
TPLP 23 (4): 832–847, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S147106842300011X First published online 11 July 2023

832

An ASP Framework for the Refinement of
Authorization and Obligation Policies

DANIELA INCLEZAN
Miami University, Oxford, OH, USA

(e-mail: inclezd@miamioh.edu)

submitted 30 May 2023; accepted 12 June 2023

Abstract

This paper introduces a framework for assisting policy authors in refining and improving their
policies. In particular, we focus on authorization and obligation policies that can be encoded in
Gelfond and Lobo’s AOPL language for policy specification. We propose a framework that de-
tects the statements that make a policy inconsistent, underspecified, or ambiguous with respect
to an action being executed in a given state. We also give attention to issues that arise at the
intersection of authorization and obligation policies, for instance when the policy requires an
unauthorized action to be executed. The framework is encoded in Answer Set Programming.

KEYWORDS: policy, authorizations and obligations, dynamic domains, ASP

1 Introduction

This paper introduces a framework for assisting policy authors in refining and improving

the policies they elaborate. Here, by a policy we mean a collection of statements that

describe the permissions and obligations related to an agent’s actions.

In particular, we focus on authorization and obligation policies that can be encoded in

the policy specification language AOPL by Gelfond and Lobo (2008). AOPL allows an

author to specify policies for an autonomous agent acting in a changing environment. A

description of the dynamic domain in terms of sorts of the domain, relevant fluents, and

actions is assumed to be available to the policy writer. Policy rules of AOPL may be of

two kinds: authorization rules specifying what actions are permitted/ not permitted and

in which situations, and obligation rules indicating what actions an agent must perform

or not perform under certain conditions. Rules can either be strict or defeasible, and

preferences between defeasible rules can be set by the policy author. The semantics of

AOPL is defined via a translation into Answer Set Programming (ASP) (Gelfond and

Lifschitz 1991). Gelfond and Lobo define policy properties such as consistency and cate-

goricity. However, there is a gap in analyzing what happens at the intersection between

authorization and obligation policies, for instance when a policy requires an unauthorized

action to be executed, which is called a modality conflict by Craven et al. (2009).

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S147106842300011X
https://orcid.org/0000-0002-4534-9658
mailto:inclezd@miamioh.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842300011X&domain=pdf
https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 833

We propose a framework that detects the rules that make a policy inconsistent, un-

derspecified, or ambiguous with respect to an action and a given state. The goal is to

notify the policy author about the natural language statements in the policy that may

be causing an issue and explain why that is the case for the particular action and state.

Given rapid advancements in AI in the past years, the importance of setting and en-

forcing policies on intelligent agents has become paramount. At the same time, policy

specifications can become large and intricate. Thus, assisting policy authors and knowl-

edge engineers with policy refinement by automatically detecting issues in a provably

correct way and highlighting conflicting policy statements is of great importance.

The contributions of our work are as follows:

• We define a new translation of AOPL policies into ASP by reifying policy rules.

• We formally define issues that may arise in AOPL policies and describe how to

detect the causing policy statements, using the reified ASP translation.

• We define means for explaining the root causes for issues like inconsistency, under-

specification, ambiguity, and modality conflicts.

In what follows, we provide a short description of language AOPL in Section 2 and give

a motivating example in Section 3. We describe our new translation of AOPL policies

into ASP in Section 4 and introduce our framework in Section 5. We discuss related work

in Section 6 and end with conclusions and future work.

2 Background: Language AOPL

Let us now briefly present the AOPL language. We direct the unfamiliar reader to

outside resources on ASP (Gelfond and Lifschitz 1991; Marek and Truszczynski 1999)

and action language ALd (Gelfond and Inclezan 2013; Gelfond and Kahl 2014), which

are also relevant to this work.

Gelfond and Lobo (2008)1 introduced the Authorization and Obligation Policy Lan-

guage AOPL for specifying policies for an intelligent agent acting in a dynamic environ-

ment. A policy is a collection of authorization and obligation statements, which we simply

call authorizations and obligations, respectively. An authorization indicates whether an

agent’s action is permitted or not, and under which conditions. An obligation describes

whether an agent is obligated or not obligated to perform a specific action under certain

conditions. An AOPL policy works in conjunction with a dynamic system description of

the agent’s environment written in an action language such as ALd. The signature of the

dynamic system description includes predicates denoting sorts for the elements in the do-

main; fluents (i.e. properties of the domain that may be changed by actions); and actions.

As in ALd, we consider dynamic systems that can be represented by a directed graph,

called a transition diagram, containing a finite number of nodes representing physically

possible states of the dynamic domain. A state is a complete and consistent set of fluent

literals. Arcs in the transition diagram are labeled by action atoms (shortly actions) that

take the system from one state to another. Actions can be elementary or compound,

where a compound action is a set of elementary actions executed simultaneously.

1 Available at https://www.depts.ttu.edu/cs/research/documents/44.pdf.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://www.depts.ttu.edu/cs/research/documents/44.pdf
https://doi.org/10.1017/S147106842300011X


834 D. Inclezan

The signature of an AOPL policy includes the signature of the associated dynamic

system and additional predicates permitted for authorizations, obl for obligations, and

prefer for establishing preferences between authorizations or obligations. A prefer atom

is created from the predicate prefer ; similarly for permitted and obl atoms.

