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Abstract

In a recent paper, Iyama and Yoshino considered two interesting examples of isolated
singularities over which it is possible to classify the indecomposable maximal Cohen–
Macaulay modules in terms of linear algebra data. In this paper, we present two new
approaches to these examples. In the first approach we give a relation with cluster cate-
gories. In the second approach we use Orlov’s result on the graded singularity category.
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1. Introduction

Throughout, k is a field. In [OY08], Iyama and Yoshino considered the following two settings.

Example 1.1. Let S = k[[x1, x2, x3]] and let C3 = 〈σ〉 be the cyclic group of three elements.
Consider the action of C3 on S via σxi = ωxi, where ω3 = 1, ω 6= 1. Put R= SC3 .

Example 1.2. Let S = k[[x1, x2, x3, x4]] and let C2 = 〈σ〉 be the cyclic group of two elements.
Consider the action of C2 on S via σxi =−xi. Put R= SC2 .

In both examples, Iyama and Yoshino reduced the classification of maximal Cohen–Macaulay
modules over R to the representation theory of certain generalized Kronecker quivers. They used
this to classify the rigid Cohen–Macaulay modules over R. As predicted by deformation theory,
the latter are described by discrete data.

The explicit description of the stable category of maximal Cohen–Macaulay modules over a
commutative Gorenstein ring (also known as the singularity category [Buc87, BEH87, Orl93])
is a problem that has received much attention over the years. This appears to be in general
a difficult problem and perhaps the best one can hope for is a reduction to linear algebra or,
in other words, the representation theory of quivers. This is precisely what Iyama and Yoshino
have accomplished.
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The proofs of Iyama and Yoshino are based on the machinery of mutation in triangulated
categories, a general theory developed by them. In the current paper we present two alternative
approaches to the examples. Hopefully the additional insight obtained in this way may be useful
elsewhere.

Our first approach applies to Example 1.2 and is inspired by the treatment in [KR08] of
Example 1.1, where the authors used the fact that in this case the stable category MCM(R)
of maximal Cohen–Macaulay R-modules is a 2-Calabi–Yau category which has a cluster tilting
object whose endomorphism ring is the path algebra kQ3 of the Kronecker quiver with three
arrows. Then they invoked their acyclicity result (slightly specialized).

Theorem 1.3 [KR08, § 1, Theorem]. Assume that T is a k-linear algebraic Krull–Schmidt

2-Calabi–Yau category with a cluster tilting object T such that A= End(T ) is hereditary. Then

there is an exact equivalence between T and the orbit category Db(mod(A))/(τ [−1]).

From this result, they obtained immediately that MCM(R) is the orbit category
Db(mod(kQ3))/(τ [−1]). This gives a very satisfactory description of MCM(R) and implies in
particular the results by Iyama and Yoshino.

In the first part of this paper we show that Example 1.2 is amenable to a similar approach.
Iyama and Yoshino proved that MCM(R) is a 3-Calabi–Yau category with a 3-cluster tilting
object T such that End(T ) = k [OY08, Theorem 9.3]. We show that under these circumstances
there is an analogue of the acyclicity result of the first author and Reiten.

Theorem 1.4 (See § 3.4). Assume that T is a k-linear algebraic Krull–Schmidt 3-Calabi–

Yau category with a 3-cluster tilting object T such that End(T ) = k. Then there is an exact

equivalence of T with the orbit category Db(mod(kQn))/(τ1/2[−1]), n= dim Ext−1
T (T, T ), where

Qn is the generalized Kronecker quiver with n arrows and τ1/2 is a natural square root of

the Auslander–Reiten translate of Db(mod(kQn)), which on the pre-projective/pre-injective

component corresponds to ‘moving one place to the left’.

In the second part of this paper, which is logically independent of the first, we give yet
another approach to Examples 1.1 and 1.2 based on the following observation, which might have
independent interest.

Proposition 1.5 (See Proposition A.8). Let A= k +A1 +A2 + · · · be a finitely generated

commutative graded Gorenstein k-algebra with an isolated singularity. Let Â be the completion

of A at A>1. Let MCMgr(A) be the stable category of graded maximal Cohen–Macaulay

A-modules. Then the obvious functor MCMgr(A)→MCM(Â) induces an equivalence

MCMgr(A)/(1)∼= MCM(Â), (1.1)

where M 7→M(1) is the shift functor for the grading.

In this proposition the quotient MCMgr(A)/(1) has to be understood as the triangulated/
Karoubian hull (as explained in [Kel05]) of the naive quotient of MCMgr(A) by the shift functor
?(1). This result is similar in spirit to [AR90], which treats the finite representation type case.
Note however that one of the main results in [AR90] is that in the finite representation type case
every indecomposable maximal Cohen–Macaulay Â-module is gradable. This does not seem to
be a formal consequence of Proposition 1.5. It would be interesting to investigate this further.
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In § 6, we show that at least rigid Cohen–Macaulay modules are always gradable so they are
automatically in the image of MCMgr(A). We expect this to be well known in some form but we
have been unable to locate a reference.

Hence, in order to understand MCM(Â) it is sufficient to understand MCMgr(A). The latter
is the graded singularity category [Orl09a] of A and, by [Orl09a, Theorem 2.5], it is related to
Db(coh(X)), where X = ProjA.

In Examples 1.1 and 1.2, R is the completion of a graded ring A which is the Veronese of
a polynomial ring. Hence, ProjA is simply a projective space. Using Orlov’s results and the
existence of exceptional collections on projective space, we get very quickly in Example 1.1

MCMgr(A)∼=Db(mod(kQ3))

and in Example 1.2

MCMgr(A)∼=Db(mod(kQ6))

(where here and below ∼= actually stands for a quasi-equivalence between the underlying DG-
categories). Finally, it suffices to observe that in Example 1.1 we have ?(−1) = τ [−1] and in
Example 1.2 we have ?(−1) = τ1/2[−1] (see § 5 below).

Finally, we mention the following interesting side result.

Proposition 1.6. Let (R, m) be a Gorenstein local ‘G-ring’ (for example R may be essentially
of finite type over a field) with an isolated singularity. Then the natural functor

R̂⊗R? : MCM(R)→MCM(R̂) (1.2)

is an equivalence up to direct summands. In particular, every maximal Cohen–Macaulay module
over R̂ is a direct summand of the completion of a maximal Cohen–Macaulay module over R.

The original proof (by the first and third authors) of this result was unnecessarily complicated.
After the paper was put on the arXiv, Daniel Murfet (who has become the second author)
informed us about the existence of a much nicer proof in the context of singularity categories
(see Proposition A.1). The same argument also applies to Proposition 1.5. So, we dropped our
original proofs and put the new argument in an appendix, to which we refer.

Meanwhile, Orlov [Orl04] has proved (independently and using different methods) a very
general result, which implies in particular Proposition 1.6.

