M-PRIMARY ELEMENTS OF A LOCAL NOETHER LATTICE

E. W. JOHNSON AND J. A. JOHNSON

Introduction. In this paper, we consider the extent to which a local Noether lattice (\mathscr{L}, M) is characterized by the sub-multiplicative lattice, denoted $\delta \mathscr{L}$, of *M*-primary elements. (Here we use the notation (\mathscr{L}, M) to indicate that *M* is the maximal element of \mathscr{L} .) In particular, we call \mathscr{L} *M*-complete if, given any decreasing sequence $\{A_i\}$ of elements and any $n \geq 1$, it follows that $A_i \leq A \vee M^n$ for large *i*, where $A = \bigwedge A_i$. And we show that, given two M_i -complete local Noether lattices (\mathscr{L}_1, M_1) and (\mathscr{L}_2, M_2) , with $\delta \mathscr{L}_1 \cong \delta \mathscr{L}_2$, it follows that $\mathscr{L}_1 \cong \mathscr{L}_2$. Further, we show that any local Noether lattice (\mathscr{L}, M) is a sublattice of a local Noether lattice (\mathscr{L}^*, M) which is *M*-complete and such that $\delta \mathscr{L} = \delta \mathscr{L}^*$.

1. Our first lemma is a basic tool.

LEMMA 1.1. Let (\mathcal{L}, M) be a local Noether lattice. If $A, B \in \mathcal{L}$ and $k \ge 0$, then

(i) $(A \lor M^n): B \leq (A:B) \lor M^k$ and

(ii) $(A \lor M^n) \land (B \lor M^n) \leq (A \land B) \lor M^k$ for some n.

Proof. Let k be fixed. Then by the descending chain condition in \mathscr{L}/M^{k} [1], $((A \lor M^{n}):B) \lor M^{k}$ is constant for large n, say for $n \ge K \ge k$. It follows that for $n \ge K$, $(((A \lor M^{n}):B) \lor M^{k})B = (((A \lor M^{K}):B) \lor M^{k})B \le A \lor M^{n} \lor M^{k}B$. Hence $(((A \lor M^{n}):B) \lor M^{k})B \le A \lor M^{k}B$, by the Intersection Theorem. If now B is assumed to be principal, then $((A \lor M^{n}):B) \lor M^{k} \le (A:B) \lor M^{k}$, and also $(A \lor M^{n}) \land B \le (A \lor M^{k}B) \land B \le (A \land B) \lor M^{k}$.

We now assume that there exist elements for which (ii) fails, that A is maximal in this respect, and that B is an arbitrary element for which $(A \lor M^n) \land (B \lor M^n) \leqq (A \land B) \lor M^k$ for all n. Then $B \leqq A$; hence there exists a principal element $E \leqq B$ with $E \leqq A$. Then $A < A \lor E$, and hence it follows from the maximality of A that for each integer h there exists an integer $K(h) \ge h$ such that

$$((A \lor E) \lor M^{K(h)}) \land (B \lor M^{K(h)}) \leq ((A \lor E) \land B) \lor M^{h}.$$

Received December 31, 1968 and in revised form, May 12, 1969.

Then for $n \ge K(h)$ and for h sufficiently large,

$$(A \lor M^{n}) \land (B \lor M^{n}) \leq (A \lor M^{n}) \land (A \lor E \lor M^{n}) \land (B \lor M^{n})$$
$$\leq (A \lor M^{h}) \land (((A \lor E) \land B) \lor M^{h})$$
$$\leq (A \lor M^{h}) \land ((A \land B) \lor (E \lor M^{h}))$$
$$\leq (A \land B) \lor ((A \lor M^{h}) \land (E \lor M^{h}))$$
$$\leq (A \land B) \lor ((A \land E) \lor M^{k})$$
$$\leq (A \land B) \lor M^{k},$$

by the principal case. This establishes (ii).

Now, let B_1, \ldots, B_r be principal elements. By an easy induction on (ii) we can choose K so that

$$\bigwedge_{i=1}^{r} ((A:B_i) \lor M^n) \leq \left(\bigwedge_{i=1}^{r} (A:B_i)\right) \lor M^k$$

for $n \ge K$. Hence, if $B = B_1 \lor \ldots \lor B_r$, then for sufficiently large n,

$$(A \lor M^{n}):B = \bigwedge_{i=1}^{r} ((A \lor M^{n}):B_{i}) \leq \bigwedge_{i=1}^{r} ((A:B_{i}) \lor M^{k})$$
$$\leq \left(\bigwedge_{i=1}^{r} (A:B_{i})\right) \lor M^{k} = (A:B) \lor M^{k},$$

by the principal case of (i).

