (4.10) reduces to the numerical equation
k—]

(4.14) Dn-a4([il4 — [Kla) — Dn([i + 414 — [k + 4]4) = N

wherewe put [p]s = p(p — D(p — 2)(p — 3). The problem of determining W is now the
problem of solving this equation for the scalars Dy, n € Z.. To analyze (4.14) we start
off inductively. For n € {0, 1, 2, 3}, (4.14) becomes

k—j

(4.15) —Dn([j +41s — [k +4]4) = —

We need to analyze all casesj + k = nwherej > k. For n = 0, there are no such cases,
and so (4.15) gives no restriction on Dg. For n = 1, thereis (j, k) = (1,0) and this gives
D, = 1/(16- 12). For n = 2, thereiis (j, k) = (2,0) and thisgivesD, = 1/(16 - 21).
For n = 3, there are two cases (j, k) = (3,0), (2,1) and these give the different values
D3 = 1/(16 - 34) and D3 = 5/24. Hence there is no solution for Ds. This proves that
HI® admits no quantum inner product.

Next we go back to (4.14) and consider n = 4. Thenthetwo cases(j, k) = (4,0), (3,1)
give two independent equations Dg — 69D4 = —1/12 and 30D4 = 1,24 with unique
solution Dg = 1/80and D4 = 1/(30 - 24).

At this point, we see that for each of m = 0,1, 2, there are two possibilities. Ei-
ther (4.15) uniquely determines the sequence (D, Dmsa, - - ), OF (4.15) becomes unsolv-
able for some value n = m+ 4k as we check through al casesj + k = n. In the former
case, the sequence (D, Dma, - - -) determines the unique (up to multiple) quantum in-
ner product on HM, while in the latter case H™ admits no quantum inner product. We
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claim that the former case is the one that actually happens. To verify this, we will not
continue the inductive process, but instead simply guessaformulafor D, and provethat
it solves (4.14).

Motivated by theform of the pseudo-differential symbolsin (3.7), we makethe guess:
D isthe quantization of 1/(16A?) and so D should be the inverse of an operator of the
form 16(E + ¢;)(E + ¢2) where ¢; and ¢, are constants. Thismeansthat D, istheinverse
of 16(n + c31)(n + ¢z). Comparing with the four values Dy, D1, D2, D4 we have already
computed, we guess that

1
Dn = e+ D +5)

To check that (4.16) solves (4.14), we can simply substitute into the formal identity
from [B-K3, Lemma4.8]. Let usrecall the statement: if

a0318,8
b(b+ 1)

and &, = b — a,, where ag, a1, @, az are fiveindeterminates then
J(ai;b)—J(&:b) — (@ + L;b+ 1)+ I(a + L;,b+ 1)
=2b—(ap+ay+ay+ag) .

(4. 16)

J(ai;b) = J(ao, a1, a2, az;b) =

(4.17)

To usethis,weputb = (n—3)/4andan = (j — m)/4form = 0,1,2,3. Thena;, =
(k—3+m)/4wherej+k =nand2b— (a+a; +a +ag) = (k—j)/2. Then (4.17)
givestheidentity

[Ja —[Kla  [i+4sa—[k+4]s k-]
16(n—3)(n+1) 16(n+1)(n+5 2

Notice that division by n — 3 is allowed since we have excluded the casen = 3 + 4m.
Finally (4.18) says that our guess (4.16) solves (4.14). Clearly the coefficients of the
corresponding series W™ are all positive once we choose dn, positive. Thus we get a
unique (up to multiple) quantum inner product on H™ for m= 0, 1, 2.

It is easy now to compute the reproducing kernels W™ for m = 0, 1, 2. Indeed (4.13)
and (4.16) give the recursion relation dney = 16(n + 1)(n + 5)d, wheren € Z,. Let
th = dn/n! so that WIM(\) = S neaz,+mthA™. Then we get the recursion

(4.18)

n+5 ¢
(n+2)(n+3)(n+4) ™

Now we writen = 4k + mwherem = 0,1,2and set ' = m/4 and k' = k+m'. Then

(4.19) tes = 16

K+2 .
(K + (K + (K +3)

takemes = 4k+m

(4.20)
_ (' + 2)
(0 + D + Dt + )
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We may setty = t; = t, = 1. Notice that our three values of m are precisely the values
which makent +1, ' +2 or ' +2 equal to 1, hencewhich make one of the denominator
factors equal to kl. Thusfor each of m = 0, 1, 2, we get a hypergeometric function. This
proves our formulas for the reproducing kernels. ]