2. Notation and conventions

We hope that the notation is self explanatory but nevertheless we give it here. If R is a ring,
then Mod(R) and mod(R) denote respectively the category of all left R-modules and the full
subcategory of finitely generated R-modules. The derived category of all R-modules is denoted
by D(R). If R is graded, then we use Gr(R) and gr(R) for the category of graded left modules
and its subcategory of finitely generated modules. The shift functor on Gr(R) is denoted by ?(1).
Explicitly, M(1)i =Mi+1. If we want to refer to right modules, then we use R◦ instead of R. If
X is a scheme, then Qch(X) is the category of quasi-coherent OX -modules. If X is noetherian,
then coh(X) is the category of coherent OX -modules. We are generally very explicit about which
categories we use. For example, we write Db(mod(R)) rather than something like Db

f (R). If R
is graded and M , N are graded R-modules, then ExtiR(M, N) is the ungraded Ext between
M and N . If we need Ext in the category of graded R-modules, then we write ExtiGr(R)(M, N).
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3. First approach to the second example

3.1 Some preliminaries on tilting complexes

Let C, E be rings. We denote the unbounded derived category of right C-modules by D(C◦).
We let Eq(D(C◦), D(E◦)) be the set of triangle equivalences of D(C◦)→D(E◦) modulo natural
isomorphisms. Define Tilt(C, E) as the set of pairs (φ, T ), where T is a perfect complex generating
D(E◦) and φ is an isomorphism C→ RHomE(T ). Associated to (φ, T ) ∈ Tilt(C, E) there is
a canonical equivalence θ :D(C◦)→D(E◦) such that θ(C) = T . It may be constructed either
directly [Ric89] or using DG-algebras [Kel98]. The induced map

Tilt(C, E)→ Eq(D(C◦), D(E◦))

is obviously injective (as it is canonically split), but not known to be surjective. Below we will
informally refer to the elements of Tilt(C, E) as tilting complexes.

3.2 A square root of τ for a generalized Kronecker quiver

Let W be a finite-dimensional k-vector space and let C be the path algebra of the quiver1

(3.1)

Let E be the path algebra of the quiver

which we think of as being obtained from (3.1) by ‘inverting the arrows’ and renumbering the
vertices (1, 2) 7→ (2, 1).

Let Pi, Ii, Si be respectively the projective, injective, and simple right C-modules
corresponding to vertex i. For E, we use P ′i , I

′
i, S

′
i. Let ri : mod(C◦)→mod(E◦) be the reflection

functor at vertex i. Recall that if (U, V ) is a representation of C, then r1(U, V ) is given by (V, U ′),
where U ′ = ker(V ⊗W → U) (taking into account the renumbered vertices).

The right derived functor Rr1 of r1 defines an equivalence D(C◦)→D(E◦). It is obtained
from the tilting complex S′2[−1]⊕ P ′1 [APR79]. One has (see [Gab80])

Rr1 ◦Rr1 = τC , (3.2)

where τC is the Auslander–Reiten translate on D(C◦). Assume now that W is equipped with an
isomorphism π :W →W ∗. Then π yields an equivalence D(E◦)∼=D(C◦), which we denote by
the same symbol. We use the same convention for the transpose isomorphism π∗ :W →W ∗.

Lemma 3.2.1. We have r1 ◦ π−1 = π∗ ◦ r1 as functors D(C◦)→D(C◦).

Proof. Let (U, V ) be a representation of C determined by a linear map c : V ⊗W → U and put
(V, U ′′) = (r1 ◦ π−1)(U, V ). Then one checks that U ′′ is given by the exact sequence

0→ U ′′→ V ⊗W ∗ c◦(π−1⊗id)−−−−−−−−→ U → 0,

1 We use the convention that multiplication in the path algebra is concatenation. So, representations correspond
to right modules.
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where the first non-trivial map induces the action U ′′ ⊗W → V . Similarly, if we put (V, U ′) =
(π∗ ◦ r1)(U, V ), then one gets the same sequence

0→ U ′→ V ⊗W ∗ c◦(π−1⊗id)−−−−−−−−→ U,

where the first non-trivial map again yields the action U ′ ⊗W → V . Thus, we have (V, U ′) =
(V, U ′′). 2

Below we put a= π ◦Rr1.

Lemma 3.2.2. One has (π∗ ◦ π−1) ◦ a2 = τ . In particular, τ ∼= a2 if and only if π is self-adjoint
or anti-self-adjoint.

Proof. This is a straightforward verification using Lemma 3.2.1 and (3.2). 2

For use below, we record

aP2 = P1,

aP1 = I2[−1],
aI2 = I1.

3.3 A 3-Calabi–Yau category with a 3-cluster tilting object
We let the notation be as in the previous section.

Put H=Db(mod(C◦)), D =H/a[−1]. As H is hereditary, we have

Ind(D) = Ind(H)/a[−1].

Inspection reveals that
Ind(D) = Ind(H) ∪ {I2[−1]}. (3.3)

Lemma 3.3.1. D is 3-Calabi–Yau if and only if π is self-adjoint or anti-self-adjoint.

Proof. Let S be the Serre functor for H. Being canonical, S commutes with the auto-equivalence
a[−1]. Hence, S induces an auto-equivalence on D, which is easily seen to be the Serre functor
of D.

In D, we have S = τ [1] = (π∗ ◦ π−1) ◦ a2[1] = (π∗ ◦ π−1)[3]. Thus, D is 3-Calabi–Yau
if and only if π∗ ◦ π−1 is isomorphic to the identity functor. It is easy to see that this is the
case if and only if π∗ ◦ π−1 =±1 in Endk(W ). 2

Lemma 3.3.2. The object P1 in D satisfies

ExtiD(P1, P1) = 0 for i= 1, 2, HomD(P1, P1) = k, and Ext−1
D (P1, P1) =W.

Proof. For N ∈ Ind(H) ∪ {I2[−1]}, one computes

HomD(P1, N) = HomH(P1, N). (3.4)

Thus, we find that

HomD(P1, P1[−1]) = HomD(P1, a
−1P1)

= HomD(P1, P2)
= W,

HomD(P1, P1) = k,
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HomD(P1, P1[1]) = HomD(P1, aP1)
= HomD(P1, I2[−1])
= 0,

and

HomD(P1, P1[2]) = HomD(P1, aP1[1])
= HomD(P1, I2)
= 0. 2

The following lemma is not used explicitly.

Lemma 3.3.3. The object P1 in D has the properties of a 3-cluster tilting object, i.e. if
ExtiD(P1, N) = 0 for i= 1, 2, then N is a sum of copies of P1.

Proof. Assume that N ∈ Ind(H) ∪ {I2[−1]} is such that HomD(P1, N [1]) = HomD(P1, N [2]) = 0.
We have to prove that N = P1.

We may rewrite

HomD(P1, N [2]) = HomD(P1[−1], N [1])
= HomD(a−1P1, N [1])
= HomD(P2, N [1]).

