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1. I n t r o d u c t i o n 

Millions of seismic eigenmodes are excited to low amplitudes in the Sun, with an 
amplitude spectrum that grows approximately as a power of the frequency until it 
reaches a maximum at 3 mHz, and then drops off again towards higher frequencies 
(Libbrecht, 1988; Libbrecht & Woodard, 1991). 

We would like to answer the following fundamental questions about theso 'solar 
five-minute oscillations': 

1. What excites the oscillations? 
2. What damps the oscillations? 
3. W h y is the dominant period 5 minutes? 

These questions are notoriously difficult to attack with analytical methods, be-
cause the properties of the oscillations depend critically on the properties of turbulent 
convection in the near-solar-surface layers. Even before the detailed mode structure 
was observed (Deubner, 1975), it was suspected that waves would be excited by the 
turbulent convection (Biermann, 1946; Biermann, 1948; Schwarzschild, 1948; Schatz-
man, 1949; Unno, 1964; Stein, 1967; Stein, 1968), and oscillations of the solar surface 
layers had been observed (Leighton et al., 1964; Evans & Michard, 1962). Following 
the realization that a rich spectrum of global modes exist on the Sun (Ulrich, 1970; 
Leibacher & Stein, 1971; Deubner, 1975; Ulrich & Rhodes, 1977), a large number of at-
tempts have been made to explain their excitation and damping properties (e.g., Ando 
& Osaki, 1977; Goldreich & Keeley, 1977; Gough, 1980; Antia et al., 1982; Christensen-
Dalsgaard & Frandsen, 1983; Antia et al., 1987; Goldreich & Kumar, 1988; Goldreich 
& Kumar, 1990; Balmforth, 1992a; Balmforth, 1992c; Goldreich et al., 1994). The 
outcome of these studies for a long while actually confused the issue, because even 
the question of the stability of the modes could not be decided with any certainty 
by analytical means. One of the most impressive and laborious studies is the one by 
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Balmforth (1992abc), who among many other results showed that a crucial factor for 
determining the stability of (in particular) the low-frequency modes is the response 
of the Reynolds stress to the presence of coherent modes. Balmforth showed that a 
commonly used approximation of these effects in terms of a turbulent viscosity signif-
icantly underestimates the stabilizing influence of convection, and that this explained 
the tendency to find over stability in works that adopted this approximation. He was 
able to fit the damping of low-frequency modes considerably better than in earlier 
works (possibly with the exception of Gough (1980)). Nevertheless, he concluded his 
series of papers with the statement "It would be wrong to rule out thermal overstabil-
ity as the underlying cause of the five-minute oscillations on the basis of the current 
understanding". 

By now, the consensus is that the modes are indeed stable and stochastically 
excited, but analytical predictions of their properties still contain major uncertain-
ties. Thus, for example, Goldreich et al. (1994) used a number of (at least five) free 
parameters to fit the empirically determined stochastic excitation spectrum, openly 
admitting that some of the parameters had to be assigned unexpected values. 

The main problem with analytical estimates of the excitation and damping is 
indeed that one cannot avoid the use of a number of free parameters, and that the 
results depend quite sensitively on the values adopted for some of these. Numerical 
simulations offer a way forward in this situation. The hydrodynamic equations that 
describe the solar surface layers contain no free parameters per se, and provided that 
sufficiently realistic physics is used, numerical solutions of these equations should 
provide increasingly accurate representations, as the numerical resolution is increased. 
The main problems with such an approach are, on the one hand that it is difficult to 
estimate the actual accuracy of the solutions, and on the other hand that, even with 
accurate numerical solutions it is non-trivial to extract the desired quantitative and 
qualitative information from the available data. 