Definition 1 (Policy)

An AOPL policy P is a finite collection of statements of the form:

permitted (e) if cond (1a)

¬permitted (e) if cond (1b)

obl (h) if cond (1c)

¬obl (h) if cond (1d)

d : normally permitted(e) if cond (1e)

d : normally ¬permitted(e) if cond (1f)

d : normally obl(h) if cond (1g)

d : normally ¬obl(h) if cond (1h)

prefer(di, dj) (1i)

where e is an elementary action; h is a happening (i.e. an elementary action or its

negation2); cond is a (possibly empty) collection of atoms of the signature, except for

atoms containing the predicate prefer ; d appearing in (1e)–(1h) denotes a defeasible

rule label; and di, dj in (1i) refer to two distinct rule labels from P. Rules (1a)–(1d)

encode strict policy statements, while rules (1e)–(1h) encode defeasible statements (i.e.

statements that may have exceptions). Rule (1i) captures priorities between defeasible

statements.

In deontic terms, rules (1a) and (1e) denote permissions ; rules (1b) and (1f) denote

prohibitions ; rules (1c) and (1g) denote obligations ; and rules (1d) and (1h) denote dis-

pensations.

The semantics of an AOPL policy determine a mapping P(σ) from states of a tran-

sition diagram T into a collection of permitted and obl literals. To formally describe the

semantics of AOPL, a translation of a policy and transition diagram into ASP is defined.

Definition 2 (ASP Translation of a Policy and State)

The translation lp is defined as:

• If x is a fluent literal, action literal, permitted, or obl literal, then lp(x) =def x .

• If L is a set of literals, then lp(L) =def {lp(l) : l ∈ L}
• If r = “l if cond” is a strict rule like the ones in (1a)–(1d), then lp(r) =def lp(l) ←
lp(cond)

• If r is a defeasible rule like (1e) or (1f), or a preference rule “prefer(di, dj)” like the one

in (1i), then lp(r) is obtained using standard ASP techniques for encoding defaults,

as shown in equations (2a), (2b), and (2c) respectively:

permitted(e)← lp(cond), not ab(d), not ¬permitted(e) (2a)

¬permitted(e)← lp(cond), not ab(d), not permitted(e) (2b)

ab(dj)← lp(condi) (2c)

2 If obl(¬e) is true, then the agent must not execute e.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 835

where condi is the condition of di. Similarly for defeasible obligations (1g) and

(1h).

• If P is a policy, then lp(P) =def {lp(st) : st ∈ P}.
• If P is a policy and σ is a state of the (transition diagram associated with the) dynamic

system description T,

lp(P, σ) =def lp(P) ∪ lp(σ)

Properties of an AOPL policy P are defined in terms of the answer sets of the logic

program lp(P, σ) expanded with appropriate rules.

The following definitions by Gelfond and Lobo are relevant to our work (original defi-

nition numbers in parenthesis). In what follows a denotes a (possibly) compound action

(i.e. a set of simultaneously executed elementary actions), while e refers to an elementary

action. An event 〈σ, a〉 is a pair consisting of a state σ and a (possibly) compound action

a executed in σ.3

Definition 3 (Consistency – Def. 3 )

A policy P for T is called consistent if for every state σ of T, the logic program lp(P, σ)

is consistent, that is, it has an answer set.

Definition 4 (Policy Compliance for Authorizations – Defs. 4 and 5 )

• An event 〈σ, a〉 is strongly compliant with authorization policy P if for every e ∈ a we

have that permitted(e) ∈ P(σ) (i.e. the logic program lp(P, σ) entails permitted(e)).

• An event 〈σ, a〉 is weakly compliant with authorization policy P if for every e ∈ a

we have that ¬permitted(e) /∈ P(σ) (i.e. the logic program lp(P, σ) does not entail

¬permitted(e)).

• An event 〈σ, a〉 is non-compliant with authorization policy P if for every e ∈ a we have

that ¬permitted(e) ∈ P(σ) (i.e. the logic program lp(P, σ) entails ¬permitted(e)).

Definition 5 (Policy Compliance for Obligations – Def. 9 )

An event 〈σ, a〉 is compliant with obligation policy P if

• For every obl(e) ∈ P(σ) we have that e ∈ a, and

• For every obl(¬e) ∈ P(σ) we have that e /∈ a.

Definition 6 (Categoricity – Def. 6 )

A policy P for T is called categorical if for every state σ of T the logic program lp(P, σ)

is categorical, that is, has exactly one answer set.

Note that AOPL does not discuss interactions between authorizations and obligations

referring to the same action, for instance situations when both obl(e) and ¬permitted(e)

are part of the answer set of lp(P, σ) for some state σ.

3 Motivating example

To illustrate the policy refinement process that we want to facilitate, let’s consider an

example provided by Gelfond and Lobo, expanded with an additional rule (4):

3 In policy analysis, we want to encompass all possible events, that is, pairs consisting of a physically
possible state σ and physically executable action a in σ.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


836 D. Inclezan

Example 1 (Authorization Policy Example)

(1) A military officer is not allowed to command a mission they authorized.

(2) A colonel is allowed to command a mission they authorized.

(3) A military observer can never authorize a mission.

(4) A military officer must command a mission if ordered by their superior to do so.

Before discussing the encoding of this policy, let us assume that the description

of this domain includes actions assume comm(C,M) and authorize comm(C,M);

fluents authorized(C,M) and ordered by superior(C,M); and sorts colonel(C) and

observer(C), where C is a commander and M is a mission.