Thus, we find that HomD(P1, aN) = HomD(P2, aN) = 0. Hence, aN 6∈ Ind(H). We deduce that
N ∈ {P1, I2[−1]}.

But, if N = I2[−1], then

HomD(P1, N [2]) = HomD(P1, I2[1])
= HomD(P1, aI2)
= HomD(P1, I1)
6= 0.

So, we are left with the possibility N = P1, which finishes the proof. 2

3.4 Proof of Theorem 1.4

Let T be an algebraic Ext-finite Krull–Schmidt 3-Calabi–Yau category containing a 3-cluster
tilting object T such that EndT (T ) = k.

Lemma 3.4.1. Let N ∈ T . Then there exists a distinguished triangle in T :

T a→ T b ⊕ T [−1]c→N [1]→ . (3.5)

Proof. Let Y be defined (up to isomorphism) by the following distinguished triangle:2

Y → TExt1T (T,N) ⊕ T [−1]Ext2T (T,N)→N [1]→ .

A quick check reveals that Ext1T (T, Y ) = Ext2T (T, Y ) = 0. Hence, Y = T a for some a. 2

2 It would be more logical to write e.g. Ext1T (T, N)⊗k T for TExt1T (T,N), but this would take a lot more space.
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We need to consider the special case N = T [1]. Then the distinguished triangle (3.5)
(constructed as in the proof) has the form

TExt−1
T (T,T ) φ−−→ T [−1] α−−→ T [2]

β−−→, (3.6)

where φ is the universal map (this follows from applying HomT (T,−)). Since EndC(T [2]) = k, it
follows that α, β are determined up to a (the same) scalar.

This has a surprising consequence. Applying HomT (−, T ) to the triangle (3.6), we find that
HomT (β[−1], T )−1 defines an isomorphism

π : Ext−1
T (T, T )→ Ext−1

T (T, T )∗.

Thus, W def= Ext−1
C (T, T ) comes equipped with an isomorphism π :W →W ∗, which is canonical

up to a scalar. In other words, we are in the setting of § 3.2 and we now use the notation
introduced in §§ 3.2 and 3.3.

As a is obtained from the reflection in vertex 1, one verifies (see § 3.2) that a is associated
to the element of Tilt(C, C) given by (θ, I2[−1]⊕ P1), where θ : C→ EndC(I2[−1]⊕ P1) is the
composition

C =
(
k 0
W k

)
π−−→
(
k 0
W ∗ k

)
= EndC(I2[−1]⊕ P1). (3.7)

Since the auto-equivalence a is a derived functor that commutes with coproducts, it is

isomorphic to a derived tensor functor −
L
⊗C X for some X ∈D(Ce), by [Kel94, 6.4]. As a right

C-module, we have X ∼= I2[−1]⊕ P1.

Now we use the assumption that H is algebraic and we proceed more or less as in the
appendix to [KR08]. By [Kel94, Theorem 4.3], we may assume that T is a strict (= closed
under isomorphism) triangulated subcategory of a derived category D(A) for some DG-category
A. We denote by CT the full subcategory of D(C ⊗A) whose objects are differential graded
C ⊗A-modules which are in T when considered as A-modules. Clearly, CT is triangulated.
By [KR08, Lemma A.2.1(a)], T may be lifted to an object in CT , which we also denote by T .
Put S = T ⊕ T [−1].

Lemma 3.4.2. One has an isomorphism in CT :

X
L
⊗B S ∼= S[1].

Proof. As objects in T , we have

X
L
⊗C S = (I2[−1]⊕ P1)

L
⊗C S

= I2
L
⊗C S[−1]⊕ P1

L
⊗C S.

Clearly, P1

L
⊗C S ∼= T . To compute I2

L
⊗C S, we use the resolution

0→ P
Ext−1
T (T,T )

1 → P2→ I2→ 0.

Tensoring with S, we get a distinguished triangle

TExt−1
T (T,T )→ T [−1]→ I2

L
⊗C S→ .
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Comparing with (3.6), we find that I2
L
⊗C S ∼= T [2]. Thus, we have indeed an isomorphism

ϕ :X
L
⊗B S→ S[1]

in T .

Now we check that ϕ is C-equivariant in T . The left C-module structure on X
L
⊗B S is

obtained from the (homotopy) C-action on I2[−1]⊕ P1 as given in (3.7).
Let µ be an element ofW = HomC(P1, P2) = Ext−1

T (T, T ). We need to prove that the following
diagram is commutative in T .

I2[−1]
L
⊗B S

∼= //

π(µ)
L
⊗B idS

��

T [1]

µ

��
P1

L
⊗B S ∼=

// T

We write this out in triangles.

TExt−1(T,T )
φ //

π(µ)

��

T [−1] α //

��

T [2]

µ

��

β //

T // 0 // T [1]
id

//

Rotating the triangles, we need to prove that the following square is commutative.

T [1]
β[−1] //

µ

��

TExt−1(T,T )

π(µ)

��
T T

This commutativity holds precisely because of the definition of π. So, φ is indeed C-equivariant.
But, according to [KR08, Lemma A.2.2], any C-equivariant morphism in T between objects

in CT may be lifted to a morphism in CT . This finishes the proof. 2

We now have a functor

?
L
⊗C T : C → T

and, by Lemma 3.4.2, one finds that a[−1](?)
L
⊗C T is isomorphic to ?

L
⊗C T . By the universal

property of orbit categories [Kel05], we obtain a triangulated functor

Q :D→ T

that sends P1 to T .

Lemma 3.4.3. Q is an equivalence.

Proof. We observe that analogues of the distinguished triangles (3.5) exist in D (with P1 replacing
T ). Indeed, let N ∈ Ind(D). By (3.3), we have N ∈ Ind(H) ∪ {I2[−1]}. If N ∈ Ind(H), then
N [1]∼= aN and the analogue of (3.5) is simply the image in D of the projective resolution of
aN in H (taking into account that P2 = a−1P1 = P1[−1]).

If N = I2[−1], then N [1] = I2 and the analogue of (3.5) is the image in D of the projective
resolution of I2 in H.
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To prove that Q is fully faithful, we have to prove that Q induces an isomorphism
HomD(M, N)→HomT (QM, QN). Using the analogues of (3.5), we reduce to M = P1[i]. But,
since HomD(P1[i], N) = HomD(P1[−1], N [−i− 1]), we reduce in fact to M = P1[−1]. It now
suffices to apply HomD(P1[−1],−) to

P a1 → P b1 ⊕ P1[−1]c→N [1]→,

taking into account that HomD(M, N)→HomT (QM, QN) is an isomorphism for M = P1,
N = P1, P1[1], P2[2] by Lemma 3.3.2.