In what follows, we provide a brief overview of what numerical simulations can 
tell us about the excitation and damping of the solar five-minute oscillations. The 
discussion is based on numerical simulations of the solar surface layers, along the 
lines of previous work (Nordlund, 1982; Nordlund, 1985; Stein & Nordlund, 1989; 
Nordlund & Dravins, 1990; Nordlund h Stein, 1990; Rast et al., 1993; Stein & Nord-
lund, 1997). The numerical models include the relevant physics of the solar surface 
layers: ionization, radiative energy transfer, etc., and have been checked against a 
number of observational diagnostics. The results are found to be consistent with 
statistics of solar granulation (Wohl & Nordlund, 1985; Nordlund et al., 1997), spec-
tral line widths and shapes (Dravins et al., 1981; Dravins et al., 1986; Dravins & 
Nordlund, 1990a; Dravins & Nordlund, 1990b; Spruit et al., 1990; Nordlund, 1991; 
Kiselman & Nordlund, 1995), the depth of the solar convection zone (Nordlund & 
Stein, 1997). and the p-mode frequency behavior (Rosenthal et al., 1998). 

In previous work (Stein &; Nordlund, 1991) we have made use of long simulation 
runs with spontaneously excited modes to show, e.g., that the stochastic excitation 
due to entropy fluctuations significantly exceeds that due to the turbulent pressure 
(Reynolds stress) fluctuations. These experiments were 'passive', in the sense that the 
modes were left to establish the amplitudes that are appropriate for the sparse mode 
spectra of the relatively small boxes that are used in the numerical experiments. 

To study specifically the excitation and damping of the oscillations, we have also 
performed a number of 'active experiments', where particular modes are initially either 
excessively excited or excessively damped. By actively exciting particular modes to 
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high amplitude it becomes easier to study the mode damping, and by actively damping 
the modes it becomes easier to study the mode excitation. 

To analyze excitation and damping mechanisms, it is advantageous to separate 
horizontal mean values and their coherent fluctuations (the modes) , and refer to the re-
maining fluctuations as 'the turbulent convection'—of course with the understanding 
that correlations among the fluctuating variables also may exhibit a partly coherent 
behavior, and thus feed back into the behavior of the 'modes' . We summarize such a 
formalism in the next Section, and demonstrate the separation between 'modes ' and 
'convection' . In Section 3 we use the formalism to study and discuss the excitation 
mechanisms, and in Section 4 we treat the damping in a similar way. In the concluding 
section we summarize what we have thus learnt about the excitation and damping 
mechanisms. 

2 . F o r m a l i s m 

The formalism summarized here is an extension of the one used by Stein & Nordlund 
(1991) and by Rosenthal et al. (1998). It is presented in more detail by Nordlund & 
Stein (1998). 

2.1. 1-D EQUATIONS 

For a one-dimensional envelope, the equations for radial near-surface motions may be 
written (in Lagrangian coordinates): 

where uzP is the acoustic flux and F represents other fluxes. 
In a true 1-D model, the only other fluxes are due to radiation and heat conduc-

tion. The turbulent convective flux that is often included in the energy equation of 
otherwise one-dimensional models cannot be determined without resorting to a multi-
dimensional picture (if only for making order of magnitude or scaling estimates). 

2.2. 3-D EQUATIONS 

The three-dimensional version of Eqs. ( l ) - ( 3 ) only differ by having additional, hori-
zontal transport terms (but support an incomparably richer spectrum of motions): 

= - — (uzP + F) + puzg, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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There exist several interaction mechanisms between Convection' and 'modes ' (the 
quotes are there to emphasize that it is non-trivial to actually separate these effects— 
however in what follows we generally drop the quotes). The convective energy flux 
carries almost all of the solar luminosity at depths larger than a few hundred kilo-
meters below the optical surface, and the 'turbulent pressure' associated with con-
vection is significant in a shallow layer near the solar surface. Since convection is a 
non-stationary process, there are significant, incoherent fluctuation in these trans-
port processes. Such fluctuations necessarily give rise to random deviations from the 
average vertical balance of energy and vertical momentum, and hence, to sources 
of acoustic 'noise'. Conversely, in the presence of coherent wave-like perturbations 
around the average state, the convective transport of heat and momentum will be 
influenced (modulated), in general with some delay relative to the variations in the 
background state. Such coherent fluctuations of the average transport of energy and 
momentum in turn feed back onto the wave propagation; i.e., part of the coherent 
fluctuations of the convective medium are mediated by the convection itself. 

