THE EXTENT OF THE SEQUENGE SPACE ASSOCIATED WITH A BASIS

WILLIAM H. RUCKLE

1. Introduction. The associated sequence space S of a sequence of vectors $\left\{x_{n}\right\}$ in a Banach space consists of all scalar sequences (s_{n}) for which $\sum_{n=1}^{\infty} s_{n} x_{n}$ converges. My primary motivation in writing this paper was to present a new proof to a recent theorem of N. I. and V. I. Gurarii concerning limits of extent on S when $\left\{x_{n}\right\}$ is a basis of a uniformly convex or a uniformly smooth Banach space [5]. This theorem is stated as Theorem 2.4. Several interesting consequences of this theorem were noted by N. I. Gurarii in [3] and [4]. For instance he showed that for each pair of numbers p, q with $1<p<q<\infty$ there is a basis $\left\{x_{n}\right\}$ of l^{2} with $0<\inf _{n}\left\|x_{n}\right\|<\sup _{n}\left\|x_{n}\right\|<\infty$ such that if $l^{r} \subset S$ then $r \leq p$ while if $l^{s} \supset S$ then $s \geq q$. Our Theorem 3.2 adds to this result in determining minimum sizes of l^{s} and maximum sizes of l^{r} for X a subspace of l^{t} or L^{t}. Finally in Theorem 3.3 we derive a summability property of a basis in terms of S (formula (3.1)). From this and the Gurarii theorem it follows that no basis for a uniformly convex or uniformly smooth space can be "purely conditional" (Corollary 3.4).

2. Growth numbers and the theorem of N. I. and V. I. Gurarii.

2.1 Definition. Let $\left\{x_{i}: i=1,2, \ldots\right\}$ be a sequence of vectors in a Banach space X having norm \|\|. The associated sequence space of $\left(x_{i}\right)$, written $S\left(x_{i}\right)$ or simply S, consists of all scalar sequences (t_{i}) for which $\sum_{i} t_{i} x_{i}$ converges. The nth growth number, written $g\left(n,\left\{x_{i}\right\}\right)$ or simply $g(n)$, is given by the formula
$g\left(n,\left\{x_{i}\right\}\right)=\sup \left\{\left\|\sum_{i \in F} a_{i} x_{i}\right\|: F\right.$ is any set of n indices, $\left.\left|a_{i}\right| \leq 1, i \in F\right\}$.
The following proposition states a few obvious properties of the growth numbers, and we omit its proof.
2.2 Proposition. (a) $\mathrm{g}(1)=\sup _{n}\left\|x_{n}\right\|$.
(b) $g(n) \leq g(n+1)$ for each n.
(c) If $\left\{x_{i}\right\}$ is a normalized sequence (i.e., $\left\|x_{i}\right\|=1$ for each i, then $1 \leq g(n) \leq n$ for each n.
(d) If $\left\{x_{i k}\right\}$ is any subsequence of $\left\{x_{i}\right\}$, then

$$
g\left(n,\left\{x_{i k}\right\}\right) \leq g\left(n,\left\{x_{i}\right\}\right) \quad(n=1,2, \ldots)
$$

Received July 16, 1971.
(e) If $\left\{x_{\pi(i)}\right\}$ is any permutation of $\left\{x_{i}\right\}$, then

$$
g\left(n,\left\{x_{\pi(i)}\right\}\right)=g\left(n,\left\{x_{i}\right\}\right) \quad(n=1,2, \ldots)
$$

The following theorem shows how the growth numbers of a vector sequence provides a measure of the size of the associated sequence space.
2.3 Theorem. Let $\left\{x_{i}\right\}$ be a sequence of vectors in a Banach space X, with S denoting the associated sequence space and $g(n)$ the nth growth number.
(a) If $l^{p} \subseteq S$ for $p \geq 1$, then $g(n)=O\left(n^{1 / p}\right)$.
(b) If $g(n)=O\left(n^{1 / p}\right)$ for $p>1$, then $l^{s} \subseteq S$ for $1 \leq s<p$.
(c) $c_{0} \subseteq S$ if and only if $g(n)=O(1)$.