REMARK 4.3.  We can revise the proof by analyzing the relation (4.10) on a suitable
series W(zZo, z1) instead of on the monomials 42‘; If we choose W(z) = € then we
recover many of the calculationsin [R-S]. A more natural approach for usisto choose F
to be the unknown reproducing kernel W(z, w), but we are not yet able to carry out this
approach in a nice manner. The ideal proof here would produce directly the differential
equation (5.5) below.

For usein Section 5 (see Corollary 5.3) we construct the hypergeometric functions

. 5 1 — 3 1 1 \om

(4.21) PM(x) = ng(m'+Z,m(+Z,m+1,m+z,n~(+§,m+z,x4)x
wherem € {0,1,2,3}, M = m/4 and the hats mean that we omit the term if it is equal
to 1. Clearly PIM()) = WM ()\) form= 0,1, 2.

The theorem and its proof give several corollaries. First the holomorphicity of W™
implies

COROLLARY 4.4. Let m € {0,1,2}. Then the Hilbert space completion of
(HIM @Im) js a Hilbert space H [™ of holomorphic functions on Z. We have H ¢

RY(2).
The proof gives an explicit formula for the operators corresponding to p. Let
(4.22) E =(E+1)E+5).
COROLLARY 45. Letme {0,1,2}. Letf = Z7 € C4[Z]. Then
I
= ﬁ@
Forj=0,1,2,3,4andk = 4 — j, we have

@24)  Q(u-2)=Q (A& + (-2 = 22 + (-1

(4.23) T (f)

1ot
16E azgazil'

The proof of [B-K3, Theorem 5.2] applies equally well in this setting and gives

COROLLARY 4.5. Let m € {0,1,2}. The skew-adjoint operators n(¢) = iQ (¢),
¢ € g givean irreducible g-representation

(4.25) mq — EndHI™.,

Furthermore the operatorsiQ (¢) exponentiateto give an irreducible unitary represen-
tation

(4.26) SL(3,R) — UnitH M.

For m= 0or 2, but not for m = 1, this representation of éI(S, R) descendsto a repre-
sentation of SL(3, R).
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5. The SU(2)-Invariant Measure. Any real observable 1(z,2) on Z = €2 — {0}
defines a distribution

(5.1) M) = [ 622 u(z2)|dzcZ

where ¢ is a continuous function on Z of compact support. In fact M is a (signed) mea-
sure and M (¢) is defined as long as the integral in (5.1) converges absolutely. Here Z
is orientable and integrating with respect to the density |dzdZ] is the same asintegration
against the volume form dzdz = dz, dz; dzp dz;.

We recall the notion of absolute convergence. Let a(z, 2) be a continuous R-valued
function on Z. We say that the integral J> «|dzdz] convergesabsolutely iff [ |«| |dzdZ]
converges, and then the value of J; « |[dzdZ] is Jz ot |dzdZ] — Jz o |dzdZ] where o =
o —o~ witha™ and o~ non-negativeand o™ o~ = 0. Then Jz o |dzdZ] can also becom-
puted as a sum of a series of integrals over bounded sets of Z. If we take any
partition of unity {uy(z.2)} then Jz ar|dzdZ] = ¥ J7 Un|dzdZ]. Also f; adzdZ] =
lim; _ J,<r a|dzdZ. This discussion extends to the case when « is C-valued for then
weput [z «|dzdZ] = [ oy |[dzdZ] +i [ oz |dzdZ] where o and o, are thereal and imag-
inary parts of a.

Given u, we will say that a holomorphic function f on Z is square integrable with
respect to u|dzdz] if the integral J, |f|?u|dzdZ] converges absolutely. Notice that holo-
morphicity implies that |f|? is bounded as p — 0.

We will say that 11|dzdZ] is an admissible measureif the following growth conditions
are satisfied: 11(z,Z) and al its partial derivatives (of all orders) are (i) boundedasp — 0
and (ii) tend to zero faster than any algebraic power of p as p — oo. Inthis case M (fg)
is defined for any f, g € C[Z] and the formula

(5.2) (f.9) = | (20@n(d|dzdZ

defines a Hermitian pairing on C[Z]. We do not require that p is positive on Z.