2.3. D E N S I T Y - W E I G H T E D A V E R A G I N G 

In order to turn such qualitative remarks into quantitative expressions, it is helpful 
to use a consistent set of definitions for averages and fluctuations. Stein & Nordlund 
(1991) adopted density-weighted averages for per-unit-mass variables (here denoted 
by lower case), and straight averages for per-volume quantities (here denoted by upper 
case). 

F = (F)xy, (7) 

/ = (Pf)xy/(p)xy, (8) 

where () stands for horizontal averages. With these definitions it follows that 

(F') = (F-F) = 0, (9) 

(pf) = (pf-pf) = 0, (10) 

{Pig) = Pfg + ipf'g')- (n) 

The 'chain rule' (11) follows from Eqs. (9 ) - (10) . Repeated use of the chain rule results 
in precise definitions for the total kinetic energy and kinetic energy flux, in terms of 
contributions from coherent motions and fluctuations: 

(\pu2) = \ p ü 2 + \(PU'2) = Pëkin,mode + Pëkin,tiirb (12) 

(\pu2uz) = ^pû2ûz + {^pu'2u'z) + {pu'z

2)ûz + (^pu'2)ûz 

= k̂in,mode + k̂in,turb + Aurb̂ z + Ρ ëkin.turb̂ z (13) 

Equation (12) expresses the total kinetic energy as a sum of the kinetic energy of the 
mean motion and the kinetic energy of the convection. Equation (13) expresses the 
total kinetic energy flux as the sum of the kinetic energy flux of the mean, the turbu-
lent kinetic energy flux, the acoustic fluxes associated with the horizontally averaged 
turbulent pressure and velocity, and the advection of average turbulent kinetic energy. 
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Carrying on with a similar analysis of the other hydrodynamic equations, using 
the density-weighted averaging, one may derive a set of exact, horizontally averaged 
3-D equations (Nordlund & Stein, 1998). 

2.4. SEPARATION B E T W E E N OSCILLATIONS A N D C O N V E C T I O N 

For purely radial modes, we consider the fluctuations in time of the barred, horizon-
tally averaged quantities as the variables belonging to the oscillations, and the primed 
3-D fluctuations as the ones associated with the convection. Qualitatively similar re-
sults are to be expected for low ί non-radial modes, since they are nearly radial in 
the surface layers. In fact, since numerical models of the solar surface region typically 
have horizontal sizes ~ 1 0 Mm, the smallest non-zero i-values that could be studied 
would have ί in excess of 400. 

3 . S tochas t i c E x c i t a t i o n 

The kinetic energy of the mean obeys 

Pjfi(\ül) = - J ^ ( ü z P g a s + ÖzPturb) + CPgas + A u r b ) ^ + 9pÜz. (14) 

Apart from boundary effects, the work comes from the term 

(Pgas + Âurb)^ = "(Pga. + A u r b ^ i M = -Ptot J^(lnp) . (15) 

Work arises from correlations in time between fluctuations in the two factors, iPtot(^) 
and ^ ( l n p). The fluctuations consist of both coherent and incoherent contributions, 
where the coherent contributions include the in-phase (pressure relative to density) 
and out-of-phase response of the convection to the coherent p-mode motions . The 
in-phase (adiabatic) part of the coherent response perturbs the frequency of the mode, 
while the out-of-phase (non-adiabatic) part causes damping (or driving) of the mode. 
The relation between coherent pressure and density perturbations may formally be 
written 

ÄlnPtot = 7 * l n p , (16) 

where 7 = 7 ( 2 , ω ) is a complex depth- and frequency-dependent factor. The function 
Ύ(ζ,ω) may be measured empirically in the numerical simulations, for example by 
performing "active" experiments, where a few modes are excited to significant ampli-
tudes. The experiments may be "tuned", by varying the depth of the models, so that 
a suitable range of eigenfrequencies is covered. 