In the English description of the policy in Example 1, note that statements (1) and (2)

are phrased as strict rules and thus an automated translation process into AOPL would

produce the policy:

¬permitted(assume comm(C,M)) if authorized(C,M) (3a)

permitted(assume comm(C,M)) if colonel(C) (3b)

¬permitted(authorize comm(C,M)) if observer(C) (3c)

obl(assume comm(C,M)) if ordered by superior(C,M) (3d)

Such a policy is inconsistent in a state in which authorized(c,m) and colonel(c) both

hold, due to rules (3a) and (3b). Gelfond and Lobo indicate that “[s]ince the nature of the

first two authorization policy statements of our example are contradictory we naturally

assume them to be defeasible” and replace the encoding in rules (3a) and (3b) with

d1(C,M) : normally ¬permitted(assume comm(C,M)) if authorized(C,M)

d2(C,M) : normally permitted(assume comm(C,M)) if colonel(C)

prefer(d2(C,M), d1(C,M))

while leaving rule (3c) as it is. Rule (3d) is unaffected, as it corresponds to the new policy

statement (4) that we added to the original example by Gelfond and Lobo, to illustrate

obligations.

This approach has several drawbacks: (a) it puts the burden on the knowledge engi-

neer, who may have a more limited knowledge of the domain than the policy author and

thus may make false assumptions; (b) it does not scale for large and intricate policies;

and (c) it would be difficult to automate. Instead, we propose a framework that de-

tects inconsistencies like the one above, alerts the policy author of the conflicting policy

statements and the conditions that cause them, and allows the policy author to refine

the policy (with options for refinement possibly suggested, in the future). In particular,

for Example 1, we expect our framework to indicate that statements (1) and (2) are in

conflict in a state in which both colonel(c) and authorized(c,m) are true. Similarly, our

framework should flag the contradiction between the obligation in rule (4) and rule (1)

in a state in which authorized(c,m) and ordered by superior(c,m) both hold.

To achieve this goal, we modify AOPL by introducing labels for all rules (including

strict and preference rules)4 and connecting rules of AOPL with natural language state-

ments of the original policy via a new predicate text as in the following example for the

strict policy rule in (3c) where s1 is the label for the strict authorization rule:

4 As in the original AOPL language, preferences can be defined only between pairs of defeasible rules.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 837

s1 : ¬permitted(authorize command(C,M)) if observer(C)

text(s1, “A military observer can never authorize a mission.”)

Additionally, we define a different translation of AOPL into ASP, which we will denote

by rei lp as it reifies policy rules. We define the rei lp translation in the next section.

4 Reification of policy rules

The new translation of AOPL into ASP that we propose follows previous methods for

the reification of rules in other domains, such as reasoning about prioritized defaults

(Gelfond and Son 1997) or belief states (Balduccini et al . 2020). Similar to the definition

of the lp translation function, the signature of rei lp(P) for a policy P applying in a

dynamic domain described by T contains the sorts, fluents, and actions of T. To simplify

the presentation, we limit ourselves to boolean fluents and use the general syntax

r : [normally] hd if cond (4)

to refer to both strict and defeasible, authorization and obligation rules from P. We use

the term head of rule r to refer to the hd part in (4), where hd ∈ HD,

HD =
⋃

e∈E

{permitted(e),¬permitted(e), obl(e), obl(¬e),¬obl(e),¬obl(¬e)}

and E is the set of all elementary actions in T. The signature of rei lp(P) also includes

the elements of HD and the following predicates:

• rule(r) – where r is a rule label (referred shortly as “rule” below)

• type(r, ty) – where ty ∈ {strict, defeasible, prefer} is the type of rule r

• text(r, t) – to denote that rule r corresponds to policy statement t

• head(r, hd) – to denote the head hd of rule r

• body(r, b(r)) – where b(r) denotes the condition cond in rule r and b is a new

function added to the signature of rei lp(P)

• mbr(b(r), l) – for every l in the condition cond of rule r (mbr stands for “member”)

• ab(r) – for every defeasible rule r

• holds(x) – where x may be a rule r, the head hd of a rule, function b(r) representing

the cond of a rule r, literal l of T, or ab(r) from above

• opp(r, hd) – where r is a defeasible rule and hd ∈ HD (opp stands for “opposite”)

• prefer(d1, d2) – where d1 and d2 are defeasible rule labels

The predicate holds helps determine which policy rules are applicable, based on what

fluents are true/false in a state and the interactions between policy rules. The predicate

opp(r, hd) indicates that hd is the logical complement of r’s head hd.

The translation rei lp(P) consists of facts encoding the rules in P using the predicates

rule, type, head, mbr, and prefer, as well as the set of policy-independent rules below,

which define predicates holds and opp, where L is a fluent literal, E an elementary action,

and H a happening (i.e. an elementary action or its negation).

body(R, b(R)) ← rule(R)

holds(R) ← type(R, strict), holds(b(R))

holds(R) ← type(R, defeasible), holds(b(R)),

opp(R,O), not holds(O), not holds(ab(R))

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


838 D. Inclezan

holds(B) ← body(R,B), N = #count{L : mbr(B,L)},
N = #count{L : mbr(B,L), holds(L)}

holds(ab(R2)) ← prefer(R1, R2), holds(b(R1))

holds(Hd) ← rule(R), holds(R), head(R,Hd)

opp(R, permitted(E)) ← head(R,¬permitted(E))

opp(R,¬permitted(E)) ← head(R, permitted(E))

opp(R, obl(H)) ← head(R,¬obl(H))

opp(R,¬obl(H)) ← head(R, obl(H))

Definition 7 (Reified ASP Translation of a Policy and State)

Given a state σ of T, rei lp(P, σ) =def rei lp(P) ∪ {holds(l) : l ∈ σ }.
This definition will be used in conducting various policy analysis tasks in Section 5.