Our goal in this section is to find an admissible measure ;;1|dzdz such that, for m €
{0,1, 2}, our Hilbert space H I is exactly the space of functionsin R™(Z) which are
squareintegrable w.r.t. u and furthermore (5.2) gives the positive-definite inner product
on H M with reproducing kernel WM computed in Theorem 4.2. We will see (Theo-
rem 5.5) that this problem isimpossible to solvefor . positive, but has aunique solution
where 1, assumesboth positive and negativevalues. Then i isafunction of p and 1 ispos-
itive outside somefinite ball p < r. Wecompute 1 explicitly. We argue that 1.(z, Z)|dzdz|
plays the same role as the measure e*‘z|2|dz dz] on C" which givesrise to Fock space.

REMARK 5.1. A better formulation of (5.2) comes by using half-forms. Cf. [B-K1]
and [B2]. For later comparison we sketch how to translate our results here into the half-
form language. First (2.2) gives v/w A w = +/16p ,/|dzdZ. Next afunction f(2) € HI™
isreplaced by the half-form s(z) = f(2)v/dz Then|s(2)|? = s(2)s(2) = f(2)|?\/|dzdZ]. Fi-
nally i:|dzdZ] isreplaced by the half-form i = py/|dzdZ] = v+/w A w. Thenthe quantity
to be integrated over Z is |s(2) s = |f(2)[*Y(z,2)\/16p|dzdZ.
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PrOPOSITION 5.2. Choosem € {0,1,2}. Suppose that u|dzdZ is an admissible
measureon Z and consider the correspondingHer mitian pairing on H™ defined by (5.2).
Then the following conditions are equivalent:

(i) Amultiple of the pairing is positive definite with reproducing kernel WM,
(if) Thepairing isnon-degenerateand g-invariant with respect to the representation
(4.25).
(iii) u(z 2) isasmooth non-zero function of p and p satisfies

1 0
(5.3 EEM(Z:Z = Zu(z,2).

(iv) Thereisasmooth non-zero function F(x) on (0, oo) such that

(5.4) W27 = F(@

and F(x) satisfiesthe order 4 differential equation

d d d*
(5.5) 16(x& + 1) (x& +5) F= wF.

PROOF.  The equivalence of (i) and (ii), for any Hermitian pairing on HM, follows
from Theorem 4.2 and Corollary 4.5; notice in (i) that since WI™ is SU(2)-invariant,
it can be the reproducing kernel of only an SU(2)-invariant pairing. Furthermore (ii)
is equivalent to the combination of the pairing being SU(2)-invariant and the operators
T@) = l—le% and Z} being adjoint. Now ( , ) as defined by (5.2) is SU(2)-invariant
iff 1u(z,2) is SU(2)-invariant. This follows as the SU(2)-action on H [ isinduced from
the natural SU(2)-action on Z (see Section 2). Since the SU(2)-action on Z is free and
its orbits are the level surfaces of |z|, any smooth SU(2)-invariant function is a smooth
function of |Z]. Thus (, ) is SU(2)-invariant iff u is of theform (5.4).

Next we show that T (Z}) and Z3 are adjoint iff . satisfies (5.3). Clearly T () and 3
are adjoint iff % and 16Z3E are adjoint, o iff for al f,g € HM we have(%,g) =
(f,16Z4Eg). In terms of (5.2), this means

5.6 [ 2 Guldedz = 16 [ £ Q) ulczet
' z 073 z '
We will rewrite both of these integrals using the formula

o 0@, [
(5.7) /Z 52, Oldz27 = —_/Zfﬁmzdﬂ = —_/nga|dzdz|.

To get thefirst equality we integrate by parts and check that the boundary term vanishes.
Indeed the boundary termis limy_.., [,—, 7 — limy_o J,—, 7 wheren = fgu dzodzo dz; is
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the boundary three-form on Z. But our growth assumptions on . imply that both limits
are zero.
Now by (5.7) (iterated four times), the left hand side of (5.6) is

o _ _o%y
/ Egu|dzdi| = -/ng@ |dzdZ.
On the other hand, it follows from (5.7) that
(5.8) /Zf(E_g)u|dde| - —./ng((E+2)p)|dsz|.