The work done by the convection on the modes is the convolution of the out-of-
phase, non-adiabatic, pressure fluctuations with the modal density fluctuations. 

W = - J d t j y - SPtot j^Qnp) = Jdtjdz iPtot (17) 

where dm is a Lagrangian mass element, and ξ is a Lagrangian displacement that 
satisfies 

«« = (18) 
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Figure 1. Images showing the integrand in the stochastic work integrals for radial modes at 3, 
4, and 5 mHz. The leftmost part of each panel shows the horizontally averaged, non-adiabatic 
pressure fluctuation from an 80 minutes time sequence of a 6 x 6 x 3 Mm numerical simulation 
with a spatial resolution of 125 x 125 x 82 (Nordlund & Stein, 1998). The middle part of 
each panel shows the mode pattern, and the rightmost part shows the product of the mode 
pattern and the convective fluctuations. (Color versions of this and other figures are available 
at URL http://www.astro.ku.dk/~aake/talks/Kyoto97.) 
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Figure 1 shows the the horizontally averaged incoherent (convective) pressure fluc-
tuations, the coherent (modal) density fluctuations and the product of the two, for 
three particular frequencies. High frequency modes tend to "chop up" the convective 
fluctuations in time, while low-frequency modes tend to sample more than one con-
vective fluctuation per cycle. In addition, high- and low-frequency modes sample the 
convective perturbations differently in depth, with high-frequency modes tending to 
also chop up the convective fluctuations in the depth direction. 

For a particular realization of the convection, the net result depends of course on 
the particular phase with which the modes are overlaid onto the convective fluctua-
tions. Symbolically, we may write this as 

α< -+α< + ία<β* ( *-* ο ) , (19) 

where ai is the amplitude of a particular mode, and δα,ι is the perturbation of that 
amplitude when the mode is assigned the phase φο. Averaging over phase one obtains 
a net contribution to the mode energy 

N 2 - > N 2 + |iai|2. (20) 

A more detailed analysis (Nordlund L· Stein, 1998) results in the following expression 
for the average rate of stochastic excitation per unit surface area: 

At Au Jrdr | U 2 p ( £ ) 2 ' ^ ; 

where δΡω is the Fourier amplitude of the incoherent pressure fluctuations, and 
Δι / is the frequency resolution with which δΡω is measured (note that in the limit 
Au —» 0 the power per unit frequency interval \δΡω\

2 / Au is independent of Av for 
a random function of time). Because the stochastic fluctuations are concentrated 
near the surface, the integral samples the mode compressibility d^/dr in a shal-
low layer near the surface, where modes below about 3 mHz are evanescent. The 
result is that there is an overall scaling with frequency that comes from the asymp-
totic behavior (δξω/ΟΓ ~ ω2ξ) of evanescent modes (Osaki, 1990; Balmforth, 1992c; 
Goldreich et al., 1994). 