THEOREM 1.2. Let (\mathcal{L}_1, M_1) and (\mathcal{L}_2, M_2) be local Noether lattices and $\varphi: \delta \mathcal{L}_1 \to \delta \mathcal{L}_2$ a multiplicative lattice homomorphism such that $\varphi(M_1) = M_2$. If \mathcal{L}_2 is M_2 -complete, then

- (i) φ extends to a homomorphism $\overline{\varphi}$ of \mathcal{L}_1 into \mathcal{L}_2 ,
- (ii) $\bar{\varphi}$ is one-to-one if φ is one-to-one,
- (iii) $\bar{\varphi}$ is onto if φ is onto and \mathcal{L}_1 is M_1 -complete,
- (iv) $\bar{\varphi}$ preserves residual division if φ does.

Proof. Define $\bar{\varphi}(A) = \bigwedge_i \varphi(A \vee M_1^i)$. Then since \mathscr{L}_2 is M_2 -complete,

$$\bar{\varphi}(A) \lor M_2^n \ge \varphi(A \lor M_1^i) \lor M_2^n = \varphi(A \lor M_1^n) \ge \bar{\varphi}(A) \lor M_2^n$$

for large *i*, and hence $\bar{\varphi}(A) \vee M_2^n = \varphi(A \vee M_1^n)$. Using this, we have $\bar{\varphi}(A) \vee \bar{\varphi}(B) \vee M_2^n = \varphi(A \vee M_1^n) \vee \varphi(B \vee M_1^n)$ $= \varphi(A \vee B \vee M_1^n) = \varphi(A \vee B) \vee M_2^n$,

for all *n*, so that $\bar{\varphi}(A) \vee \bar{\varphi}(B) = \bar{\varphi}(A \vee B)$, by the Intersection Theorem. Similarly, we see that $(\bar{\varphi}(A)\bar{\varphi}(B)) \vee M_2^n = \varphi(AB) \vee M_2^n$ for all *n*, so that $\bar{\varphi}(A)\bar{\varphi}(B) = \bar{\varphi}(AB)$. To see that $\bar{\varphi}$ preserves the meet operation, we use

Lemma 1.1. Hence

$$\begin{split} [\bar{\varphi}(A) \wedge \bar{\varphi}(B)] \vee M_2{}^k &= ((\bar{\varphi}(A) \vee M_2{}^n) \wedge (\bar{\varphi}(B) \vee M_2{}^n)) \vee M_2{}^k \\ &= (\varphi(A \vee M_1{}^n) \wedge \varphi(B \vee M_1{}^n)) \vee \varphi(M_1{}^k) \\ &= \varphi(((A \vee M_1{}^n) \wedge (B \vee M_1{}^n)) \vee M_1{}^k) \\ &= \varphi(((A \wedge B) \vee M_1{}^k) \\ &= \bar{\varphi}(A \wedge B) \vee M_2{}^k \end{split}$$

for some *n*, so that $\bar{\varphi}(A) \wedge \bar{\varphi}(B) = \bar{\varphi}(A \wedge B)$. This establishes (i). Now, assume that φ is one-to-one. If $\bar{\varphi}(A) = \bar{\varphi}(B)$, then

$$\varphi(A \vee M_1^n) = \bar{\varphi}(A) \vee M_2^n = \bar{\varphi}(B) \vee M_2^n = \varphi(B \vee M_1^n),$$

and $A \vee M_1^n = B \vee M_1^n$ for all *n*. Hence A = B, which establishes (ii).

We now assume that φ maps $\delta \mathscr{L}_1$ onto $\delta \mathscr{L}_2$ and that \mathscr{L}_1 is M_1 -complete. Assume that $D \in \mathscr{L}_2$. For each *i*, let C_i be the least element of \mathscr{L}_1 such that $C_i \geq M_1^i$ and $\varphi(C_i) = D \vee M_2^i$. Set $C = \bigwedge_i C_i$. We see that $C \vee M_1^i = C_i$ for all *i*, and hence $\bar{\varphi}(C) = D$, which establishes (iii).

To see that $\bar{\varphi}$ preserves residuation when φ does, we observe that

$$(\bar{\varphi}(A):\bar{\varphi}(B)) \lor M_2{}^k = ((\bar{\varphi}(A) \lor M_2{}^n):(\bar{\varphi}(B) \lor M_2{}^n)) \lor M_2{}^k$$

and $((A \lor M_1): (B \lor M_1^n)) \lor M_1^k = (A:B) \lor M_1^k$ for large *n*, from which the relation follows.