Since the substitution E — —E — 2 transforms ZE = (E— 3)(E+1)Z into EZ}, wefind
that the right hand side of (5.6) is

16/Zf (ZEg) yldzdZ] = 16/Zf 9 (@E p)|dzdz.

Noting that ZJE = EZ} since E is holomorphic, we conclude that (5.6) is equivalent
to (5.3). Thisprovesthat (i)« (iii).

Next we show (iii)<(iv). The problem is to show that equations (5.5) and (5.3) are
equivalent where we take 4 = F(|z|) because of (5.4). The equivalence is easy since
% = ZF'(¥) and Ep = xF'(x) where x = |2]. .

Our application of integration by partsin the proof abovewas modeled after the stan-
dard calculations (see, e.g., [Fo]) for the oscillator representation.

Recall the definition of PIM(x) from (4.21).
COROLLARY 5.3. F(x) isa solution to (5.5) iff F isa solution to

1 0

(5.9) ToE EF(A) = WoF(\).

The solutions of (5.5) are the functions F(x) of the form, for r; € R,
(5.10) F(X) = roW(x) + ry W (x) + ro W (x) + raPE (x).

In particular every solution F(x) extends to a holomorphic function on the complex
plane.

PrROOF. Thefirst statement is clear from the previous proof. To see the rest, we go
back to the proof of Theorem4.2. In thelast step, we deduced the recursiveformula(4.20)
from (4.13) and (4.16). From this and (4.11), we see the following is true: the function
F(\) = Tnez, thA"isasolutionto (5.9) iff thet, satisfy (4.20). Thefour functions P (x),
m= 0, 1,2, 3arelinearly independent and their coefficients satisfy the recursion (4.20).
Theresult follows. L]

The following gives a holomorphic version of (5.3).
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COROLLARY 5.4. Suppose m € {0, 1,2} and 1.(z,2) satisfies the equivalent condi-
tions in Theorem 5.2. Then p(z,2) extends to a holomorphic function iz on Z x Z and
fi(z,w) = p()) is aholomorphic function of A.

Furthermore (), like WIM(A]) for m= 0, 1, 2, isa solution to (5.9).

Thelast statement saysthat the measure function ;. and the three reproducing kernels
satisfy the same order 4 differential equation. Thisis akey result and leadsto aformula

for 1 in Theorem 5.5 below.
The Meijer G-function of type ($3)

(5.12) G = Gi5(ul;, 5,.)

is defined by the contour integral
G(U) = i /C+Ioo Mo+ B (o + B2)[ (o + B3) 0 do

27 Je—ioo Mo+ ai)

where o is a complex parameter and ¢ > 1/4. The Méllin transform of G is given by
(see, e.g., [Ma], [P-W])

o _ (o +B1)l (o +B2) (0 + Ba)
(5.12) /0 wlG(U) du = 1r(0+ai) ¥

THEOREM 5.5. Choosem € {0,1,2}. Then there is a unique admissible measure
11(z,2)|dzdz] on Z such that (5.2) gives the Hermitian inner product on HI™ with repro-
ducing kernel WM Furthermore, up to positive multiple, 1(z, 7) isindependent of mand
is given by a Meijer G-function so that

2 -3
(5.13) w(z,2) = G(%) where  G(u) = Gig(u . 1).
302
We have
(5.14) p(A) = reW ) +r W) + Wl ()

whererg,r, < 0,r; > 0and
_TOr@ , _r@ren _repred)

’ 1= ’ 2 =
) r-d r=3
Finally the asymptotics of u(z, 2) are

(5. 15) o

asp— 0, w(z,2) — 1o

/7

asp — oo, u(Zi)NTWpe_”'

In particular, there exist a,b € R* such that u(z,2) is negative if p < awhile u(z2) is
positive for p > b.