As a last step, we need to prove that Q is essentially surjective. But this follows from the
distinguished triangles (3.5) together with the fact that QP1 = T . 2

To finish the proof of Theorem 1.4, we observe that since T is 3-Calabi–Yau, so is D. Hence,
by Lemma 3.3.1, π is either self-adjoint or anti-self-adjoint. By Lemma 3.2.2, we deduce that
a2 ∼= τ and hence we may write a= τ1/2.

Remark 3.4.4. It would be interesting to deduce the fact that π is (anti-)self-adjoint directly
from the Calabi–Yau property of T , without going through the construction of D first. This
would have made our arguments above more elegant.

Remark 3.4.5. Iyama and Yoshino also considered 2n+ 1-Calabi–Yau categories T equipped
with a 2n+ 1-cluster tilting object T such that End(T ) = k and Ext−i(T, T ) = 0 for 0< i < n.
They related such T to the representation theory of the generalized Kronecker quiver Qm, where
m= dim Ext−n(T, T ).

One may show that our techniques are applicable to this case as well and yield T ∼=
Db(mod(kQm))/(τ1/2[−n]). We thank Osamu Iyama for bringing this point to our attention.

4. The singularity category of graded Gorenstein rings

4.1 Orlov’s results
Let A= k +A1 +A2 + · · · be a commutative finitely generated graded k-algebra. As in [AZ94],
we write qgr(A) for the quotient of gr(A) by the Serre subcategory of graded finite length
modules. We write π : gr(A)→ qgr(A) for the quotient functor. If A is generated in degree one
and X = ProjA, then by Serre’s theorem [Ser55] we have coh(X) = qgr(A).

Now assume that A is Gorenstein. Then we have RHomA(k, A)∼= k(a)[−d], where d is
the Krull dimension of R and a ∈ Z. The number a is called the Gorenstein parameter of A
(see [Orl09a, Definition 2.1]).

Example 4.1.1. If A is a polynomial ring in n variables (of degree one), then d= n, a= n.

For use below we record another incarnation of the Gorenstein parameter. Let A′ be the
graded k-dual of A. Then

RΓA>0(A)∼=A′(a)[−d], (4.1)

where RΓA>0 denotes cohomology with support in the ideal A>0.
The following is a particular case of [Orl09a, Theorem 2.5].

Theorem 4.1.2. If a> 0, then there are fully faithful functors

Φi : MCMgr(A)→Db(qgr(A))
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such that for Ti = ΦiMCMgr(A) there is a semi-orthogonal decomposition

Db(qgr(A)) = 〈πA(−i− a+ 1), . . . , πA(−i), Ti〉.

Hence, under the hypotheses of the theorem, we obtain in particular that

MCMgr(A)∼= ⊥〈πA(−i− a+ 1), . . . , πA(−i)〉 ⊂Db(qgr(A))

for arbitrary i.

4.2 The action of the shift functor on the singularity category
Unfortunately, the functors Φi introduced in the previous section are not compatible with ?(1).
Our aim in this section is to understand how ?(1) acts on the image of Φi. This requires us to
dig deeper into Orlov’s construction, which has the unusual feature of depending on the category
Db(gr>i A), where gr>i A are the finitely generated graded A-modules with non-zero components
concentrated in degrees >i. The quotient functor

Db(gr>i A) ↪→Db(grA) π−−→Db(qgrA)

has a right adjoint RωiA. Its image is denoted by Di.
We let Pi be the graded projective A-module of rank one generated in degree i (i.e.

Pi =A(−i)). Likewise, Si is the simple A-module concentrated in degree i. As in [Orl09a], we
put P>i = 〈(Pj)j>i〉, S>i = 〈(Sj)j>i〉, and obvious variants with other types of inequality signs.
In [Orl09a], it is proved that the image Ti of Φi is the left orthogonal to P>i inside Db(gr>i A).
The identification of Ti with the graded singularity category is through the composition

Ti ∼=Db(gr>i A)/P>i
∼=Db(grA)/perf(A)∼= MCMgr(A). (4.2)

Assume that a> 0. Then the relation between Ti, Di is given by the following semi-orthogonal
decompositions:

Db(grA) =
〈
S<i,

Db(gr>i A)︷ ︸︸ ︷
P>i+a, Pi+a−1, . . . , Pi, Ti︸ ︷︷ ︸

Di
∼=Db(qgr(A))

〉
.

This is a refinement of Theorem 4.1.2.
The category MCMgr(A) comes equipped with the shift functor ?(1). We denote the induced

endofunctor on Ti by σi. We will now compute it.

Lemma 4.2.1. For M ∈ Ti ⊂Db(qgr(A)), we have

σiM = cone(RHomqgr(A)(πA(−i), M)⊗k πA(−i+ 1)→M(1)), (4.3)

where the symbol ‘cone’ is to be understood in a functorial sense, for example by computing it
on the level of complexes after first replacing M by an injective resolution.

Proof. Let N ∈ Ti ⊂Db(gr(A)). To compute σiN , we see by (4.2) that we have to find σiN ∈ Ti
such that σiN ∼=N(1) up to projectives. It is clear that we should take

σiN = cone(RHomgr(A)(Pi−1, N(1))⊗k Pi−1→N(1))
= cone(RHomgr(A)(Pi, N)⊗k Pi−1→N(1)).

Now we note that RHom can be computed in Di ∼=Db(qgr(A)). Furthermore, since the result
lies in Ti ⊂Di, we can characterize it uniquely by applying π to it. Since π commutes with ?(1),
we obtain (4.3) with M = πN . 2

600

https://doi.org/10.1112/S0010437X10004902 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004902


On two examples by Iyama and Yoshino

4.3 The Serre functor for a graded Gorenstein ring

Let A, a, d be as above but now assume that A has an isolated singularity and let M, N ∈
MCMgr(A). Then by a variant of [OY08, Theorem 8.3] we have a canonical graded isomorphism

ExtdA(HomA(M, N), A)∼= HomA(N,M [d− 1])

and furthermore an appropriate version of local duality yields

ExtdA(HomA(M, N), A) = HomA(M, N)∗(a).

In other words, we find that

HomA(M, N)∗ = HomA(N,M [d− 1](−a))

and hence the Serre functor S on MCM(A) is given by ?[d− 1](−a).
It is customary to write S = τ [1], so that we have the usual formula

HomA(M, N)∗ = Ext1(N, τM).

In this setting, we find that

τ =?[d− 2](−a). (4.4)

4.4 The Gorenstein parameter of a Veronese subring

We remind the reader of the following well-known result.

Proposition 4.4.1. Let B be a polynomial ring in n variables of degree one. Assume that

m|n and let B(m) be the corresponding Veronese subring of B, i.e. B
(m)
i =Bmi. Then B(m) is

Gorenstein with Gorenstein parameter n/m.

Proof. The Gorenstein property is standard. To compute the Gorenstein invariant, we first let
A be the ‘blown-up’ Veronese, i.e.

Ai =

{
Bi if m|i,
0 otherwise.