COROLLARY 1.3. Let (\mathcal{L}_1, M_1) and (\mathcal{L}_2, M_2) be local Noether lattices and $\{\varphi_i: \mathcal{L}_1/M_1^i \to \mathcal{L}_2/M_2^i\}$ a sequence of homomorphisms of \mathcal{L}_1/M_1^i onto \mathcal{L}_2/M_2^i such that φ_{i+1} extends φ_i for all *i*. If \mathcal{L}_2 is M_2 -complete, then \mathcal{L}_1 is embeddable in \mathcal{L}_2 . If also \mathcal{L}_1 is M_1 -complete, then \mathcal{L}_1 is isomorphic to \mathcal{L}_2 .

Proof. Define $\delta \varphi: \delta \mathscr{L}_1 \to \delta \mathscr{L}_2$ by $\delta \varphi(Q) = \bigwedge_i \varphi_i(Q \vee M^i)$. It is easily seen that φ is an isomorphism.

If the main concern is the embedding of \mathscr{L}_1 in the lattice of ideals of a local ring, then the assumption of M_2 -completeness is not restrictive.

COROLLARY 1.4. Let (R, p) be a local ring and (\mathcal{L}, M) a local Noether lattice. If there exists a sequence φ_i of isomorphisms of \mathcal{L}/M^i onto the ideals of R/p^i in such a way that φ_{i+1} extends φ_i for all *i*, then \mathcal{L} is embeddable in the lattice of ideals of the p-adic completion (R^*, p^*) of R. If \mathcal{L} is M-complete, then this embedding is onto.

Proof. The ideals of R/p^i are the same as the ideals of R^*/p^{*i} , and the lattice of ideals of R^* is p^* -complete.

2. Let (\mathcal{L}, M) be a Noether lattice. In this section we construct a local Noether lattice (\mathcal{L}^*, M^*) which is M^* -complete and in which \mathcal{L} is embedded in such a way that $\mathcal{L}^*/M^{*i} = \mathcal{L}/M^i$ for all *i*, thus generalizing Corollary 1.4.

To begin, we let \mathscr{L}^* be the collection of all formal sums $\sum_{i=1}^{\infty} A_i$ of elements

of \mathscr{L} such that $A_i = A_{i+1} \vee M^i$, for all *i*. We denote the elements of \mathscr{L}^* by capital letters A, B, \ldots , and for $A \in \mathscr{L}^*$ we let $A = \sum_{i=1}^{\infty} A_i$. On \mathscr{L}^* we define

(2.2)
$$AB = \sum_{i} (A_{i}B_{i} \lor M^{i}).$$

Then it is easily seen that any family \mathscr{F} of elements of \mathscr{L}^* has least upper bound $\sum S_i$, where $S_i = \bigvee_{A \in \mathscr{F}} A_i$. And it is immediate that $0^* = \sum M^i$ is a least element for \mathscr{L}^* ; thus \mathscr{L}^* is a lattice. Actually, \mathscr{L}^* can be seen to be a collection of representatives of equivalence classes of Cauchy sequences of \mathscr{L} under the metric $d(C, D) = 1/2^i$ if $C \vee M^i = D \vee M^i$ and $C \vee M^{i+1} \neq$ $D \vee M^{i+1}$.

THEOREM 2.1. \mathcal{L}^* satisfies the ascending chain condition.

Proof. Let $C(1) \leq C(2) \leq \ldots$ be an ascending chain in \mathscr{L}^* , so that for each j, $C(1)_j \leq C(2)_j \leq \ldots$ is an ascending chain in \mathscr{L} . Choose N so that $C(N)_1 = C(N+i)_1$ for $i \geq 0$, and set $B(n)_i = C(n)_{i+1} \wedge M^i$ for all $i, n \geq 1$. Then

$$M^{i} \geq B(n)_{i} \geq B(n)_{i+1} \geq MB(n)_{i};$$

thus $B(n) = \sum_i B(n)_i$ is an element of the Noether lattice $R(\mathcal{L}, M)$ of [2]. Moreover, $B(n) \leq B(n+1)$ in $R(\mathcal{L}, M)$, and hence there is an integer $K \geq N$ such that B(K) = B(n) for all $n \geq K$. Hence

$$C(K)_{i+1} \wedge M^{i} = B(K)_{i} = B(n)_{i} = C(n)_{i} \wedge M^{i+1}$$

for $n \ge K$ and for $i \ge 0$. Now, assume that $C(K)_r = C(K+i)_r$ for all $i \ge 0$. Then

$$C(K + i)_{r+1} = C(K + i)_{r+1} \wedge C(K + i)_r = C(K + i)_{r+1} \wedge C(K)_r$$

= $C(K + i)_{r+1} \wedge (C(K)_{r+1} \vee M^r) = C(K)_{r+1} \vee (C(K + i)_{r+1} \wedge M^r)$
= $C(K)_{r+1} \vee (C(K)_{r+1} \wedge M^r) = C(K)_{r+1}.$

Since $C(K)_1 = C(K + i)_1$ for all $i \ge 0$, the theorem follows.