PrOOF. Because of Proposition 5.2, we write u(z,2) = F(X) where x = \/ p/2and
the problem is to find solutions F(x) of (5.5) which exhibit appropriate growth behavior
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asx — 0and asx — oo. Corollary 5.3 implies that every solution is bounded at x — O.
So the problem isto find solutionswhich decay, and decay fast enough, as x — co. How-
ever the asymptotic theory of differential equations of the type of (5.5) is well-known
(see [P-W, Chapter 3]). It turns out that one can construct (using Meijer G-functions) a
fundamental system of solutions of (5.5) which, asx — oo, are asymptotic to e 2¢, €2,
x~1, and x~° respectively. It follows that there is a unique solution F(x) asymptotic to
e 2¢ and thisisthe unique solution up to scaling that decaysfast enough at infinity for
us. Thissolution F(x) is given by (see[P-W, p. 85])
01 l) '

) = atg(¢
1312
There is awell-known formula (see [Ma, th. 2.3, p. 98]) that expresses a Meijer G-

function G(u) of type (;3) as alinear combination of r terms of the type qu,l(iu)ub.
Applied to G with 31, 32, 3 distinct this gives

13
17

(5.16) F(x) = Gg;g(x“

113
0,7.3:7

(04

Gig(u‘(ﬁ,ﬁz,/ig)
i F(Bi — BT (B — B
k=t Mo — B
where in the summation {i,j, k} = {1,2,3}. Thisgives

531 353 735 5
_ 2.9 1, + 2.2 3, + .99,

F(X) 1F2(4, 7 2,Xél)ro 1F2(2, 4,4,X4)T1X 1F2(4, 2,4,X4)|’2X
where (5.15) givesrg, r, r2. Clearly the constant term ro dominates as x — 0. Because
of (5.4) thismeansy — Oasp — 0.

The asymptotic of ngg(u) asu — oo is computed in a formula due to Barnes (see
[P-W, th. 3, p. 32]). Thisgives, putting 8 = 81 + 32 + 83,

30(,,|* B—o—3% A2
Gl,s(u}51,52,53) ~ /Ui

1Fo(1+ B — o 1+ Bk — fBi, 1+ B — B u) u™

This produces our asymptotic for p as p — oo. ]

Notice that the Mellin transform formula (5.12) gives a negative value for
J5° wIG(u) du when G is given by (5.13) and o € (0,1/4). This alone implies that
G(u) must assume negative values somewhere on (0, 0o).

REMARK 5.6. (i) Returning to the discussion in Remark 5.1, we find 7(z,2) =
ﬁx‘lF(x) for x = \/p/2 and so (5.16) gives

@3- e(a] )
) \/@ 1,3 4 _%’0’:11 .
(ii) Theexpression (5.14) for u(X) in terms of the reproducing kernels marvellously
seems to recoghize the fact that in Section 4 we did not get a quantization on the fourth

space HE3,
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THEOREM 5.7.  Choosem € {0, 1,2}. Let H M be the Hilbert space of holomor phic
functions with reproducing kernel W™ which we constructed in Section 4 as the formal
completion of HIM. Define 11(z,2) by (5.13).

Then H [M isthe space of all holomorphic functionsf on Z such that f hasZ,-weight
x™ and f is square integrable with respect to the positive measure | dzdz]. The inner
product on H [™ is defined by the non-positive measure 1,|dzdz] by (5.2) so that the norm
of f € H [ jsgiven by the absolutely convergent integral

(5.17) 117 = [ 1fdPu(z.2)|dzdz.

ProOCF. If v isany positive measure on Z, then the space of holomorphic functions
on Z which are square integrable with respect to » form a Hilbert space L2(Z,v) with
norm given by [f|° = J |f|?v. We may take v = |;dzdZ]. Then €[Z] liesin L2(Z,v)
as a dense subspace. Since v is SU(2)-invariant, it follows that the spaces C,[Z] are all
orthogonal to each other in L?(Z, v). For f holomorphic wemay writef = 3,7, f, where
fn € Cn[Z]. Then

(5.18) 2= 3 [, Pl ez,
ne/s

The Z4 action induces an orthogonal decomposition L2(Z,v) = @2 K where K18
is the subspace of functions of weight 3. On the other hand, by Corollary 4.4 and The-
orem 5.5, H [ the space of holomorphic functionsf = Sneaz, +m o Suchthat [[f|* < oo
where

(5.19 P = 5 [l s |dze.
nez, "

(Each term of the seriesis non-negative by Theorem 5.5.)

Our aimisto show KM = H M wherem € {0, 1, 2}. Clearly convergence of the
series in (5.18) implies convergence of the seriesin (5.19); hence KIM < H M The
problem is to prove the converse.