Proposition 1 (Relationship between the Original and Reified ASP Translations)

Given a state σ of T, there is a one-to-one correspondence map : A → B between the

collection of answer sets A of lp(P, σ) and the collection of answer sets B of rei lp(P, σ)

such that if map(A) = B then ∀hd ∈ HD ∩A, ∃holds(hd) ∈ B.

5 Policy analysis

In what follows, we assume that the cond part of a policy rule cannot include atoms

from the set HD (i.e. atoms obtained from predicates permitted and obl). We plan to

consider more general policies in future work. Lifting this restriction complicates the task

of finding explanations beyond the goal of the current work.

5.1 Analyzing authorization policies

Our goal in analyzing policies is to assist a policy author in refining their policies by

indicating to them the rules that cause concern. Thus, when analyzing an authorization

policy P with respect to an elementary action e in a state σ, we focus on the tasks:

• Explain the causes of inconsistencies – determining the rules that cause a

policy to derive both holds(permitted(e)) and holds(¬permitted(e)) when using

the rei lp translation

• Detect and explain underspecification – determining whether rules about e

exist or not, and, if they exist, explain why they do not fire. (Craven et al . 2009)

call this situation coverage gaps.)

• Detect and explain ambiguity – determining whether there are conflict-

ing defeasible rules that produce holds(permitted(e)) in some answer sets and

holds(¬permitted(e)) in others, and indicating which rules these are.

5.1.1 Inconsistency

To detect and explain inconsistencies with respect to an elementary action e and state σ

we introduce the following predicates:

• inconsistency(e, r1, r2) – indicates that the pair of rules r1 and r2 both fire and

cause the inconsistency; r1 produces permitted(e) and r2 produces ¬permitted(e)

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 839

• inconsistency expl(e, t1, t2) – does the same but indicates the natural language

texts of the corresponding policy statements

• inconsistency expl pos(e, l) – indicates that l is a fluent/static that holds in σ and

contributes to the inconsistency in a rule that produces permitted(e)

• inconsistency expl neg(e, l) – similar to the previous predicate, but for rules that

produce ¬permitted(e)

We define a logic program I consisting of the rules below:

inconsistency(E,R1, R2) ← holds(permitted(E)), holds(¬permitted(E)),

holds(R1), head(R1, permitted(E)),

holds(R2), head(R2,¬permitted(E))

inconsistency expl(E, T1, T2) ← inconsistency(E,R1, R2),

text(R1, T1), text(R2, T2)

inconsistency expl pos(E,L) ← inconsistency(E,R1, ), head(R1, permitted(E)),

mbr(b(R1), L), holds(L)

inconsistency expl neg(E,L) ← inconsistency(E, ,R2), head(R2,¬permitted(E)),

mbr(b(R2), L), holds(L)

We restate Definition 3 in terms of the rei lp(P, σ) translation.

Definition 8 (Inconsistency Redefined)

An authorization policy P is inconsistent with respect to an elementary action e and a

state σ if the answer set of rei lp(P, σ) ∪ I contains inconsistency(e, r1, r2) for a pair of

rules r1 and r2.

Definition 9 (Explaining the Causes of Inconsistency)

• An explanation for the inconsistency of e in σ is the set of pairs of strings

{(t1, t2) : inconsistency expl(e, t1, t2) ∈ rei lp(P, σ) ∪ I}.
• A fluent literal l contributes positively (or negatively) to the inconsistency of e

in σ if the answer set of rei lp(P, σ) ∪ I contains inconsistency expl pos(e, l) (or

inconsistency expl neg(e, l), respectively).

The collection of atoms identified in Definition 9 can be collected from the answer set

of rei lp(P, σ) ∪ I and post-processed to provide more human-friendly output.

5.1.2 Underspecification

We define the notion of underspecification of an elementary action e in a state σ as

the lack of explicit information as to whether e is permitted or not permitted in that

state, similar to the concept of coverage gap defined by Craven et al. (2009). Note that

underspecification is different from non-categoricity, where a policy may be ambiguous

because e is deemed permitted in some answer sets and not permitted in others.

Definition 10 (Categoricity and Underspecification of an Action in a State)

A consistent authorization policy P is categorical with respect to an elementary action e

and state σ if one of the following cases is true:

1. rei lp(P, σ) entails holds(permitted(e)), or

2. rei lp(P, σ) entails holds(¬permitted(e)), or

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


840 D. Inclezan

3. For every answer set S of rei lp(P, σ),

{holds(permitted(e)), holds(¬permitted(e))} ∩ S = ∅
In this last case, we say that e is underspecified in state σ.

Underspecification is important because it may reflect an oversight from the policy

author. If it’s unintended, it can have negative consequences in planning domains for

example, when an agent may want to choose the most compliant plan and thus actions

that are mistakenly underspecified may never be selected. To test whether an action e is

underspecified in a state, we define the set of rules Checkund(e) consisting of the set of

constraints:

{ ← holds(permitted(e)),

← holds(¬permitted(e)) }
Definition 11 (Detecting Underspecification)

Action e is underspecified in σ if the logic program lp(P, σ) ∪ Checkund(e) is consistent.