Let a, b= n be respectively the Gorenstein parameters of A and B. If M is a B-module, write
M+ for

⊕
iMmi, considered as a graded A-module. We have

A′(a)[−n] = RΓA>0(A) (see (4.1))
= RΓA>0(B)+

= RΓB>0(B)+

= (B′(b)[−n])+

= A′(b)[−n].

In the third equality, we have used that local homology is insensitive to finite extensions. We
deduce that a= b= n. Since B(m) is obtained from A by dividing the grading by m, we obtain
n/m as the Gorenstein parameter for B(m). 2

Remark 4.4.2. In characteristic zero we could have formulated the result for invariant rings
of finite subgroups of Sln(k) (with the same proof). However, in finite characteristic Veronese
subrings are not always invariant rings (consider the case where the characteristic divides m).
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5. The Iyama–Yoshino examples (again)

5.1 Example 1.1

Let B = k[x1, x2, x3] and A=B(3). We have X def= ProjA= ProjB = P2. By Proposition 4.4.1,
A has Gorenstein invariant 1.

Unfortunately, we have to deal with the unpleasant notational problem that the shift functors
on coh(P2) coming from A and B do not coincide. To be consistent with §§ 4.1 and 4.2, we will
denote them respectively by ?(1) and ?{1}. Thus, ?(1) =?{3}. Note that this choice is rather
unconventional.

According to Theorem 4.1.2, we have a semi-orthogonal decomposition

Db(coh(X)) = 〈OP2 , T0〉.

From the fact that Db(coh(X)) has a strong exceptional collection OP2 , OP2{1}, OP2{2}, we
deduce that there is a semi-orthogonal decomposition

T0 = 〈OP2{1},OP2{2}〉.

In particular, RHomP2(OP2{1} ⊕ OP2{2},−) defines an equivalence between T0 and the
representations of the quiver Q3

where V = kx1 + kx2 + kx3 and where OP2{i} corresponds to the vertex labeled by i. By (4.4),
the Auslander–Reiten translate on MCMgr(A) is given by ?[1](−1). In other words, the shift
functor on MCMgr(A) is given by (τ [−1])−1. By Proposition A.8, we find (using R= Â) that

MCM(R)∼= MCMgr(A)/(1)∼=Db(mod(kQ3))/(τ [−1]),

which is what we wanted to show.

Remark 5.1.1. Note that in this example we had no need for the somewhat subtle formula (4.3).

5.2 Example 1.2
We use similar conventions as in the previous section. Let B = k[x1, x2, x3, x4] and A=B(2). We
have X = ProjA∼= ProjB = P3 and we denote the corresponding shift functors by ?(1), ?{1} so
that ?(1) =?{2}. By Proposition 4.4.1, A has Gorenstein invariant 2. By Theorem 4.1.2, we have
a semi-orthogonal decomposition

Db(coh(X)) = 〈OP3 ,OP3{2}, T−1〉.

Now Db(coh(X)) has a strong exceptional collection OP3 , OP3{1} · OP3{2}, OP3{3}. This
sequence is geometric [BP94, Proposition 3.3] and hence by every mutation is strongly exceptional
[BP94, Theorem 2.3]. We get in particular the following strongly exceptional collection: OP3 ,
OP3{2} · Ω∗P3{1}, OP3{3}, where ΩP3 is defined by the exact sequence

0→ ΩP3 → V ⊗OP3{−1}→OP3 → 0, (5.1)

where V = kx1 + kx2 + kx3 + kx4. Thus, there is a semi-orthogonal decomposition

T−1 = 〈Ω∗P3{1},OP3{3}〉.

An easy computation yields

RHomP3(Ω∗P3{1},OP3{3}) = ∧2V.
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RHomP3(Ω∗P3{1} ⊕ OP3{3},−) defines an equivalence between T−1 and the representations of
the quiver Q6:

Put W = ∧2V and choose an arbitrary trivialization ∧4V ∼= k. Let π :W →W ∗ be the resulting
(self-adjoint) isomorphism. We are in the setting of § 3.2 and hence can define τ1/2 as acting on
the derived category of Q6.

We will now compute σ−1(Ω∗P3{1}), σ−1(OP3{3}). An easy computation yields

RHomP3(OP3{2}, Ω∗P3{1}) = V ∗,

RHomP3(OP3{2},OP3{3}) = V.

Using the formula (4.3), we find that

σ−1(OP3{3}) = cone(V ⊗OP3{4}→OP3{5}) = ΩP3{5}[1], (5.2)
σ−1(Ω∗P3{1}) = cone(V ∗ ⊗OP3{4}→ Ω∗P3{3}) =OP3{3}[1], (5.3)

where in the second line we have used the dual version of (5.1).
Let Pi be the projective representation of Q6 generated in vertex i. The endofunctor on

Db(mod(kQ6)) induced by σ−1 will be denoted by the same letter. We will now compute it.
From (5.3), we deduce immediately that σ−1(P1) = P2[1]. To analyze (5.2), we note that a suitably
shifted slice of the Koszul sequence has the form

0→∧4V ⊗ Ω∗P3{1}→ ∧2V ⊗OP3{3}→ ΩP3{5}→ 0.

Thus, ΩP3{5} corresponds to the cone of

∧4V ⊗ P1→∧2V ⊗ P2,

which is easily seen to be equal to ∧4V ⊗ τ−1P1.
If we use our chosen trivialization ∧4V ∼= k, then we see that at least on objects σ−1 coincides

with τ−1/2[1]. It is routine to extend this to an isomorphism of functors by starting with a
bounded complex of projectives in mod(kQ6).

By Proposition A.8, we find (using R= Â) that

MCM(R)∼= MCMgr(A)/(1)∼=Db(mod(kQ6))/(τ1/2[−1]),

which is what we wanted to show.

6. A remark on gradability of rigid modules

We keep notation as in the previous section. Since in the Iyama–Yoshino examples MCMgr(A)
is the derived category of a hereditary category, the functor

MCMgr(A)→MCMgr(A)/(1)

is essentially surjective [Kel05] and hence

MCMgr(A)→MCMgr(Â)

is also essentially surjective. In more complicated examples there is no reason however why this
should be the case. Nevertheless, we have the following result, which is probably well known.
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Proposition 6.1. Assume that k has characteristic zero. Let A= k +A1 +A2 + · · · be a left
noetherian graded k-algebra. Put R= Â. Let M ∈mod(R) be such that Ext1R(M,M) = 0. Then
M is the completion of a finitely generated graded A-module N .

In the rest of this section, we let the notation and hypotheses be as in the statement of the
proposition (in particular, k has characteristic zero). We denote the maximal ideal of R by m.

Let E be the Euler derivation on A and R, i.e. on A we have E(a) = (deg a)a and we extend
E to R in the obvious way. If M ∈mod(R), then we will define an Euler connection as a k-linear
map ∇ :M →M such that ∇(am) = E(a)m+ a∇(m). If M = N̂ for N a graded A-module,
then M has an associated Euler connection by extending ∇(n) = (deg n)n for n a homogeneous
element of N .