Proof. (a) It is well known (e.g., see [7]) that S is a $B K$-space (Banach space of sequences with continuous coefficients) given the norm

$$
\left\|\left\|\left(t_{i}\right)\right\|\right\|=\sup _{n}\left\|\sum_{i=1}^{n} t_{i} x_{i}\right\|\left(\left(t_{i}\right) \in S\right)
$$

Moreover, the sequence $\left\{e_{i}: i=1,2, \ldots\right\}$ of coordinate vectors

$$
e_{i}=\left\{\delta_{i j}: j=1,2, \ldots\right\}
$$

forms a Schauder basis for S.
If $l^{p} \subseteq S$ the inclusion is continuous [14, §11.3]. Hence there is $M>0$ such that for $\left(t_{i}\right) \in l^{p}$

$$
\left\|\sum_{i=1}^{\infty} t_{i} x_{i}\right\| \leq\| \|\left(t_{i}\right)\|\leq M\|\left(t_{i}\right) \| p
$$

where $\left\|\|_{p}\right.$ is the usual norm on l^{p}. If F is a finite set of indices and $\left|a_{i}\right| \leq 1$ for $i \in F$ we thus have

$$
\begin{aligned}
\left\|\sum_{i \in F} a_{i} x_{i}\right\| & \leq\left\|\mid \sum_{i \in F} a_{i} e_{i}\right\| \| \\
& \leq M\left\|\sum_{i \in F} a_{i} e_{i}\right\|_{p} \leq M n^{1 / p}
\end{aligned}
$$

(b) We define an extended real valued function N on the set of all sequences by the formula

$$
\begin{aligned}
N\left(\left(t_{i}\right)\right)= & \sup \left\{\left\|\sum_{i \in F} a_{i} t_{\pi(i)} x_{i}\right\|:\right. \\
& F \text { is a finite set of indices, }\left|a_{i}\right| \leq 1, \pi \text { is any permutation of } \\
& \text { indices }\} .
\end{aligned}
$$

Then N is a balanced symmetric sequential norm in the sense of [8] and [9] so that S_{N}, the set of all $\left(t_{i}\right)$ for which $N\left(\left(t_{i}\right)\right)<\infty$, is a symmetric $B K$-space with the norm N. The sequence $\left\{e_{i}\right\}$ is a symmetric basis for its closed linear span $S_{N}{ }^{\circ}$ in S_{N}. It is not hard to see (continuity of inclusion) that $\left(t_{i}\right) \in S_{N}{ }^{\circ}$ if and only if $\sum_{n=1}^{\infty} t_{i} x_{\pi(i)}$ converges unconditionally in X for each permutation π on the indices. Consequently we have $S_{N}{ }^{\circ} \subset S_{N}$.

It is obvious that

$$
g(n)=N\left(e_{1}+e_{2}+\ldots+e_{n}\right)
$$

Let $g_{n}{ }^{\prime}=g(n)-g(n-1)$ and let $\left(g_{n}{ }^{\prime}\right)^{\sigma}$ consist of all sequences $\left(s_{i}\right)^{n}$ for which

$$
\begin{align*}
\left\|\left(s_{i}\right)\right\|^{\prime} & =\sup \left\{\sum_{i=1}^{\infty}\left|s_{\pi(i)}\right| g_{i}^{\prime}: \pi \text { is a permutation of indices }\right\} \tag{2.1}\\
& <\infty
\end{align*}
$$

With the norm $\left\|\left\|\|^{\prime},\left(g_{n}{ }^{\prime}\right)^{\sigma}\right.\right.$ is a symmetric $B K$-space, and $\left(g_{n}{ }^{\prime}\right)^{\sigma} \subset S_{N}$ by [9, Proposition 3.2].

Let $h_{n}{ }^{\prime}=n^{1 / p}-(n-1)^{1 / p}$ and let $\left(h_{n}{ }^{\prime}\right)^{\sigma}$ be defined by (2.1) with $h_{n}{ }^{\prime}$ replacing $g_{n}{ }^{\prime}$ in (2.1). If $g(n)=O\left(n^{1 / p}\right)$ then $\left(h_{n}{ }^{\prime}\right)^{\sigma} \subseteq\left(g_{n}{ }^{\prime}\right)^{\sigma}$ by [8, Proposition 3.6]. By [9, Proposition 3.6], $\left(h_{n}{ }^{\prime}\right)^{\sigma}$ properly contains l^{s} for $1<s<p$. Thus we have

$$
\bigcup_{s<p} l^{s} \subseteq h^{\prime \sigma}=g^{\prime \sigma} \subseteq S_{N}
$$

For $s<p$ the inclusion of l^{s} in S_{N} is continuous so that

$$
l^{s} \leq S_{N}{ }^{\circ} \subset S
$$

since $\left\{e_{i}\right\}$ is a basis for l^{s}. The inclusion is obviously proper since

$$
l^{s} \subsetneq \bigcup_{n<p} l^{r} \subset S
$$

(c) If $c_{0} \subseteq S$ then $\{g(n)\}$ is bounded by an argument like that used to prove (a).