Whenever an elementary action is underspecified in a state, there may be two expla-

nations: (Case 1) the authorization policy contains no rules about e, or (Case 2) rules

about e exist in the policy but none of them apply in state σ. Once we establish that an

elementary action is underspecified, we want to explain to the policy author why that is

the case. For the first case, we just want to inform the policy author about the situation.

In the second case, we want to report, for each authorization rule about e, which fluents

make the rule non-applicable. Note that a defeasible rule r with head hd (see (4)) cannot

be made unapplicable by the complement hd, as the complement is underivable as well

in an underspecified policy. Similarly, a preference rule cannot disable a defeasible rule

either, as this can only be the case when the complement hd can be inferred.

Let U be the logic program

rules exist(E) ← head(R, permitted(E);¬permitted(E))

underspec 1(E) ← not rules exist(E)

underspec 1 expl(“Case 1,”E) ← underspec 1(E)

underspec 2(E) ← rules exist(E)

underspec 2(E,R,L) ← underspec 2(E), rule(R),

head(R, permitted(E);¬permitted(E)),

mbr(b(R), L),

not holds(L)

underspec 2 expl(“Case 2,”E,R,L, T ) ← underspec 2(E,R,L),

text(R, T )

Definition 12 (Explaining the Causes of Underspecification)

An explanation for the underspecification of e in σ is the set of atoms formed by predicates

underspec 1 expl and underspec 2 expl found in the answer set of rei lp(P, σ) ∪ U.

For a more human-friendly explanation, an atom underspec 1 expl(“Case 1,”e) in the

answer set can be replaced with an explanation of the form “There are no authorization

rules about e” in the post-processing phase. A collection of atoms of the form

{underspec 2 expl(“Case 2,”e, r, l1, t), . . . , underspec 2 expl(“Case 2,”e, r, ln, t)}

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 841

can be replaced with the explanation “Rule r about action e (stating that ‘t’) is rendered

inapplicable by the fact that fluent(s) l1, . . . , ln do not hold in this state.”

5.1.3 Ambiguity

We define ambiguity as the case when the policy allows a choice between permitted(e)

and ¬permitted(e). This notion of ambiguity overlaps with that of a non-categorical

policy. However, given our assumption that permitted atoms are not included in the

condition cond of policy rules, ambiguity is a much more specific case. We claim that, if

P is a consistent, non-categorical policy with respect to e in σ (see Definition 10), then

holds(permitted(e)) will be in some answer sets of rei lp(P, σ) and holds(¬permitted(e))

will be in others, but it cannot be the case that an answer set does not contain either.5

The justification is that the body cond of policy rules is fully determined by the unique

values of fluents in σ. Hence, strict rules either fire or do not. If a strict ruled fired, it would

automatically override the defeasible rules with the complementary head, and thus lead

either to inconsistency (depending on which other strict rules fire) or categoricity. The

only source of non-categoricity can be the presence of defeasible rules with complementary

heads and satisfied conditions, and which are not overridden by preference rules.

Definition 13 (Ambiguity of an Action in a State)

Let P be a policy that is consistent and non-categorical with respect to elementary action

e and state σ. Let rei lp(P, σ) have n answer sets, out of which np answer sets contain

holds(permitted(e)) and nnp contain holds(¬permitted(e)).

P is ambiguous with respect to e and σ if n �= np, n �= nnp and n = np + nnp.

Next, let’s describe how we detect ambiguity.

Definition 14 (Detecting Ambiguity)

Action e is ambiguous in σ if holds(permitted(e)) and holds(¬permitted(e)) are not

entailed by rei lp(P, σ) and e is not underspecified in σ.

Once ambiguity is established, an explanation for ambiguity is needed. To produce it,

we define the logic program A consisting of the rules:

ambiguous(E,R1, R2) ← defeasible rule(R1), head(R1, permitted(E)),

defeasible rule(R2), head(R2,¬permitted(E)),

holds(b(R1)), holds(b(R2)),

not holds(ab(R1)), not holds(ab(R2))

ambiguity expl(E, T1, T2) ← ambiguous(E,R1, R2), text(R1, T2), text(R2, T2)

Definition 15 (Explaining the Causes of Ambiguity)

An explanation for the ambiguity of e in σ is the set of pairs of strings:

{(t1, t2) : ambiguity expl(e, t1, t2) ∈ rei lp(P, σ) ∪ A}

5 Note that, if we lift our restriction and allow cond to contain permitted (or obl) atoms, then for a
weakly compliant action e, there can be a combination of answer sets containing holds(permitted(e))
and answer sets not containing neither holds(permitted(e)) nor holds(¬permitted(e)), if cond contains
a permitted(e1) atom such that e1 is an action that is ambiguous in σ.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


842 D. Inclezan

5.1.4 Observation about strongly vs weakly compliant policies

Gelfond and Lobo distinguish between actions that are strongly compliant in a state

versus weakly compliant (see Definition 4). In planning, as shown by Meyer and Inclezan

(2021), it seems reasonable to prefer strongly compliant actions over weakly compliant

ones. However, in the theorem below we show that the class of weakly compliant

actions includes strongly compliant ones. What we really need for planning purposes is

distinguishing between strongly compliant and underspecified actions in a state, so that

we can create a preference order between actions.