Lemma 6.2. Let M be a finitely generated R module. Then M has an Euler connection if and
only if M is the completion of a finitely generated graded A-module.

Proof. We have already explained the easy direction. Conversely, assume that M has an Euler
connection. For each n, we have that M/mnM is finite dimensional and hence it decomposes
into generalized eigenspaces for ∇:

M/mnM =
∏
α∈k

(M/mnM)α (finite product).

Considering right exact sequences

(m/m2)⊗n ⊗M/mM →M/mn+1M →M/mnM → 0,

we easily deduce that the multiplicity of a fixed generalized eigenvalue in M/mnM stabilizes an
n→∞. Thus, M =

∏
α∈kMα, where Mα is a generalized eigenspace with eigenvalue α. We put

N ′ =
⊕

αMα. Then N ′ is noetherian since obviously any ascending chain of graded submodules
of N ′ can be transformed into an ascending chain of submodules in M . If particular, N ′ is finitely
generated and we have M = N̂ ′.

Now N ′ is k-graded and not Z -graded. But we can decompose N ′ along Z-orbits and then
by taking suitable shifts we obtain a Z -graded module with the same completion as N ′. 2

Proof of Proposition 6.1. Let ε2 = 0 and consider M [ε], where A acts via a ·m= (a+ E(a)ε)m.
We have a short exact sequence of A-modules

0→Mε→M [ε]→M → 0,

which is split by hypotheses. Denote the splitting by m+∇(m)ε. For a ∈A, we have

am+∇(am)ε= (a+ E(a)ε)(m+∇(m)ε)

and hence

∇(am) = E(a)m+ a∇(m).

Hence, ∇ is an Euler connection and so we may invoke Lemma 6.2 to show that M = N̂ . 2
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Appendix A. Generators of singularity categories

Throughout, (A,m, k) is a (commutative) local noetherian ring, with maximal ideal m and residue
field k. The singularity category of A is the Verdier quotient

DSg(A) :=Db(modA)/Kb(projA)

of the bounded derived category of finitely generated A-modules by the full subcategory of perfect
complexes. Recall that a functor F : T −→ S is an equivalence up to direct summands if F is fully
faithful and every object X ∈ S is a direct summand of F (Y ) for some Y ∈ T . We say that A is
a G-ring if the canonical morphism from A to its m-adic completion A−→ Â is regular [Mat89,
§ 32], and that A has an isolated singularity if Ap is regular for every non-maximal prime ideal
p of A. Our main result about singularity categories is the following.

Proposition A.1. Let A be a local noetherian ring with an isolated singularity, which is also
a G-ring (e.g. A is essentially of finite type over a field). Then the canonical functor

γ :=−⊗A Â :DSg(A)−→DSg(Â)

is an equivalence up to direct summands.

This is a special case of a general result by Orlov [Orl09b] (which was obtained independently).
Our methods are quite different, however.

When A is Gorenstein, there is an equivalence, due to Buchweitz [Buc87], betweenDSg(A) and
the stable category of maximal Cohen–Macaulay A-modules MCM(A), so in this case we obtain
Proposition 1.6. We remark that, in general, γ is not an equivalence (see e.g. Example A.5).

Let us outline the proof of the proposition. Recall that a thick subcategory of a triangulated
category T is a triangulated subcategory closed under retracts. Given an object C of T , we
say that an object X is finitely built from C if it belongs to the smallest thick subcategory of
T containing C. If every object of T has this property, that is, if there are no proper thick
subcategories of T containing C, then C is said to classically generate T .

The local ring A and its completion Â have the same residue field k, and it is not difficult
to see that γ induces an equivalence between the respective subcategories consisting of objects
finitely built from k. The subtlety lies in showing that, because A has an isolated singularity,
every object can be finitely built from k. Our proof of this fact uses homotopy colimits, which
presents a technical problem since DSg(A) lacks infinite coproducts. One approach is to enlarge
the category DSg(A) by considering the Verdier quotient

D′Sg(A) :=Db(ModA)/Kb(ProjA)

of the bounded derived category of all A-modules by the full subcategory of bounded complexes of
projective A-modules. By [Orl04, Proposition 1.13], the canonical functor DSg(A)−→D′Sg(A) is
fully faithful, and D′Sg(A) turns out to contain enough coproducts (and thus homotopy colimits)
for our purposes. Throughout, D(A) denotes the (unbounded) derived category of A-modules.

605

https://doi.org/10.1112/S0010437X10004902 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004902


B. Keller, D. Murfet and M. Van den Bergh

The next proposition follows immediately from the work of Schoutens [Sch03], but we give a
direct proof in the special case of an isolated singularity. The result also follows from the general
result by Orlov [Orl09b], and Dyckerhoff [Dyc09] has given a proof based on the theory of matrix
factorizations in the hypersurface case.

Proposition A.2. A local noetherian ring (A,m, k) has an isolated singularity if and only if
DSg(A) is classically generated by k.

Proof. We begin with the easy direction. Suppose that DSg(A) is classically generated by k, and
let p 6= m be a prime ideal. The canonical functor −⊗A Ap :DSg(A)−→DSg(Ap) is identically
zero, because it sends the generator k to zero. The image of this functor contains the residue
field κ(p) =A/p⊗A Ap, from which we deduce that κ(p) has finite projective dimension over Ap.
Hence, Ap is regular, and we may conclude that A has an isolated singularity.

Now suppose that A has an isolated singularity, and let M in Db(modA) be given. The idea
is to write M as a homotopy colimit3 of a sequence of bounded complexes with finite length
cohomology; it follows that M is a direct summand of one of the terms in this sequence, from
which we conclude that k classically generates DSg(A). First, we set up some notation. Given
a ∈A, define complexes

K[a] :=A
a−−→A and E[a] :=A

can−−−→A[a−1],

both concentrated in degrees zero and one, and observe that the commutative diagram

A

a

��

1 // A

a2

��

1 // A

a3

��

1 // · · ·

A a
// A a

// A a
// · · ·

is a direct system of complexes K[a]−→K[a2]−→K[a3]−→ · · · with colimit E[a]. More
generally, given a sequence a = {a1, . . . , ad} in A, we define K[a] :=

⊗d
j=1 K[aj ] and E[a] :=⊗d

j=1 E[aj ]. Setting ai = {ai1, . . . , aid}, there is a canonical isomorphism E[a]∼= lim−→i
K[ai] and

thus a triangle ⊕
i>1

K[ai] 1-shift−−−−−→
⊕
i>1

K[ai]−−−−→ E[a]−−−−→ (A1)

in the derived category D(A). This triangle expresses the fact that E[a] is the homotopy colimit
of K[ai] in D(A). For background on homotopy colimits, see [BN93, Nee01].

