BJPsych

The British Journal of Psychiatry (2022)
220, 169-171. doi: 10.1192/bjp.2022.29

@ CrossMark

Dominic Dwyer and Rajeev Krishnadas

summary

Machine-learning techniques are used in this BJPsych special
issue on precision medicine in attempts to create statistical
models that make clinically relevant predictions for individual
patients. In this primer, we outline five key points that are helpful
for a new reader to consider in order to engage with the field and
evaluate the literature. These points include the consideration of
why we are interested in new statistical approaches, how they
may produce individualised predictions, what caveats need to be
kept in-mind and why the interest and engagment of clinicians
and clinical researchers is critical to successful model

Five points to consider when reading a
translational machine-learning paper

development and implementation. We hope that the following
primer will provide shared understanding to encourage dialogue
between clinical and methodological fields.
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Background

For the purposes of this editorial, we define machine learning as a
field where statistical models automatically improve using com-
puter algorithms that respond to repeated experience with data.
We separate this approach from more traditional approaches
where a static method is used once to derive an outcome (for
example a t-test), despite the recognition that the two fields
share methods and are interconnected.

Computational power

The first point is to acknowledge why we are interested in new stat-
istical approaches. Psychiatric research predominantly aims to
guide decisions based on group averages for a majority of indivi-
duals (e.g. from a clinical trial) or provide insight regarding associa-
tions (e.g. from cohort studies). These approaches are essential, but
there is an increasing recognition that obtaining a specific diagnos-
tic-, prognostic- or treatment-response likelihood for an individual
patient will help clinicians to make personalised decisions regarding
care.

The machine-learning paradigm has achieved such predictions
for individual examples or cases in other fields (such as speech, text
or image recognition) by using statistics to solve practical problems
with computers. This shift in culture, together with large advances
in computational power, cast old statistical techniques in a new
light and opened the door to advanced methods that are now seam-
lessly integrated into daily life (such as those employed by Google,
Amazon, Netflix or Apple). As such, we are interested in this new
statistical approach because we hope that such a pragmatic
approach will fast-track personalised psychiatric treatment by pro-
viding additional tools to clinicians, clients and their families.!
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Pattern detection

The second point is related to limitations within the existing psychi-
atric research culture. Traditional psychiatric methods restrict stat-
istical choices and rely on assumptions to facilitate inferences to a
population beyond the sample. Researchers design studies with
such restrictions in mind, analyse data and ultimately make deci-
sions that influence guidelines, inform our understanding of
illness and identify new therapies. In general, the majority of such
statistical models are either not designed to be used on individuals
or, if they have, they have not been powerful enough to obtain a clin-
ically translatable prediction that is currently used.

The machine-learning field partly grew from the idea that to
facilitate prediction at the level of a single observation (for
example an individual) we need to permit more statistical
freedom, relax assumptions and entertain exploratory approaches
that allow computers to learn from often multilayered and multidi-
mensional data (for example from the clinical, brain or genetic
sources as seen in this issue). The power of this freedom to find
new predictive patterns in multidimensional data is largely why
machine learning has replaced traditional statistical and computer
programming approaches in multiple corporate and scientific
domains.”

overfitting risk

A danger of more statistical freedom, however, is that it comes
with an increased risk of finding results that are only accurate in
a single sample and cannot be more widely applied in other con-
texts. This is known as ‘overfitting’ where idiosyncratic attributes
of a sample (such as random noise) are modelled instead of iden-
tifying patterns that generalise to new cases and contexts. Thus, the
third main point is that this overfitting risk is thought to be
enhanced in machine-learning contexts and this needs to be
kept in-mind at the current time. However, it is also important
to recognise that the machine-learning field has popularised and
extended statistical methods that test and optimise the ability of
the algorithms to generalise to new cases, samples, sites, countries
or continents.

At an initial level, most methods that assess generalisability
rely on data resampling schemes that simulate the application of
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algorithms to new data in order to obtain accuracy estimates;' for
example, the commonest is to use cross-validation where a sub-
sample of individuals is put aside, algorithms learn patterns in
the remaining sample, the models are applied to the held-out sub-
sample to determine their accuracy, and the process is repeated. In
addition to these simulations, many articles in this special issue use
forms of ‘external validation” where the statistical algorithms are
tested in completely new data-sets — for example from different
studies or geographic locations. Such techniques are not unique
to machine-learning contexts, but are more important in the
field because of the risk of overfitting.

Representativeness of samples

A related fourth point to consider regards the representativeness of
the sample that determines the scope of generalisability claims and
potential sources of bias. Representativeness of the sample
can first be assessed by considering clinical knowledge regarding
the degree to which the results from the sample can support the
conclusions of the study. For example, when making strong trans-
lational claims it is important for samples to be representative of
real-world clinical environments rather than highly controlled sci-
entific designs or methods.

Questions regarding bias can also be derived from clinical
experience and relate to such factors as site, study, country, demo-
graphics or clinical differences. Assessing whether biases have
been addressed is important for translational claims and can be
tested with innovative resampling schemes (such as leave-group-
out cross-validation') in addition to the gold standard use of
diverse external validation samples. Without assessments of bias
there is the potential that the statistical models may not perform
accurately based on such individual factors as race, ethnicity or
gender — where machine-learning recommendations have been
shown in other fields to be less accurate because the algorithms
have predominantly learned decision rules from dominant majority
groups. The integration of clinical knowledge into the design of
machine learning tools is thus especially important in order to
increase the representativeness of the samples and consider poten-
tial biases.