If $\{g(n)\}$ is bounded then $\sum_{n} g_{n}{ }^{\prime}=\sum_{n}\{g(n)-g(n-1)\}$ converges so that $\left(g_{n}{ }^{\prime}\right)^{\sigma} \supseteq m$ by [8, Proposition 3.2]. Thus we have $m \subseteq S_{N}$ which implies

$$
c_{0} \subseteq S_{N}{ }^{\circ} \subseteq S
$$

We now present a new proof of the theorem of N. I. and V. I. Gurarii [4;5].
2.4 Theorem. Let $\left\{x_{n}\right\}$ be a Schauder basis in a Banach space X for which there is m and $M>0$ such that $\inf _{n}\left\|x_{n}\right\| \geq m$ and $\sup _{n}\left\|x_{n}\right\| \leq M$; let S be the associated sequence space of $\left\{x_{n}\right\}$.
(a) If X is uniformly convex, then there is $r>1$ such that $l^{r} \subset S$ and the inclusion is continuous.
(b) If X is uniformly smooth, then there is $s<\infty$ such that $S \subset l^{s}$ and the inclusion is continuous.

Proof. (a) Since $\left\{x_{n}\right\}$ is a Schauder basis for X there is $\delta>0$ such that for each n

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} x_{i}-\sum_{i=n+1}^{\infty} a_{i} x_{i}\right\| \geq \delta \tag{2.2}
\end{equation*}
$$

whenever $\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|=1$ or $\left\|\sum_{i=n+1}^{\infty} a_{i} x_{i}\right\|=1$. (Let

$$
\delta=\inf _{n}\left\{\left\|P_{n}\right\|_{n}^{-1},\left\|I-P_{n}\right\|^{-1}\right\} \quad \text { where } \quad P_{n}\left(\sum_{i=1}^{\infty} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} x_{i}
$$

see $[1, \mathrm{p} .67])$. Since X is uniformly convex there is $\epsilon>0$ such that

$$
\begin{equation*}
\|x+y\| \leq 2(1-\epsilon) \tag{2.3}
\end{equation*}
$$

whenever $\|x\|$ and $\|y\|$ are ≤ 1 and $\|x-y\| \geq \delta[\mathbf{1}, \mathrm{p} .112]$. Using these two facts we shall prove that

$$
\begin{equation*}
g(2 n) \leq 2(1-\epsilon) g(n) \tag{2.4}
\end{equation*}
$$

for each n. Let F be any set of $2 n$ indices and let $\left|a_{i}\right| \leq 1$ for $i \in F$. Let F_{1} be the set of the n smallest indices in F and F_{2} the complement of F_{1} in F. If

$$
C=\max \left\{\left\|\sum_{i \in F_{1}} a_{i} x_{i}\right\|,\left\|\sum_{i \in F_{2}} a_{i} x_{i}\right\|\right\} \neq 0
$$

we then have

$$
\left\|\sum_{i \in F}\left(a_{i} / C\right) x_{i}-\sum_{i \in F_{2}}\left(a_{i} / C\right) x_{i}\right\| \geq \delta
$$

by (2.2). By (2.3)

$$
\begin{equation*}
\left\|\sum_{i \in F} a_{i} x_{i}\right\| \leq 2(1-\epsilon) C \leq 2(1-\epsilon) g(n) \tag{2.5}
\end{equation*}
$$

If $C=0$ then (2.5) is obviously true. The inequality (2.4) now quickly follows from (2.5).