Note that if $E = \{E_i\}$ is any sequence of elements of \mathscr{L} such that, for each n,

(2.3)
$$E_{i+1} \leq E_i \lor M^n$$
 for large i

and if $D_n = \bigwedge_i (E_i \vee M^n)$, then $D = \sum D_n \in \mathscr{L}^*$. We call D the *derived* element in \mathscr{L}^* of $\{E_i\}$. The following lemma gives some basic properties of \mathscr{L}^* . We omit the proof.

LEMMA 2.2. Let A, B be elements of \mathcal{L}^* . Then

- (i) $A \wedge B$ is the element of \mathcal{L}^* derived from $\{A_i \wedge B_i\}$,
- (ii) A:B is the element of \mathscr{L}^* derived from $\{A_i:B_i\}$,
- (iii) \mathcal{L}^* is modular,

(iv) If $\{A_i\}$ is a sequence of principal elements of \mathcal{L} satisfying (2.3), then the derived element of \mathcal{L}^* is principal.

We can now prove the following result.

THEOREM 2.3. \mathcal{L}^* is a local Noether lattice with maximal element $M^* = \sum M$.

Proof. We must show that every element of \mathscr{L}^* is the join of principal elements. Hence, assume that $B, C \in \mathscr{L}^*$ with B < C. We will show that there exists a principal element $F \in \mathscr{L}^*$ with $F \leq C$ and $F \leq B$. Now, since $B_i < C_i$ for sufficiently large *i*, say for $i \geq K$, we choose E_K principal in \mathscr{L} so that $E_K \leq C_K, E_K \leq B_K$. Then

$$[C_{K+1} \wedge (E_K \vee M^K)] \vee M^K = (E_K \vee M^K) \wedge (C_{K+1} \vee M^K)$$
$$= (E_K \vee M^K) \wedge C_K = E_K \vee M^K,$$

and hence $C_{K+1} \wedge (E_K \vee M^K) \not\leq B_K$ and there exists a principal element $E_{K+1} \leq C_{K+1} \wedge (E_K \vee M^K)$, $E_{K+1} \not\leq B_K$. If now E_{K+1} , ..., E_{K+n} are chosen so that $E_{K+i+1} \leq C_{K+i+1} \wedge (E_{K+i} \vee M^{K+i})$ and $E_{K+i+1} \not\leq B_K$, $0 \leq i \leq n-1$, then also $C_{K+n+1} \wedge (E_{K+n} \vee M^{K+n}) \not\leq B_K$, and thus E_{K+n+1} can similarly be chosen. Setting $E_i = E_K$ for $1 \leq i \leq K$, the element F of \mathscr{L}^* derived from $\{E_i\}$ is principal with $F \leq C$. And since $E_{K+i} \vee M^K \not\leq B_K$, $F \not\leq B$. It follows that every element of \mathscr{L}^* is the finite join of principal elements.

Now, for $C \in \mathscr{L}$, set $C^* = \sum (C \vee M^i)$. By Lemma 1.1, it follows that $(B \vee C)^* = B^* \vee C^*$, $(B \wedge C)^* = B^* \wedge C^*$, $(BC)^* = B^*C^*$, and $(B:C)^* = B^*:C^*$; thus if we identify C with C* we have the following result.

THEOREM 2.4. Let (\mathcal{L}, M) be a local Noether lattice. Then \mathcal{L} can be extended to a local Noether lattice (\mathcal{L}^*, M) such that

(i) \mathcal{L}^* is M-complete, (ii) $\mathcal{L}^*/M^i = \mathcal{L}/M^i$ for all *i*, and (iii) $\delta \mathcal{L}^* = \delta \mathcal{L}$.

_

References

- 1. R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
- E. W. Johnson, A-transforms and Hilbert functions on local lattices, Trans. Amer. Math. Soc. 137 (1969), 125–139.

The University of Iowa, Iowa City, Iowa; The University of Houston, Houston, Texas