Real-world utility and implementation

The final point from a clinical perspective is to consider the real-
world clinical utility and implementation of machine-learning
tools, which are areas where the engagement with the wider research
community is especially important. The usefulness of a statistical
prediction is only as good as the ability for it to improve care to a
degree that justifies the cost (and risk) of its implementation.
Such questions can first be addressed by considering the potential
of a tool to improve the status quo of clinical routines related to
diagnoses, prognoses and treatment selection by assessing
common quantitative metrics used in predictive contexts (such as
accuracy, positive predictive value or area under the curve; see the
Appendix). Increased confidence in the potential clinical utility
can also be generated with additional assessments; for example,
comparing machine-learning predictions with those made by clini-
cians in the same study, using net-benefit analyses to quantify the
balance between the benefit (for example accurately predicting an
illness) with potential harms (for example unnecessary testing), or
by using decision curve and calibration analyses.’
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Even if a tool is deemed to be sufficiently generalisable, the
biases are known, it is better than existing clinical tools and has a
clinical benefit, the final component of assessing whether the tool
could be used is whether it could be practically implemented.
Recent work in general medical fields has highlighted the unex-
pected difficulties with implementing highly promising tools into
hospital settings, which emphasises the need for ongoing input
from clinical teams around how the most promising tools may actu-
ally work in real life. Towards these translational ends, some studies
now provide web- or app-based platforms to test the capacity to
deploy machine-learning algorithms (such as www.proniapredic-
tors.eu). Additionally, providing algorithms is increasingly import-
ant for enhancing transparency through open science principles
that are critical across the clinical sciences to facilitate understand-
ing, replication and collaboration.

Conclusions

When combined, the five points to consider when reading a
machine-learning paper were designed to provide important
context for the papers in the following special issue and to engage
a clinical audience. Moving forward, this clinical engagement will
be critical for the field to progress and we hope that the special
issue will encourage further dialogue towards a clinical future that
includes the ability to tailor treatment approaches to individuals
in real-time based on machine learning models. To further facilitate
such a dialogue we have provided a glossary of terms (Appendix)
that can be used as a reference and also a supplementary figure to
aid understanding about analytic pipelines (see Supplementary
Materials available at https://doi.org/10.1192/bjp.2022.29). We also
invite interested readers to engage with other review papers in
psychiatry."”
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Appendix

Glossary of terms

Terms

Accuracy: the proportion of correctly predicted cases in reference to all cases.

Algorithm: a sequence of statistical, mathematical or programmatic rules usually conducted by a computer to achieve a goal; for example an algorithm for
multiplication or to predict disease.

Area under the curve (AUC): usually refers to the area under the receiver operating characteristic (ROC) curve. It is a value that measures the overall
performance of a classifier within the range (0.5-1.0), where 0.5 represents the performance of a random classifier and the maximum value would
correspond to a perfect classifier.

Cross-validation: an internal validation resampling technique used to empirically assess the accuracy and potential generalisability of statistical models,
usually for a specific outcome.

Features: data (such as variables) that are used and modified to classify or predict an output.

Function: a mathematical relationship between two variables x and y. For example if the function that maps y to x is a ‘square root function’ fix) = \/X, then
given x = 16; y = y/x = 4. Mathematical functions used in supervised learning algorithms/optimisation are usually more complex.

Generalisability: algorithm performance on new data that can be assessed with internal validity (such as using cross-validation techniques) or external
validity (such as validating the models on data from a different study, time period or geographic location). Also includes the assessment of model bias
towards certain dominant groups (for example Western European groups).

Label/output. the predictive target used in supervised learning that is assigned to each case, such as diagnoses or prognostic outcomes.

Model: usually, the set of features and their parameters (weights) that maps features to outputs.

Negative predictive value: given a negative test, the probability of not actually having the disease/outcome.

Optimisation: a mathematical function or algorithmic technique used to find the highest performing parameters given a criterion (such as accuracy).

Parameter: the weight given to a feature in a model.

Positive predictive value: given a positive test, the probability of actually having the disease/outcome.

Recelving operating characteristic (ROC) curve: a graph used to evaluate the performance of classifiers. ROC plots show the sensitivity/specificity trade-off
of a classifier for all possible thresholds.

Reinforcement learning: algorithms are used to learn by interacting with the environment using reward and penalties to perform a task.

Sensitivity: the proportion of affected cases with a positive test result in reference to all affected cases.

Specificity: the proportion of non-affected cases with a negative test result in reference to all non-affected cases.

Supervised learning: predicting an outcome using known target labels (for example a diagnosis or prognosis).

Testing: the application of trained algorithms without modification to held-out data that has not been used in the creation of the models.

Training: a statistical procedure that involves fitting a model to a data-set by modifying parameters (such as for prediction).

Unsupervised learning: the algorithm is not provided with any pre-assigned labels or scores and is used to find homogeneous subgroups of individual cases
within a set of features.
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