Now let a be a system of parameters for A, and extend the augmentation morphism E[a] ε−−→A
to a triangle E[a]−→A−→ Č[a]−→, where the complex Č[a] := Σ ker(ε) is given in each degree
by Č[a]t =

⊕
i0<···<it A[a−1

i0
, . . . , a−1

it
]. Tensoring with M , we obtain a triangle

E[a]⊗AM −→M −→ Č[a]⊗AM −→ (A2)

in D(A). Since A has an isolated singularity, M [a−1
i0
· · · a−1

it
] has finite projective dimension over

A[a−1
i0
· · · a−1

it
], and hence also over A, for every sequence of indices i0 < · · ·< it in {1, . . . , d}.

Here we use the fact that A[a−1
i0
· · · a−1

it
] has finite projective dimension as an A-module.4

3 To be precise, we do not consider homotopy colimits in D′Sg(A), since coproducts in this category are rather

subtle. Instead, we consider the image under the quotient functor Db(Mod A)−→D′Sg(A) of homotopy colimits

in Db(Mod A).
4 By induction, this reduces to the observation that pdA A[a−1] 6 1, which holds because A[a−1] = A[X]/(aX − 1).
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We conclude that Č[a]⊗AM is, up to isomorphism in D(A), a bounded complex of projective
A-modules, whence the triangle (A2) gives rise to an isomorphism E[a]⊗AM ∼=M in D′Sg(A).
Note that the coproduct

⊕
i>1 K[ai]⊗AM is bounded, so tensoring (A1) with M yields a triangle

in D′Sg(A) of the form⊕
i>1

K[ai]⊗AM
1-shift−−−−−→

⊕
i>1

K[ai]⊗AM −−−−→M −−−−→ . (A3)

In what follows, let Hom(−,−) denote morphism sets in D′Sg(A). One can check (see Lemma A.4
below) that Hom(M,−) commutes with coproducts coming from Db(ModA) via the quotient
functor, so applying Hom(M,−) to (A3) and using the argument of [Nee96, Lemma 2.8] we
deduce that

Hom(M,M)∼= lim−→
i

Hom(M,K[ai]⊗AM).

In particular, the identity 1M :M −→M corresponds to a split monomorphism M −→K[ak]⊗A
M in D′Sg(A) for some k > 1. The functor DSg(A)−→D′Sg(A) is fully faithful, so M is also a
direct summand of K[ak]⊗AM in DSg(A). The cohomology modules of K[ak]⊗AM have finite
length (a is a system of parameters), so this complex is an iterated extension in Db(modA) of
finite direct sums of copies of k. It is now clear that any thick subcategory of DSg(A) containing
k must contain M and, since M was arbitrary, this completes the proof. 2

Lemma A.3. A morphism ϕ :M −→ C in D(A) with M ∈Db(modA) and C ∈Kb(ProjA)
factors, in D(A), as M −→Q−→ C for some Q ∈Kb(projA).

Proof. We may, without loss of generality, assume that M is a bounded above complex of finitely
generated projective A-modules, that C is a bounded complex of free A-modules, and that ϕ is
a morphism of complexes. Let n ∈ Z be such that Ci = 0 for i < n. The image of ϕn :Mn −→ Cn

is finitely generated, so let Qn be a finite free submodule of Cn with the property that ϕn

factors as Mn −→Qn −→ Cn. Similarly, let Qn+1 be a finite free submodule of Cn+1 with
the property that Im(ϕn+1) + ∂(Qn)⊆Qn+1, where ∂ is the differential. Then ϕn+1 factors as
Mn+1 −→Qn+1 −→ Cn+1 and the differential restricts to a map ∂|Q :Qn −→Qn+1. Proceeding
in this way, we construct a bounded complex Q of finite free A-modules and a factorization
M −→Q−→ C, as required. 2

Lemma A.4. Let {Xi}i∈I be a family of bounded complexes of A-modules such that there exist
a, b ∈ Z with Xk

i = 0 for all k /∈ [a, b] and i ∈ I. Then, given M ∈Db(modA), the canonical map⊕
i

HomD′Sg(A)(M, Xi)−→HomD′Sg(A)

(
M,
⊕
i

Xi

)
is an isomorphism, where

⊕
i Xi denotes the degree-wise coproduct of complexes.

Proof. By a standard argument, it is enough to prove that any morphism M −→
⊕

i Xi in D′Sg(A)
factors through a finite subcoproduct. Such a morphism is defined by a diagram in the form of
a roof

Y
f

}}zz
zz

zz
z

$$IIIIII

M

⊕
i

Xi

(A4)
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in Db(ModA), where the cone of f is a bounded complex Cf of projective A-modules. Extending
f to a triangle Y −→M −→ Cf −→ in Db(ModA), we deduce from Lemma A.3 that M −→ Cf
factors as M −→Q−→ Cf for some Q ∈Kb(projA). Let C ′ denote the cone of M −→Q. From
the octahedral axiom applied to the pair (M −→Q, Q−→ Cf ), we obtain a commutative diagram
in Db(ModA) of the form

Σ−1C ′

h
�� ##GG

GG
GG

GG
G

Y
f

// M

where the cone of h belongs to Kb(ProjA). The upshot is that the morphism in D′Sg(A)
represented by the roof in (A4) may also be represented by a roof with Y ∈Db(modA) (replace
Y with Σ−1C ′). In this case, Y is compact in Db(ModA) by [Rou08, Proposition 6.15], so the
morphism Y −→

⊕
i Xi in the roof factors through a finite subcoproduct, which implies that

M −→
⊕

i Xi factors through a finite subcoproduct in D′Sg(A). 2

Proof of Proposition A.1. To begin with, let A denote an arbitrary local noetherian ring, and
consider the canonical functor

γ′ :=−⊗A Â :D′Sg(A)−→D′Sg(Â).

Restriction of scalars defines a functor (−)A :Db(Mod Â)−→Db(ModA) that sends a bounded
complex of projective Â-modules to a bounded complex of flat A-modules. Since flat A-modules
have finite projective dimension by [RG71, Part II, Corollary 3.2.7], there is an induced functor

(−)A :D′Sg(Â)−→D′Sg(A)

right adjoint to γ′. The unit of this adjunction is the canonical morphism

1−→ (−⊗A Â)A,

which is obviously an isomorphism on k, and thus also an isomorphism on the smallest thick
subcategory S of D′Sg(A) containing k. By a standard argument of category theory, the restriction
of γ′ to S is fully faithful. In particular, γ induces an equivalence of the smallest triangulated
subcategory of DSg(A) containing k with the smallest triangulated subcategory of DSg(Â)
containing k.