We have two different SU(2)-invariant Hermitian positive definite inner products on
Cn[Z] (n = 4k + m) corresponding to K [™ and H [™, with respective norms |f,,, and
|fa]l. Consequently ||f,|, = ca||fa| for some positive scalar c,. We claim that ¢, — 1 as
n — oo. To demonstrate this, it suffices to consider f, = 7. To begin with, we choose
7 so that  is positive outside the ball where p < 7. Let Iy = <, |fa]?|u| |dzdZ]. Then
2l > [fa]> = [fa]|% But dsoln/||fa]* — 0 asn — oo follows since (i) 1o < Ar2" where
Alis aconstant independent of nand (i) || >2 n! for n large because (see the proof of
Theorem 4.2) |Z)|° = 1/t, wheret, was given by (4.20). Consequently ||f|, /[[f] — 1
asn — oo asclaimed. But then, given (any) > 1, wecanfind N suchthat |fu|, < &|/fa|
for n > N. It follows that convergencein (5.19) implies convergencein (5.18), and so
H M - KIm,

Finally wewant to show that if f € H [™ then theintegral in (5.17) computesthe sum
in (5.19) giving |f|*. But Jy |f|21|dzdZ] defines a continuous function on H [™ which
coincides with |f|* on HI™ by Theorem 5.5. The continuity follows easily using the
previous paragraph. Thus J; |f|2u|dzdZ] = |f|*. .
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COROLLARY 5.8. Choosem € {0,1,2}. Then H [™ is the space of all holomorphic
functionsf € R'%(2) such that the limit £(f) = limi_, < |f(2)|?1(z, 2)|dzdZ] exists.
Furthermore [f|* = ¢(f) whenever ((f) exists.

To round out this discussion, we compute the exact reproducing kernel for the inner
product on H (@ ¢ H (4 ¢ H [ defined by our non-positive measure. This fixes the
scaling of the WM™ 'm = 0, 1, 2, relative to each other.

In fact, Lemma 5.9 and Proposition 5.10 reprove the part of Theorem 5.5 which says
that if p is given by the G-function formula (5.13) then (5.2) gives the correct inner
product on HI™ (i.e., with reproducing kernel WIM). Thuswe get Theorem 5.5 minusthe
uniqueness of 1. The approach to finding 1 given below isin fact the one we originally
used to discover the existence of 1 and the G-function formula.

LEMMA 5.9. Letf(2) = 42‘{ and let n = j +k. Suppose i(z, 2)|dzdZ| isan admissible
measureon Z and p:(z, Z) is given by (5.4). Then
k!
(n+1)!.

[ 1@tz DIz = 72 K [ ity

PROOF. In polar coordinates z, = r,€’ for a = 0, 1. Then |dz, dzy| = 4r,dr,df,.
Substituting and integrating out the g, 61 variableswe find

|1 Pldzcz = 1672 /Ow ./0°°r§+1r§k+1F(,/p/2) drodry.

Next we construct acomplex variablerg +ir, and take its polar representationrg +ir; =
re. Then p = 2r* and we find

2 _ 0 D4 2k+3 (2 L U]
/Z|f| p|dzdz = 1671'2/0 r F(r )dr/O cos?* fsin**1 9 dg.
We evaluate the second integral as %I’(j +1)M(k+1)/T( +k+2) [W-W, p. 256]). Now
substituting x = r® we get our result. ]

ProPOSITION 5.10. Choosem € {0,1,2}. Suppose (z, 2)|dzdZ is an admissible
measure on Z and y:(z, Z) is given by (5.4). Then (5.2) definesa Hermitian inner product
on H™ with reproducing kernel WM jff

00 Frr+Hre+Hr
(5 20) / XT_lF(X%)dX: (7- 2) (T f) (T)
0 er( -2
3
- 1 i o 12 1
for all 7= k+ G + 5 with k € Z, where (Wo, w1, wz) = Z( o _E)'
PrROOF. Letf = Z3. Writen = 4k’ wherem’ = m/4andk’ = k+nv. ThenLemma5.9
gives
2
2= L [T
I = 20+ 5 LX) ax
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On the other hand Theorem 4.2 gives

__NW+DNW+$NW+§C

s|2
I< r+2)

r(m'+5/4)

D (73 AT (WD) " Thenwefind

wherec =

F +Drk +Hr +3)
Wil (K" + %1)

/Ooo X 3F(xd) dx =

where we used the relation I'(a + 1) = ar(a) for a = k' + 1/4 and wi;! = 4c/n2. Next
we substitute 7 = k' + % This gives (5.20) and some computation gives the formula for
Whm. In particular, we use the relations ror, = (3/2)w and r? = 8r. ]

COROLLARY 5.11. If u(z2) is given by (5.13) then the corresponding Hermitian
inner product (5.2) on H ™ hasreproducing kernel equal to wi,, WM. Then rowp +riw; +
row, = 0.