It is noteworthy that the only property of the turbulent convection that enters 
is the stochastic fluctuation of the total pressure. This is in contrast to the many 
approximate, analytic expressions for the stochastic excitation that have been de-
rived (Lighthill, 1952; Unno, 1962; Moore & Spiegel, 1964; Unno, 1964; Stein, 1967; 
Goldreich & Keeley, 1977; Christensen-Dalsgaard & Frandsen, 1983; Goldreich & 
Kumar, 1988; Goldreich k Kumar, 1990; Balmforth, 1992c; Goldreich et al., 1994). 
These expressions, one way or another, correspond to the exact expression with its 
fluctuations of the total pressure, but they have been expanded into a multitude of 
approximate terms, with possibly obscure cancellation effects. Balmforth (1992c) in-
deed pointed out that such expressions are non-unique, and that even the distinction 
between monopole, dipole and quadrupole source terms is ambiguous. Equation (21) 
short-circuits such ambiguities, by expressing the driving directly in terms of the one 
relevant quantity: the total pressure fluctuation, <$Ptot = <̂ Pgas +£Pturt>- Such an equa-
tion is of course only useful if one has access to numerical data that make it possible 
to evaluate the resulting expression. Fig. 2 shows the result of evaluating Eq. (21) 
from an 80 minute interval of numerical simulations (Nordlund & Stein, 1998). 
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Figure 2. The stochastic energy input, scaled to the total solar area. The small plus symbols 
are from the numerical experiments, the large squares are determined from solar observations 
(cf. Fig. 7, Goldreich et al., 1994). 

3.1. E X C I T A T I O N E V E N T S 

Using Eq. (21), and the direct visualizations of the work integral in Fig. 1, one may 
study not only the statistically averaged contributions to the stochastic driving, but 
also the contributions from particular events. Figure 3 shows the correlation between 
the instantaneous, horizontally averaged surface intensity and the contributions to the 
work integral from the surface layers. It is evident that there is a tight correlation, il-
lustrating that it is indeed the fluctuating rate of cooling at the surface that is a main 
source of the stochastic excitation in the surface layers. Fig. 4 illustrates this further, 
by showing the contributions to the horizontal average over a short interval of time. 
The relatively large dynamic range of intensity fluctuations ( ~ 20% rms) makes it 

difficult to distinguish individual contributions to the average intensity fluctuation 
in the fully resolved images, but smearing the images to a resolution roughly corre-
sponding to the size of granules helps. The horizontally averaged intensity fluctuation 
is most of the time the net effect of the changes in several granules, but occasionally, 
individual events dominate. The rapid drop in average intensity from the 3rd to the 
5th panel in Fig. 4 is due mostly to the rapid cooling of a single granule fragment, 
resulting in a darkening that gradually disappears, as new granules develop in the 
area. 

It is probably extreme events similar to this one that are the "seismic events" 
identified by Goode et al. (1992) (cf. Rimmele et al., 1995; Restaino et al., 1993). As 
shown by Goode et al. (1992), a sufficiently rapid cooling leads to an event charac-
terized by a noticeable phase propagation, consisting of first an upward propagating 
expansion wave, followed by a ringing "wake". In the context of the current discussion, 
such events appear as "tips of the icebergs" : they are the most extreme events in the 
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Figure 3. The average surface radiation intensity (dashed) and the non-adiabatic pressure 
fluctuation (full drawn, and image strip) in the surface layers of a numerical simulation. 

ensemble of fluctuations that constitute the acoustic source. A detailed comparison 
between observations and synthetic spectral line data generated from the numerical 
simulations is necessary to estimate what fraction of the excitation that comes from 
identifiable seismic events. 

4 . D a m p i n g 

Damping is a linear effect, that arises because of a systematic phase difference between 
the coherent fluctuations of pressure and density. The work done by the coherent 
motions is again proportional to the work integral, Eq. (17), where iPtot is now the 
coherent, non-adiabatic part of the pressure fluctuations. The resulting expression for 
the damping rate is 

1 άΕω _ 2 Jrdr Ιπι[δΡω] θξω/dr 

ωΙΓάτ\ξω\*ρ (£)2 ' 

where ImfiPa,] is the imaginary part of the coherent fluctuation of the total pres-
sure. As for the excitation, this integral can in principle be evaluated directly from 
numerical simulations. It is, however, non-trivial to separate the coherent part of 
the fluctuation from the stochastic ones in simulations where the damping and ex-
citation are approximately in balance. One obtains a much "cleaner" situation by 
performing active experiments, where an initial "kick" excites a few oscillatory modes 
to a relatively high amplitude. By using higher amplitudes than the modes sponta-
neously attain, one obtains the benefit that the coherent fluctuations dominate over 
the stochastic ones, and that, consequently, the linear damping dominates over the 