Now we assume that A is a G-ring with an isolated singularity. The (only) reason for assuming
that A is a G-ring is that this guarantees that the completion Â has an isolated singularity [Wie98,
Lemma 2.7]. By Proposition A.2, the subcategory S includes the image of DSg(A) under the
canonical embedding DSg(A)−→D′Sg(A), from which we infer that γ is fully faithful. It follows
from a second application of Proposition A.2 that the thick closure of DSg(A) in DSg(Â) is all of
DSg(Â). Since the thick closure of a triangulated subcategory is just the class of all direct sum-
mands of objects in the subcategory [Nee01, Remark 2.1.39], γ is an equivalence up to direct
summands. 2

It is easy to construct examples where γ is not an equivalence. It suffices to give a Cohen–
Macaulay module over the completion of a Gorenstein local ring Â which is not extended from A,
i.e. which is not of the form M̂ for a Cohen–Macaulay A-module.

Example A.5. Let A= C[X, Y ](X,Y )/(X3 +X2 − Y 2) be the local ring of a node, so the
completion of A is isomorphic to the reduced ring S = C[[U, V ]]/(UV ). This is a singularity

608

https://doi.org/10.1112/S0010437X10004902 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004902


On two examples by Iyama and Yoshino

of type (A1) and, by [Yos90, (9.9)], there are, up to isomorphism, exactly three indecomposable
maximal Cohen–Macaulay S-modules, which are

S, p = US and q = V S.

Clearly, S/p∼= q, whence q∼= Σp in DSg(S). Since p, q are minimal prime ideals, Sp and Sq are
fields, and it follows from a result of Levy and Odenthal [LO96, Theorem 6.2] that a finitely
generated S-module M is extended if and only if rankSp(Mp) = rankSq(Mq). Hence, p and q are
not extended, and thus not in the essential image of γ, but their direct sum p⊕ q is extended.
This corresponds to the fact that the nodal curve is irreducible, while the curve XY = 0 has
two irreducible components. Another argument that p⊕ q∼= p⊕ Σp in DSg(S) belongs to the
essential image of γ uses K-theory: simply apply [Nee01, Corollary 4.5.12].

Note that {U − V } is a system of parameters for S. It follows from the proof of
Proposition A.2 that p is a direct summand in DSg(S) of K[(U − V )n]⊗ p for some n> 1. In

fact, K[(U − V )n]⊗ p = p
Un

−−−→ p is quasi-isomorphic to Σ−1p/pn+1, and p is a direct summand
of Σ−1p/p2 in DSg(S). To see this, observe that there is a triangle in the derived category

p
U−−→ p−→ p/p2 −→ Σp,

and U : p−→ p is zero in DSg(S) (as it factors via S), so we may conclude that p⊕ Σp∼= p/p2 in
DSg(S). Since p/p2 is isomorphic as an S-module to the residue field C, we see for a third time
that p⊕ Σp∼= C is in the essential image of γ.

Remark A.6. Denoting by Ah the Henselization of A, the ring homomorphisms A−→Ah −→ Â
give rise to a factorization of γ as the composite

DSg(A)
γ1−−→DSg(Ah)

γ2−−→DSg(Â),

where γ1 =−⊗A Ah and γ2 =−⊗Ah Â. In the situation of Proposition A.1, γ2 is an equivalence:
up to a shift, every object of DSg(Â) is a finitely generated module M free on the punctured
spectrum and, by Elkik’s theorem [Elk74, Théorème 3], such modules can be descended to
the Henselization; that is, there exists a finitely generated Ah-module N such that M ∼= N̂ . In
particular, γ is an honest equivalence (not just up to direct summands) when A is Henselian.

Now we give the proof of Proposition 1.5. In [Kra05], Krause produced an embedding
µ :DSg(A) ↪→Kac(InjA), where Kac(InjA) is the homotopy category of Cac(InjA) of acyclic
complexes of injective A-modules. This category is compactly generated, and µ induces an
equivalence up to direct summands between DSg(A) and the full subcategory of compact objects
in Kac(InjA).

The embedding µ produces a DG-enhancement for DSg(A), where, for M, N ∈DSg(A), we
put

RHomDSg(A)(M, N) = HomCac(InjA)(µ(M), µ(N)).

If A is a noetherian Z -graded ring (not necessarily commutative), then we may define the graded
singularity category Dgr

Sg(A) in the obvious way.

Since Dgr
Sg(A) has an analogous DG-enhancement as DSg(A), we may define the orbit category

Dgr
Sg(A)/(1) (see [Kel05]). By construction, Dgr

Sg(A)/(1) is a triangulated category (with a DG-
enhancement) equipped with an exact functor

σ :Dgr
Sg(A)→Dgr

Sg(A)/(1)
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such that Dgr
Sg(A)/(1) is classically generated by its essential image and such that for M, N ∈

Dgr
Sg(A) we have

HomDgr
Sg(A)/(1)(σM, σN) =

⊕
i

HomDgr
Sg(A)(M, N(i)).

Forgetting the grading yields an exact functor

F :Dgr
Sg(A)→DSg(A),

which makes the shift (1) isomorphic to the identity functor. Hence, by the universal property
of orbit categories, F factors canonically through

F̃ :Dgr
Sg(A)/(1)→DSg(A).

Lemma A.7. The functor F̃ is fully faithful.

Proof. We have to prove that for M, N ∈Dgr
Sg(A) we have

HomDSg(A)(M, N) =
⊕
i

HomDgr
Sg(A)(M, N(i)).

By considering cones over suitable truncated projective resolutions, we may assume that M, N
are finitely generated graded A-modules.

We then use the well-known formula

HomDSg(A)(M, N) = inj lim
n

HomA(ΩnM, ΩnN)

and the corresponding formula in the graded case. This reduces us to proving that

HomA(ΩnM, ΩnN) =
⊕
i

HomGr(A)(Ω
nM, ΩnN(i)),

which follows from the fact that ΩnM is finitely generated. 2

Proposition A.8. Let A= k +A1 +A2 · · · be a finitely generated commutative graded k-
algebra with the augmentation ideal m=A>0 defining an isolated singularity. Then we have
equivalences

Dgr
Sg(A)/(1) F̃−−→DSg(A)

(−)m−−−−→DSg(Am) Â⊗A−−−−−−→DSg(Â).

Proof. The third functor is an equivalence because of Proposition A.1. The second functor is an
equivalence because of [Orl04]. Finally, in Lemma A.7, we have shown that F̃ is fully faithful.
So, we have to show that it is essentially surjective. This is clear by Proposition A.2, since k lies
in the essential image of F̃ . 2

Again we obtain Proposition 1.5 by invoking Buchweitz’s equivalence DSg(A)∼= MCM(A).
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vol. 270 (Birkhäuser, Boston, MA, 2009), 503–531 (English summary).

Orl09b D. Orlov, Formal completions and idempotent completions of triangulated categories of
singularities, Preprint (2009), arXiv:0901.1859v1.

611

https://doi.org/10.1112/S0010437X10004902 Published online by Cambridge University Press

https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://tspace.library.utoronto.ca/handle/1807/16682
https://doi.org/10.1112/S0010437X10004902


B. Keller, D. Murfet and M. Van den Bergh

RG71 M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de ‘platification’
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