Finally, we show that our non-positive measure from Theorem 5.7 gives rise to a
theory of integral transform operators in full analogy to the familiar theory for Fock
space. In particular, our quantization operators constructed in Section 4 are all given by
integration against a kernel. Choosem € {0, 1, 2}.

Wewill say aholomorphic function K(z, w) isthe kernel of a W™ -admissible operator
T:HIM — HIM with respect to 1(z,7)| dzdZ] if Ky = K(z W) liesin R (Z) and

(5.21) (THW) = [ F(@KW. Du(z D|dzcZ

foral f € HIM. Then T hasauniquekernel K and K(w,2) = (T*Wy)(2). Indeed unique-
ness follows easily and we have

(5.2 (THW) = (TF, W) = (f, W) = [ FA(T-W)@u(z D|dzd

It follows using (4.2) that the kernel of T, (see Section 4) is ¢(z, W)W(z, W) if $(z,2)
extends to a holomorphic function ¢(z,w) on Z x Z

We can now find the kernels, w.r.t. 1z|dzdZ, of our quantization operators Q (¢) for
¢ € gc. By (2.5) or (2.10), each observable v € p¢ extends to a holomorphic function

v(z,W). Then
(5.23) kernel of Q (v) = vz W)WM (zW)  if v e pe.
For x € f, the operators Q (x) = —i& are vector fields given by (2.5) and we can just

compute (Q (x)*WiM)(z) directly by differentiating WM = WM ()). We get

dyim(y)

(5.24) kernel of Q (x) = —i&x()\) i

ifXEf@
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6. Variation of Quantization and Kaehler Polarization. In constructing our
quantization of g in Section 4 we found that the spaces HM, m € {0,1,2}, and the
quantization of the observablesin f into operators on HI™ arose very naturally. Indeed,
it is easy to axiomatize their construction, as the Hamiltonian flow of ¢ € f preserves
the Kaehler polarization of Z. The Hermitian inner product on HIM was determined up
to a then unknown positive scalar factor in each degree. The missing information was
the quantization of the observables in p and the complete determination of the inner
product—in fact the self-adjointness condition made the former determine the latter. We
determined the quantization of p uniquely by adding to the Dirac axioms.

However having constructed the quantization, we find that it may be modified to pro-
duce equivalent quantizations (so equivalent unitary representationsof SL (3, R)). Indeed
it follows easily from the proof of Theorem 4.2 that (4.4) still holds on ¢ if we replace
the operators Q (v) for v € p by the modified operators

1o
b(E) 02502,

where a(E) and b(E) are any pair functions of the Euler operator E which have positive
spectrum on HIM and satisfy a(E)b(E) = 16E. We of course keep the original Q (¢) for
¢ € f. Moreover there is a unique (up to one scalar factor) positive definite Hermitian
inner product on HI™ such that the the quantization operators are self adjoint. Some care
is necessary to insure we still get a holomorphic reproducing kernel.

For instance, if we choose

6.1) Q (vj2) = 425% + (1)

1
(16E)* 9207,

wheret > —1/2 then the new reproducing kernel is W™ = 547 1m Gn A" Where

- 1
(6.2) Q (vi-2) = 22 gy + (0

[16(n +1)(n +5)
(n+1)(n+2)(n+3)(n+4)~"

If t = 0, thisis our quantization from Section 4. If t = 1/2, then (6.3) implies that (up
to scaling of WI™) g, = 1/n!. Hence WM isequal to the subseriesof € = Ypez, A"/n!
given by taking only terms A" /n! wheren € 47, + m. Consequently wefind that the new
inner product on HIM corresponding to W™ is given by (f,g) = f, fge 12°|dzdZ]. Thus
instead of our measure constructed in Section 5 wefind the positive measure e 1%*|dz dz|
of Fock space. It would be interesting to work out the measure for every value of
t > —1/2 (we expect it exists) and see for which values the measure becomes non-
positive, and more importantly to see how (5.14) changes especially in connection with
Remark 5.6(ii).