(22) 
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Figure 4- A time sequence of surface radiation intensity images at one minute time in-
tervals, covering eight solar minutes. The upper rows of panels have been convolved with a 
Gaussian kernel, producing a spatial resolution comparable with the size of granules. The 
intensity contrast is thus reduced from ~ 20% to a few percent, making it easier to locate 
the contributions to changes of the overall average intensity, which is indicated by the thin 
bars between the individual panels (the range is « ± 4 % ) . 

stochastic excitation. In such situations, Eq. (22) may indeed be used to evaluate the 
damping rate directly from the numerical data. 

With the current set of models, this works well for frequencies of the order of 3 
mHz; there, most of the contribution to the integral in Eq. (22) comes from layers 
close to the surface, and the damping rates are indeed consistent with the observed 
F W H M line widths ~ 1 μΗζ near 3 mHz (Libbrecht, 1988; Toutain & Frölich, 1992; 
Bachmann et al., 1993). For lower frequencies, one encounters two (related) difficulties. 
First, the lowest eigenfrequencies of the current set of active experiments lies at 2.6 
mHz; i.e., it is not possible to measure the damping at lower frequencies from this set of 
experiments. One might consider performing continuously forced experiments, where 
an external volume force and appropriate boundary conditions maintain perturbations 
modeled after known eigenmodes, for those surface parts of the modes that are covered 
by the numerical simulations. Here one encounters the second difficulty, namely that 
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the contribution to the work integral at low frequencies actually contains significant 
contributions from deeper layers. This may be appreciated by considering the variation 
with depth of the factors that enter into the integral in Eq. (22). The factor θξ/dr 
increases rapidly with depth for eigenmodes of low frequency. The overall magnitude 
of the turbulent pressure also increases with depth, even though the ratio Pturb/-fgas 
peaks near the surface. Thus, unless the relative fluctuation of the turbulent pressure 
^turb^/i^turb decreases rapidly with depth, one should expect that the work integral 
picks up significant contributions from deeper layers (cf. Fig. 14, Balmforth, 1992a). In 
order to account for these contributions, there seems to be no way around extending 
the models so that one can measure the damping using eigenmodes that are contained 
within the box. 

Given that such measurements of the damping can be made, there is still the 
task of identifying the physical causes of the phase shift of the coherent fluctuations 
of the total pressure. The imaginary part of the gas pressure fluctuations is easily 
understood: it stems from the non-adiabatic terms in the energy equation. The factors 
that control the phase of the turbulent pressure fluctuations are less evident from first 
principles. However, using the technique of density-weighted averaging, one may derive 
a differential equation that describes the time evolution of the turbulent pressure 
(Nordlund & Stein, 1998): 

D d( \i! ^is! ) 
— (Pturb) = —77— vertical Reynolds stress transport 
Dt oz 

dP as 
+ 2 (u'z (gp ) ) buoyancy work 

düz 

—SPturb-^— expansion / compression 
oz 

+2(pu'jajz), viscous dissipation (23) 

where the terms have been labeled with their physical interpretation. 

It is instructive to visualize the left and right hand side terms in this equation as 
two-dimensional (depth-time) images (Fig. 5) . Examination reveals that the coherent 
response of the buoyancy work is particularly crucial. In an equilibrium situation, the 
buoyancy work is positive, and is balanced by the viscous dissipation and redistributed 
by the transport term. Below the surface, the buoyancy work comes predominantly 
from the core of the downdrafts, that have a small horizontal area filling factor, and 
hence large downward velocities and smaller than average gas pressure gradients, so 
are subject to net downwards forces. The response to a mode perturbation comes 
mainly from the modulation of the gas pressure gradient: in the upwards acceleration 
phase that precedes the expansion phase, the increased gas pressure gradient reduces 
or reverses the buoyancy work. The result is a tendency for the turbulent pressure to 
be 180 degrees out-of-phase with the density fluctuation. 