We now use (2.4) to show that there is $r>0$ for which $g(n)=O\left(n^{1 / r}\right)$. From (2.4) it follows that $g\left(2^{n}\right) \leq M 2^{n}(1-\delta)^{n}$ for $n=0,1,2, \ldots$. Let d_{n} be defined by

$$
d_{n}=[2(1-\delta)]^{\log _{2} n} .
$$

Since $\{g(k)\}$ and $\left\{d_{k}\right\}$ are increasing sequences and

$$
2 M d_{2^{n}} \geq g\left(2^{n+1}\right)
$$

for each n, it follows that $g(n)=O\left(d_{n}\right)$. If p is any number with $1>1 / p \geq$ $1+\log _{2}(1-\delta)$, we have $d_{n}=O\left(n^{1 / p}\right)$ since

$$
\begin{aligned}
\log _{2}\left(d_{n} / n^{1 / p}\right) & =\log _{2} n\left\{1+\log _{2}(1-\delta)-1 / p\right\} \\
& \leq 0
\end{aligned}
$$

Thus if $1 / r>1+\log _{2}(1-\delta), l^{r} \subset S$ by Theorem 2.2 (b).
(b) If X is uniformly smooth then X^{*} is uniformly convex [$\left.\mathbf{1},(8), \mathrm{p} .114\right]$ and X is reflexive. The coefficient functionals $\left\{f_{i}\right\}$ of the basis $\left\{x_{i}\right\}$ form a basis of X^{*}. Since $\inf _{n}\left\|x_{n}\right\|>0, \sup _{n}\left\|f_{n}\right\|<\infty$. Thus by the argument of (a) there is $s^{\prime}>1$ such that $l^{s^{\prime}} \subset T$ where T is the associated sequence space of $\left\{f_{n}\right\}$. The inclusion $l^{s^{\prime}} \subset T$ implies $T^{\gamma} \subset l^{s}$ where

$$
T^{\gamma}=\left\{\left(s_{i}\right): \sup _{n}\left\{\left|\sum_{i=1}^{n} s_{i} t_{i}\right|<\infty \text { for each }\left(t_{i}\right) \in T\right\}\right.
$$

and $1 / s+1 / s^{\prime}=1$. However, $T^{\gamma}=S$ the associated sequence space of $\left\{x_{n}\right\}$ by [7, Corollary 3.3].

3. Further results on the associated sequence space.

3.1 Proposition. Suppose $\left\{x_{n}\right\}$ is a sequence of vectors in a Banach space X such that $l^{p} \subset S\left(\left\{x_{n}\right\}\right)$.
(a) If $X=l^{1}, l^{r}$ or L^{r} with $1<r \leq 2$ and $p>2$, then $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{s}<\infty$ where $s=2 p /(p-2)$.
(b) If $X=l^{r}$ or L^{r} with $2 \leq r<\infty$ and $p>r$, then $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{s}<\infty$ wheres $=p r /(p-r)$.

Proof. (a) If $l^{p} \subset S$ then for each $\left(s_{i}\right)$ in $l^{p},\left(s_{i} x_{i}\right)$ is unconditionally convergent. This is because $\left(s_{i}\left(e_{i}\right)\right)$ converges unconditionally, the inclusion from l^{p} into S is continuous, and the operator $T\left(s_{i}\right)=\sum_{i=1}^{\infty} s_{i} x_{i}$ is continuous, from S into X. Consequently $\left(\left\|s_{i} x_{i}\right\|\right)$ is in l^{2} for each $\left(s_{i}\right) \in l^{p}$ (see [1, p. 63]). This means that $\left(\left\|x_{i}\right\|\right)$ determines a diagonal operator from l^{p} into l^{2}, so that $\left(\left\|x_{i}\right\|\right)$ must be in the space l^{s} where $s=2 p /(p-2)$. (See [10]; note however that the values in the 3rd column of the table on p. 48 should be $l^{p q /(p-q)}$ and $l^{(p q-p+q) / p q}$.)
(b) The proof of this assertion is like that of (a).
3.2 Theorem. Let $\left\{x_{n}\right\}$ be a basis of a Banach space X such that $\inf _{n}\left\|x_{n}\right\|=$ $m>0$ and $\sup _{n}\left\|x_{n}\right\|=M<\infty$. Denote the associated sequence space of $\left\{x_{n}\right\}$ by S.
(a) If X is Hilbert space and $S \supset l^{p}$, then $p \leq 2$; if $S \subset l^{p}$, then $p \geq 2$.
(b) If X is a subspace of l^{r} or L^{r} with $1<r<2$ and $l^{p} \supset S$, then $p \leq 2$; if $S \supset l^{p}$, then $p \geq r$.
(c) If X is a subspace of l^{r} or L^{r} with $2<r<\infty$ and $l^{p} \subset S$, then $p \leq r$; if $S \supset l^{p}$ then $p \geq 2$.

Proof. We shall prove only (c); the proofs of (a) and (b) are similar.
(c) If $l^{p} \subset S$ then $p \leq r$ by (b) of 3.1 plus the hypothesis that $\inf _{n}\left\|x_{n}\right\|>0$.