The case wheret = 1/2 yields the quantization operators constructed by Rawnsley
and Sternberg in [R-S].

A natural question is whether the variation of quantization we have just constructed
correspondsto avariation of Kaehler polarization. The answer we claim is yes. We will

]1—2t

(6.3) On+a =
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make acasefor thison geometric grounds by first constructing afamily of Kaehler struc-
tures all with Kaehler form w and then working out the analog of Corollary 3.2 with
respect to the new complex structure. We will seethat the new “pseudo-differential sym-
bolslook like symbols” of the operatorsin (6.2).

PrOPOSITION 6.1. Fix s,c € R*. Then there is a unique complex structure J’ on
Z where the two functions Z, = ¢ 1|21z, a = 0,1, are global holomorphic coordi-
nates. Furthermore (Z,J’, w) is a Kaehler manifold with o’ = sp being a global Kaehler
potential. Then p’ = 2s|cZ|*/s.

PrROOF. We wish to construct afamily of Kaehler structures on Z with Kaehler form
w. To begin with, we build something different—a family of Kaehler structures with
complex structure J. If k € R* then the function |z is aKaehler potential on (X, J); i.e.,
(X, J,i00|7]%) is a Kaehler manifold. Thisfollows asin Section 2. The analog of (2.1) is

d0do  000; *  viozkeaf K22+ |z (kK—Dzzo
CET 5 B o Lt i AN e

and so the matrix is positive definitefor k > 0. _

Now dilation by |z/5~* defines an automorphism o of Z. Then o carries (J,100|z%) to
anew Kaehler structure (J',i0’0’(|Z|¥). Here 3’ has holomorphic coordinates z), z; and
the decomposition d = 0’ + 0" isinduced by J'. Notice |Z| = |ZJ>. Using (6.4) we find
with some computation (made much shorter using invariant theory) that o carries 1002
t0100(|z]*s /). Thusid’d’(s|Z|¥) = 100(|Z]*S). Setting ks = 4 and inserting the parameter
¢ we get our result. n

REMARK 6.2.  Proposition 6.1 implies the following. If r,c € R, then p’ = c|Z|" is
a Kaehler potential on (Z,J), i.e.,, o' = 100y’ is a Kaehler form. Moreover, (Z,J,w) is
symplectomorphicto (Z, J, w’) (but not Kaehler isomorphic unlessr = 4). Consequently
this symplectomorphism carries g to an isomorphic algebra of observables which are
homogeneous of degreer.

Now we rewrite our observables from (2.5) in terms of the new variables z, z; from
Proposition 6.1. Throughout, we havej = +2,4+1,0and j + k = 4. For conveniencewe

drop the primes from our notation. We find
X1 = 4202104/5|Z|72+4/s .
, _ 20z + (- )%z
6.5 X =—2(af —|zf)c|Zd Uj-2 = #4)4/2&1
il — 4Zlfoc4/s|z|—2+4/s

Noticethat v € p are sumsof holomorphic and antiholomorphic functionsiff s= 1,i.e,,
the value that correspondsto our original complex structure J.
Next we apply the methods of Section 3 to extend our observables in g to holo-

morphic functions on T*Z. We continue to drop the primes. We find that b*((;) =
_4i|z|—2+4/scfl+4/sz_j_
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1) = iza6s J_Zk »
D(xo) = 3(20¢0 — 21G1) O(uj_p) = — A 4 (DG4

. ﬂ s—1 4(&) 3-s*
B | c ( 7 ) 256¢ 7
D(x1) = iz1¢o

The fact that ®(x) for x € f is independent of choice of J’ is a manifestation of the

fact that the Hamiltonian flow of x preserves J’. On the other hand, the “symbol” of the

operators Q (vj_2) in (6.2) agree with (6.6) whenwetakes=2t+landc = 4"
Fors=2andc=1/2wegetp = |z? andt = 1/2. The formulas above reduce to

(6.6)

X1 = 271 - e
i 2, + (—1)“Z5z
67) o=zl -af) =2 CUEE
X1 = 212
2% N
: j—2) = = + (—1)* 2.
(6.8) B(vj-2) = Tx + (DA
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