Theorem 1 (Strongly vs Weakly Compliant Actions)

All elementary actions that are strongly compliant in a state σ are also weakly compliant.

Proof

Note that, in this proof, we consider the original lp translation of AOPL, which is equiv-

alent with, but more convenient to use here than, the reified translation rei lp as stated

in Proposition 1. According to Definition 4 borrowed from Gelfond and Lobo’s work,

elementary action e is strongly compliant with authorization policy P if lp(P, σ) entails

permitted(e), and it is weakly compliant if lp(P, σ) does not entail ¬permitted(e). For

consistent policies, the latter condition is obviously true if e is strongly compliant in σ, as

having permitted(e) in every answer set of lp(P, σ) implies that ¬permitted(e) must be

absent from each such answer set. If the policy is inconsistent, the theorem is vacuously

true.

Given our assumption that permitted (and obl) atoms cannot appear in the cond part

of policy rules, an elementary action e can only be either strongly compliant in σ or

underspecified.6

We formulate the following proposition, which is useful in creating an ordering of

actions based on compliance (relevant in planning).

Proposition 2 (Properties of Authorization Policies)

• If condition cond of authorization rules is not allowed to contain permitted (or obl)

atoms and P is categorical with respect to e and σ, then e is either strongly compliant,

non-compliant, or underspecified in σ.

• If condition cond of authorization rules is not allowed to contain permitted (or obl)

atoms and P is non-categorical with respect to e and σ, then e is neither strongly com-

pliant nor non-compliant; it may be either underspecified or ambiguous.

5.2 Obligation policy analysis

The techniques from Section 5.1 for determining rules that create inconsistencies, un-

derspecification, and ambiguity with respect to an elementary action and a state can

be easily adapted to obligation policies as well. Obligation policies apply to happenings,

which are actions or their negations. For instance, given an elementary action e, the

6 If this restriction is lifted and the condition cond of a policy rule for e contains a permitted(e1) atom,
such that e1 is ambiguous, then e may be a weakly compliant action because it will be permitted in
some answer sets and unknown in others.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 843

following literals are part of the signature of the policy: obl(e), obl(¬e), ¬obl(e), and
¬obl(¬e). Inconsistencies between obl(e) and ¬obl(e) on one hand, or between obl(¬e)
and ¬obl(¬e) are easy to detect. However, there are additional incongruencies that may

decrease the quality of a policy, and we may want to alert the policy writer about them

as well.

For instance, if a policy P entails both obl(e) and obl(¬e) in a state σ, then any event

〈σ, a〉 will be non-compliant, no matter whether e ∈ a or e /∈ a. In actuality, it means

that the policy does not allow for the agent to be compliant with respect to obligations in

state σ. Thus the notions of inconsistency and ambiguity should be adapted or expanded

to include this situation. We propose the following definition:

Definition 16 (Conflicting Policy)

Given a consistent obligation policy P, a state σ and an elementary action e, we call P

a conflicting obligation policy with respect to σ and e if the logic program rei lp(P, σ)

entails both holds(obl(e)) and holds(obl(¬e)).
Explanations for conflicting obligation policies can be found using techniques similar

to the ones in Section 5.1.

5.3 The intersection between authorization and obligation policies

When combining an authorization policy with an obligation policy, there are a few cases

that, while not necessarily inconsistent, certainly seem to require non-compliant behavior

from the agent. This is especially the case when an event 〈σ, e〉 is strongly compliant with

the obligation policy but non-compliant with the authorization policy (i.e. in terms of the

original translation lp of AOPL into ASP, lp(P, σ) entails both obl(e) and ¬permitted(e)

according to Definitions 4 and 5). Other situations that may require the policy authors’

attention, though to a lesser degree, are when an action is permitted but the agent is

obligated not to execute it (i.e. lp(P, σ) entails both permitted(e) and obl(¬e)) or when
the agent is obligated to execute an action that is underspecified in that state. We indicate

the level of urgency of each of these situations by adding a number from 1 to 3, with 1

being the most needing of re-consideration and 3 being the least urgent.

Once it has been established that the policies are strongly compliant, non-compliant,

or underspecified with respect to the state and elementary action, the following ASP

rules determine which policy rules need to be re-visited.

require cons(E,R1, R2, 1) ← holds(R1), head(R1, obl(E)),

holds(R2), head(R2,¬permitted(E))

require cons(E,R1, R2, 2) ← holds(R1), head(R1, obl(¬E)),

holds(R2), head(R2, permitted(E))

require cons(E,R1, R2, 3) ← holds(R1), head(R1, obl(E)),

not holds(permitted(E)),

not holds(¬permitted(E))

require cons expl(E, T1, T2, N) ← require cons(E,R1, R2, N),

text(R1, T1), text(R2, T2).

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


844 D. Inclezan

6 Related work

Meyer and Inclezan (2021) developed an architecture for policy-aware intentional agents

(APIA) by leveraging Blount et al.’s theory of intentions (2015). An agent’s behavior was

ensured to be compliant with authorization and obligation policies specified in AOPL

and translated into ASP. Meyer and Inclezan’s work first highlighted the issues that may

arise at the intersection between AOPL authorization and obligation and policies. In the

APIA architecture, conflicts of this nature were resolved by modifying the policy’s ASP

encoding to state that such conflicts render a policy inconsistent. In the current work

our intention is to alert policy authors about such situations and provide them with the

opportunity to decide which policy statements to modify in order to restore consistency.