When combined with the other terms in the equation for the turbulent pressure, 
the result is that the turbulent pressure fluctuations tend to be in phase with the 
density fluctuations at high frequencies, because of the compression term, tend to be 
in anti-phase with δ ρ at low frequencies, and pass between the two extremes through 
phase shifts that lead to damping of the modes. 
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Figure 5. A visualization of the Eq. (23) left hand side, the right hand side terms, and 
their sum. In each panel, depth increases from left to right, and time increases from bottom 
to top. 

5 . C o n c l u s i o n s 

The results of numerical simulations are helpful in several ways in relation to the 
fundamental questions about the solar five-minute oscillations: What excites them, 
what damps them, and why is their dominating period five minutes? 

First of all, the numerical simulations confirm what has been surmised from the 
very beginning about the origin of the solar five-minute oscillations: the oscillations 
are stochastically excited by the turbulent convection, and they are damped by the 
collective response of the convection and radiation, with the main damping agent at 
low frequencies being the phase-shifted response of the turbulent pressure. This can be 
concluded both from the fact that oscillations are indeed stochastically excited in the 
numerical simulations (and are not overstable), to an amplitude that is comparable 
to the real solar oscillations. It is confirmed by the fact that the excitation power that 
can be directly measured in the simulations agrees to within the numerical scatter 
with the empirically determined excitation power, with a frequency dependence that 
is determined by the same asymptotic scaling relations that have been employed in the 
analytical estimates of the excitation power. In addition, the numerical simulations 
allow a detailed study of the physical sources of the excitation, with the possibility to 
study images of the horizontally averaged excitation (or proxys thereof) as a function 
of depth and time, or in full detail, as functions of three dimensions and time. The 
main cause of the excitation turns out to be the stochastic variations of the cooling 
rate at the surface, and the fluctuations of convective flux and turbulent pressure that 
are consequences thereof. 
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The detailed mechanisms behind the linear damping of the modes are more dif-
ficult to separate, but the numerical results again confirm the picture that has been 
previously obtained by analytical methods (Gough, 1980; Balmforth, 1992a): namely 
that the main agent of damping at low frequencies is the phase-shifted, coherent re-
sponse of the turbulent pressure to the oscillations. As pointed out by Balmforth, 
this effect cannot be described as simply a turbulent viscosity. On the contrary, it is 
strongly influenced by factors such as the coherent response of the buoyancy work 
to the oscillations, an effect that tends to force the response of the turbulent pres-
sure in anti-phase with the density perturbations. There are additional terms in the 
differential equation that describes the time evolution of the turbulent pressure, and 
the combined effect of these terms is a phase lag that is such as to damp the co-
herent motions. The reason that the damping decreases more slowly with decreasing 
frequency than expected from naive estimates based on the near-surface amplitude 
of the evanescent modes is that the work integral picks up contributions from deeper 
layers at low frequencies. This is in agreement with the results of Gough (1980) and 
Balmforth (1992a). 

The relatively more rapid decrease of the excitation power with decreasing fre-
quency is in also in agreement with previous, analytic work (e.g., Balmforth, 1992c; 
Goldreich et al., 1994), and is caused by the more pronounced weighting of the ex-
citation work integral towards the surface, relative to the work integral that controls 
the damping. As a result, the scaling of excitation power with frequency is primarily 
determined by the frequency behavior of the mode compressibility d^/dr, and peaks 
near the frequency where the logarithmic derivative d in \3ξω/3Γ\/θ\ηω is ~ + 2 , thus 
balancing the ~ — 2 slope of the stochastic pressure fluctuations there. For the Sun, 
the result is that the power peaks at period of about 5 minutes. It is not obvious (at 
least from a superficial analysis) that the ratio of this frequency to the atmospheric 
cut-off frequency should be expected to be the same in stars whose surface structure 
differ substantially from that of the Sun. 
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