The space S is isomorphic to a subspace of l^{r} or L^{r} so S^{γ} is isomorphic to a subspace of $l^{r^{\prime}}$ or $L^{r^{\prime}}$ where $1<r<2$ and $1 / r+1 / r^{\prime}=1$. Since S is reflective $\left\{e_{i}\right\}$ forms a basis in S and since $\sup _{n}\left\|x_{n}\right\|<\infty, \inf _{n}\left\|e_{n}\right\|>0$. The inclusion $S \supset l^{p}$ implies $S^{\gamma} \subset l^{p^{\prime}}$ where $1 / p+1 / p^{\prime}=1$. By (a) of 3.1 we conclude that $p^{\prime} \leq 2$ or $p \geq 2$.
3.3 Theorem. Let $\left\{x_{n}\right\}$ be a basis of a Banach space X such that $\inf _{n}\left\|x_{n}\right\|=$ $m>0$ and $\sup _{n}\left\|x_{n}\right\|=M<\infty$. Denote the associated sequence space of $\left\{x_{n}\right\}$ by S and the biorthogonal sequence of coefficient functionals by $\left\{f_{n}\right\}$. If for $1 \leq p<\infty$ either (a) $S \subset l^{p}$, or (b) $l^{p \prime} \subset S$ where $1 / p+1 / p^{\prime}=1$, then for each $x \in X$ and $f \in X^{*}$ we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|f_{n}(x) f\left(x_{n}\right)\right|^{p}<\infty . \tag{3.1}
\end{equation*}
$$

Proof. The conclusion that (a) implies (3.1) follows trivially from the fact that $\left(f_{n}(x)\right) \in l^{p}$ and $\sup _{n}\left\|f_{n}\right\|<\infty$.

If (b) is valid then $l^{p \prime} \subset M(S)$ the multiplier algebra of S [6]. For, if $\left(u_{i}\right) \in l^{p^{\prime}}$ and $\left(s_{i}\right) \in S$, then $\left(s_{i}\right)$ is a bounded sequence because $m>0$ so that $\left(u_{i} s_{i}\right) \in l^{p} \subset S$. Since $l^{p \prime} \subset M(S), M(S)^{\gamma} \subset l^{p}$. But $M(S)^{\gamma}$ contains all sequences of the form $\left(f_{n}(x) f\left(x_{n}\right)\right)$ where $x \in X$ and $f \in X^{*}[11]$.
3.4 Corollary. Let $\left\{x_{n}\right\}$ be a basis for a Banach space X with coefficient functionals $\left\{f_{n}\right\}$. If X is either uniformly convex or uniformly smooth there is $p<\infty$ such that for each x in X and f in X^{*}

$$
\sum_{n=1}^{\infty}\left|f\left(x_{n}\right) f_{n}(x)\right|^{p}<\infty .
$$

References

1. M. M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math. 45 (1944), 375-385.
2. - Normed linear spaces (Academic Press, New York, 1962).
3. N. I. Gurarii, On sequences of coefficients of expansion by a basis in Hilbert and Banach spaces, Izv. Akad. Nauk SSR Ser. Math. 34 (1970), 216-223.
4. -_Some theorems on bases in Hilbert and Banach spaces, Dokl. Akad. Nauk SSSR 193 (1970), 974-977, Soviet Math. Dokl. 11 (1970), 1042-1045.
5. N. I. Gurarii and V. I. Gurarii, On bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Math. 34 (1970), 210-215.
6. R. J. McGivney and W. Ruckle, Multiplier algebras of biorthogonal systems, Pacific J. Math. 29 (1969), 375-387.
7. W. H. Ruckle, On the construction of sequence spaces that have Schauder bases, Can. J. Math. 18 (1966), 1281-1293.
8. - Symmetric coordinate spaces and symmetric bases, Can. J. Math. 19 (1967), 828-838.
9. - On perfect symmetric BK-spaces, Math. Ann. 175 (1968), 121-126.
10. W. H. Ruckle, Diagonals of operators, Studia Math. 38 (1970), 43-49.
11. - Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 511-528.
12. W. L. C. Sargent, Some sequence spaces related to the l^{p} spaces, J. London Math. Soc. 35 (1960), 161-171.
13. Ivan Singer, Bases in Banach spaces (Springer, Berlin-Heidelberg-New York, 1970).
14. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).

Clemson University,
Clemson, South Carolina