Additionally, in the current work we delve deeper into the tasks associated with policy

analysis and look at underspecification and ambiguity as well. We also focus on providing

explanations as to why such issues arise.

Craven et al.’s work (2009) is the closest to ours in its intent. The authors define lan-

guage L for policy specification and include both authorization and obligation policies.

They define a solid set of tasks that an automated analysis of a policy should accom-

plish, such as discovering modality conflicts and coverage gaps, which we target in our

work as well. Their research assumes that the underlying dynamic domain is specified

in Event Calculus (Kowalski and Sergot 1989). Explanations are found via an abductive

constraint logic programming proof procedure. Given the absence of a comparison be-

tween languages L and AOPL, it is important to study the problem of policy analysis

with respect to language AOPL as well. AOPL has clear advantages, including its ability

to express defeasible policies and preferences between policies. Moreover, AOPL can be

seamlessly integrated with ASP-based dynamic system descriptions, as different proper-

ties of AOPL policies can be checked by finding the answer sets of an ASP program. This

would allow coupling policies with system descriptions specified in higher-level action lan-

guages that translate into ASP, such as the modular action language ALM (Inclezan and

Gelfond 2016), and associated libraries about action and change (Inclezan 2016; 2019).

Other research on policy modeling or analysis using ASP exists, but the goals tend to

be different from ours. Corapi et al. (2011) use inductive logic programming and software

engineering-inspired processes to assist policy authors with policy refinement. In their

work, refinement suggestions are provided, but this process is driven by use cases that

need to be manually created. As a result, the quality of the resulting policy depends on

the quality and coverage of the use cases that are provided as an input. In turn, our

approach is meant to be more comprehensive and transparent, as it is guided by the

policy rules themselves. Another work that uses ASP for policy modeling is that of De

Vos et al. (2019). Their work encompasses the same types of policies as AOPL, but their

focus is on compliance checking and providing explanations for the compliance or non-

compliance of events. In contrast, we focus on policy analysis, not compliance checking;

our explanations highlight potential problems with a policy and indicate statements

that need to be refined. Havur et al. (2021) present a framework called DALICC for

comparing and resolving compatibility issues with licenses. The goal of their framework

is more narrow than ours in the sense that it only focuses on licences and not normative

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 845

statements in general. For a survey on other policy analysis methods and tools, not

necessarily ASP-related, we direct the reader to the paper by Jabal et al. (2019).

In general, in the policy specification and analysis community, there is a intense focus

on access control policies, which may involve the Role-Based Access Control (RBAC)

model outlined by Ferraiolo et al. (2001); the Attribute-Based Access Control Model

(ABAC) explored for instance by Davari and Zulkernine (2021) and Xu et al. (2016); or

the Category-based Access Control Model explored by Alves and Fernández (2014). A

secondary focus falls on policies for the management of computer systems. In contrast,

AOPL is more general and could be used to represent social norms, for example.

Finally, our work touches upon explainability and finding the causes of issues encoun-

tered in AOPL policies. To find even deeper causes that reside in the inner-workings of

the dynamic system, we can leverage existing work on explainability in reasoning about

action and change, such as the research by LeBlanc et al. (2019); planning domains, as in

the work by Vasileiou et al. (2022); or logic programming in general, including research

by Fandinno and Schultz (2019) or Cabalar et al. (2020).

7 Conclusions

In this paper we introduced a framework for analyzing policies described in the language

AOPL with respect to inconsistencies, underspecification, ambiguity, and modality con-

flict. We reified policy rules in order to detect which policy statements cause the particular

issue and (if relevant), which fluents of the domain contribute to such problems. In doing

so, we defined new properties of AOPL policies and took a special look at what happens

at the intersection of authorization and obligation policies.

As part of future work, we plan to create a system that implements this framework

in a way that is user-friendly for policy writers and knowledge engineers. We also intend

to extend the framework by lifting some of the simplifying restrictions that we imposed

here, for instance by studying the case when there is incomplete information about a

state or allowing permitted and obl atoms in the conditions of policy rules.

References

Alves, S. and Fernández, M. 2014. A framework for the analysis of access control poli-
cies with emergency management. In Ninth Workshop on Logical and Semantic Frame-
works, with Applications, LSFA 2014, Braśılia, Brazil, 8–9 September 2014, M. Ayala-Rincón
and I. Mackie, Eds. Electronic Notes in Theoretical Computer Science, vol. 312. Elsevier,
89–105.

Balduccini, M., Gelfond, M., Pontelli, E. and Son, T. C. 2020. An answer set pro-
gramming framework for reasoning about agents’ beliefs and truthfulness of statements. In
Proceedings of the 17th International Conference on Principles of Knowledge Representation
and Reasoning, 69–78.

Blount, J., Gelfond, M. and Balduccini, M. 2015. A theory of intentions for intelligent
agents - (Extended Abstract). In Proceedings of the 13th International Conference on Logic
Programming and Nonmonotonic Reasoning. LNCS, vol. 9345. Springer, 134–142.

