THE EXTENT OF THE SEQUENCE SPACE ASSOCIATED WITH A BASIS

WILLIAM H. RUCKLE

1. Introduction. The associated sequence space *S* of a sequence of vectors $\{x_n\}$ in a Banach space consists of all scalar sequences (s_n) for which $\sum_{n=1}^{\infty} s_n x_n$ converges. My primary motivation in writing this paper was to present a new proof to a recent theorem of N. I. and V. I. Gurarii concerning limits of extent on *S* when $\{x_n\}$ is a basis of a uniformly convex or a uniformly smooth Banach space [5]. This theorem is stated as Theorem 2.4. Several interesting consequences of this theorem were noted by N. I. Gurarii in [3] and [4]. For instance he showed that for each pair of numbers p, q with $1 there is a basis <math>\{x_n\}$ of l^2 with $0 < \inf_n ||x_n|| < \sup_n ||x_n|| < \infty$ such that if $l^r \subset S$ then $r \le p$ while if $l^s \supset S$ then $s \ge q$. Our Theorem 3.2 adds to this result in determining minimum sizes of l^s and maximum sizes of l^r for *X* a subspace of l^t or L^t . Finally in Theorem 3.3 we derive a summability property of a basis in terms of *S* (formula (3.1)). From this and the Gurarii theorem it follows that no basis for a uniformly convex or uniformly smooth space can be "purely conditional" (Corollary 3.4).

2. Growth numbers and the theorem of N. I. and V. I. Gurarii.

2.1 Definition. Let $\{x_i : i = 1, 2, ...\}$ be a sequence of vectors in a Banach space X having norm || ||. The associated sequence space of (x_i) , written $S(x_i)$ or simply S, consists of all scalar sequences (t_i) for which $\sum_i t_i x_i$ converges. The *n*th growth number, written $g(n, \{x_i\})$ or simply g(n), is given by the formula

 $g(n, \{x_i\}) = \sup\{||\sum_{i \in F} a_i x_i|| : F \text{ is any set of } n \text{ indices, } |a_i| \leq 1, i \in F\}.$

The following proposition states a few obvious properties of the growth numbers, and we omit its proof.

2.2 PROPOSITION. (a) $g(1) = \sup_{n} ||x_n||$.

(b) $g(n) \leq g(n+1)$ for each n. (c) If $\{x_i\}$ is a normalized sequence (i.e., $||x_i|| = 1$ for each i), then $1 \leq g(n) \leq n$ for each n.

(d) If $\{x_{ik}\}$ is any subsequence of $\{x_i\}$, then

$$g(n, \{x_{ik}\}) \leq g(n, \{x_i\}) \quad (n = 1, 2, \ldots).$$

Received July 16, 1971.

(e) If $\{x_{\pi(i)}\}$ is any permutation of $\{x_i\}$, then

$$g(n, \{x_{\pi(i)}\}) = g(n, \{x_i\}) \quad (n = 1, 2, \ldots).$$

The following theorem shows how the growth numbers of a vector sequence provides a measure of the size of the associated sequence space.

2.3 THEOREM. Let $\{x_i\}$ be a sequence of vectors in a Banach space X, with S denoting the associated sequence space and g(n) the nth growth number.

- (a) If $l^p \subseteq S$ for $p \ge 1$, then $g(n) = O(n^{1/p})$.
- (b) If $g(n) = O(n^{1/p})$ for p > 1, then $l^s \subseteq S$ for $1 \leq s < p$.

(c) $c_0 \subseteq S$ if and only if g(n) = O(1).

Proof. (a) It is well known (e.g., see [7]) that S is a *BK*-space (Banach space of sequences with continuous coefficients) given the norm

$$|||(t_i)||| = \sup_n ||\sum_{i=1}^n t_i x_i||((t_i) \in S)|$$

Moreover, the sequence $\{e_i : i = 1, 2, ...\}$ of coordinate vectors

$$e_i = \{\delta_{ij} : j = 1, 2, \ldots\}$$

forms a Schauder basis for S.

If $l^p \subseteq S$ the inclusion is continuous [14, § 11.3]. Hence there is M > 0 such that for $(t_i) \in l^p$

$$||\sum_{i=1}^{\infty} t_i x_i|| \le |||(t_i)||| \le M||(t_i)||p|$$

where $|| \quad ||_{p}$ is the usual norm on l^{p} . If F is a finite set of indices and $|a_{i}| \leq 1$ for $i \in F$ we thus have

$$\begin{aligned} ||\sum_{i\in F}a_ix_i|| &\leq |||\sum_{i\in F}a_ie_i||| \\ &\leq M||\sum_{i\in F}a_ie_i||_p \leq Mn^{1/p}. \end{aligned}$$

(b) We define an extended real valued function N on the set of all sequences by the formula

$$N((t_i)) = \sup\{||\sum_{i \in F} a_i t_{\pi(i)} x_i||:$$

F is a finite set of indices, $|a_i| \le 1$, π is any permutation of indices}.