Cabalar, P., Fandinno, J. and Muñiz, B. 2020. A system for explainable answer set pro-
gramming. In Proceedings 36th International Conference on Logic Programming (Technical
Communications). EPTCS, vol. 325, 124–136.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X


846 D. Inclezan

Corapi, D., Russo, A., De Vos, M., Padget, J. and Satoh, K. 2011. Normative design
using inductive learning. Theory and Practice of Logic Programming 11, 4–5, 783–799.

Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E. and Bandara, A. 2009. Expressive policy
analysis with enhanced system dynamicity. In Proceedings of the 4th International Symposium
on Information, Computer, and Communications Security. Association for Computing Ma-
chinery, New York, NY, USA, 239–250.

Davari, M. and Zulkernine, M. 2021. Policy modeling and anomaly detection in ABAC
policies. In Risks and Security of Internet and Systems: 16th International Conference, CRiSIS
2021. Springer-Verlag, Berlin, Heidelberg, 137–152.

De Vos, M., Kirrane, S., Padget, J. and Satoh, K. 2019. ODRL policy modelling and com-
pliance checking. In Rules and Reasoning, P. Fodor, M. Montali, D. Calvanese and D. Roman,
Eds. Springer International Publishing, Cham, 36–51.

Fandinno, J. and Schulz, C. 2019. Answering the “why” in answer set programming - A
survey of explanation approaches. Theory and Practice of Logic Programming 19, 2, 114–203.

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R. and Chandramouli, R. 2001.
Proposed NIST standard for role-based access control. ACM Transactions on Information
and System Security 4, 3, 224–274.

Gelfond, M. and Inclezan, D. 2013. Some properties of system descriptions of ALd. Journal
of Applied Non-Classical Logics 23, 1–2, 105–120.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Cambridge University Press.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Gelfond, M. and Lobo, J. 2008. Authorization and obligation policies in dynamic systems. In
Logic Programming, M. Garcia de la Banda and E. Pontelli, Eds. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 22–36.

Gelfond, M. and Son, T. C. 1997. Reasoning with prioritized defaults. In Third Interna-
tional Workshop on Logic Programming and Knowledge Representation, Third International
Workshop. LNCS, vol. 1471. Springer, 164–223.

Havur, G., Neumaier, S. and Pellegrini, T. 2021. DALICC as a service - A scaleable ar-
chitecture. In Joint Proceedings of the Semantics co-located events: Poster&Demo track and
Workshop on Ontology-Driven Conceptual Modelling of Digital Twins co-located with Seman-
tics 2021, Amsterdam and Online, September 6–9, 2021, I. Tiddi, M. Maleshkova, T. Pellegrini
and V. de Boer, Eds. CEUR-WS.org. URL: https://ceur-ws.org/Vol-2941/paper12.pdf.

Inclezan, D. 2016. CoreALMlib: An ALM library translated from the component library. The-
ory and Practice of Logic Programming 16, 5–6, 800–816.

Inclezan, D. 2019. RestKB: A library of commonsense knowledge about dining at a restaurant.
In Proceedings 35th International Conference on Logic Programming (Technical Communica-
tions), ICLP 2019 Technical Communications, Las Cruces, NM, USA, 20–25 September 2019.
EPTCS, vol. 306, 126–139.

Inclezan, D. and Gelfond, M. 2016. Modular action language ALM. Theory and Practice of
Logic Programming 16, 2, 189–235.

Jabal, A. A., Davari, M., Bertino, E., Makaya, C., Calo, S., Verma, D., Russo, A. and

Williams, C. 2019. Methods and tools for policy analysis. ACM Computing Surveys 51, 6,
1–35.

Kowalski, R. and Sergot, M. 1989. A Logic-Based Calculus of Events. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 23–55.

LeBlanc, E. C., Balduccini, M. and Vennekens, J. 2019. Explaining actual causation via
reasoning about actions and change. In Proceedings of the 16th European Conference on Logics
in Artificial Intelligence, JELIA. LNCS, vol. 11468. Springer, 231–246.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://ceur-ws.org/Vol-2941/paper12.pdf
https://doi.org/10.1017/S147106842300011X


Framework for policy refinement 847

Marek, V. W. and Truszczynski, M. 1999. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm - A 25-Year Perspective, K. R.
Apt, V. W. Marek, M. Truszczynski and D. S. Warren, Eds. Artificial Intelligence. Springer,
375–398.

Meyer, J. and Inclezan, D. 2021. APIA: An architecture for policy-aware intentional agents.
In Proceedings of the 37th International Conference on Logic Programming (Technical Com-
munications). EPTCS, vol. 345, 84–98.

Vasileiou, S. L., Yeoh, W., Son, T. C., Kumar, A., Cashmore, M. and Magazzeni,

D. 2022. A logic-based explanation generation framework for classical and hybrid planning
problems. Journal of Artificial Intelligence Research 73, 1473–1534.

Xu, D., Wang, Z., Peng, S. and Shen, N. 2016. Automated fault localization of XACML
policies. In Proceedings of the 21st ACM on Symposium on Access Control Models and Tech-
nologies. SACMAT’16. Association for Computing Machinery, New York, NY, USA, 137–147.

https://doi.org/10.1017/S147106842300011X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842300011X

	Introduction
	Background: Language bold0mu mumu AOPLAOPLAOPLAOPLAOPLAOPL
	Motivating example
	Reification of policy rules
	Policy analysis
	Analyzing authorization policies
	Obligation policy analysis
	The intersection between authorization and obligation policies

	Related work
	Conclusions
	References