Then N is a balanced symmetric sequential norm in the sense of [8] and [9] so that S_N , the set of all (t_i) for which $N((t_i)) < \infty$, is a symmetric *BK*-space with the norm N. The sequence $\{e_i\}$ is a symmetric basis for its closed linear span S_N° in S_N . It is not hard to see (continuity of inclusion) that $(t_i) \in S_N^{\circ}$ if and only if $\sum_{n=1}^{\infty} t_i x_{\pi(i)}$ converges unconditionally in X for each permutation π on the indices. Consequently we have $S_N^{\circ} \subset S_N$.

It is obvious that

$$g(n) = N(e_1 + e_2 + \ldots + e_n).$$

Let $g_n' = g(n) - g(n-1)$ and let $(g_n')^{\sigma}$ consist of all sequences $(s_i)^n$ for which

(2.1)
$$||(s_i)||' = \sup\{\sum_{i=1}^{\infty} |s_{\pi(i)}|g_i': \pi \text{ is a permutation of indices}\} < \infty.$$

With the norm || ||', $(g_n')^{\sigma}$ is a symmetric *BK*-space, and $(g_n')^{\sigma} \subset S_N$ by [9, Proposition 3.2].

Let $h_n' = n^{1/p} - (n-1)^{1/p}$ and let $(h_n')^{\sigma}$ be defined by (2.1) with h_n' replacing g_n' in (2.1). If $g(n) = O(n^{1/p})$ then $(h_n')^{\sigma} \subseteq (g_n')^{\sigma}$ by [8, Proposition 3.6]. By [9, Proposition 3.6], $(h_n')^{\sigma}$ properly contains l^s for 1 < s < p. Thus we have

$$\bigcup_{s < p} l^s \subseteq h'^{\sigma} = g'^{\sigma} \subseteq S_N.$$

For s < p the inclusion of l^s in S_N is continuous so that

$$l^s \leq S_N^{\circ} \subset S,$$

since $\{e_i\}$ is a basis for l^s . The inclusion is obviously proper since

$$l^s \underset{\neq}{\subset} \underset{n < p}{\cup} l^r \subset S.$$

(c) If $c_0 \subseteq S$ then $\{g(n)\}$ is bounded by an argument like that used to prove (a).

If $\{g(n)\}\$ is bounded then $\sum_n g'_n = \sum_n \{g(n) - g(n-1)\}\$ converges so that $(g'_n)^{\sigma} \supseteq m$ by [8, Proposition 3.2]. Thus we have $m \subseteq S_N$ which implies

$$c_0 \subseteq S_N^{\circ} \subseteq S.$$

We now present a new proof of the theorem of N. I. and V. I. Gurarii [4; 5].

2.4 THEOREM. Let $\{x_n\}$ be a Schauder basis in a Banach space X for which there is m and M > 0 such that $\inf_n ||x_n|| \ge m$ and $\sup_n ||x_n|| \le M$; let S be the associated sequence space of $\{x_n\}$.

(a) If X is uniformly convex, then there is r > 1 such that $l^r \subset S$ and the inclusion is continuous.

(b) If X is uniformly smooth, then there is $s < \infty$ such that $S \subset l^s$ and the inclusion is continuous.

Proof. (a) Since $\{x_n\}$ is a Schauder basis for X there is $\delta > 0$ such that for each n

(2.2)
$$||\sum_{i=1}^{n} a_{i} x_{i} - \sum_{i=n+1}^{\infty} a_{i} x_{i}|| \geq \delta$$
whenever $||\sum_{i=1}^{n} a_{i} x_{i}|| = 1$ or $||\sum_{i=n+1}^{\infty} a_{i} x_{i}|| = 1$. (Let

 $\delta = \inf_{n} \{ ||P_{n}||_{n}^{-1}, ||I - P_{n}||^{-1} \} \text{ where } P_{n}(\sum_{i=1}^{\infty} a_{i} x_{i}) = \sum_{i=1}^{n} a_{i} x_{i};$

see [1, p. 67]). Since X is uniformly convex there is $\epsilon > 0$ such that

(2.3)
$$||x + y|| \le 2(1 - \epsilon)$$

whenever ||x|| and ||y|| are ≤ 1 and $||x - y|| \geq \delta$ [1, p. 112]. Using these two facts we shall prove that

(2.4)
$$g(2n) \leq 2(1-\epsilon)g(n)$$

for each *n*. Let *F* be any set of 2n indices and let $|a_i| \leq 1$ for $i \in F$. Let F_1 be the set of the *n* smallest indices in *F* and F_2 the complement of F_1 in *F*. If

$$C = \max\{ ||\sum_{i \in F_1} a_i x_i||, ||\sum_{i \in F_2} a_i x_i||\} \neq 0$$

we then have

$$\left|\left|\sum_{i\in F}(a_i/C)x_i-\sum_{i\in F_2}(a_i/C)x_i\right|\right|\geq \delta$$

by (2.2). By (2.3)

(2.5)
$$||\sum_{i\in F}a_ix_i|| \le 2(1-\epsilon)C \le 2(1-\epsilon)g(n)$$

If C = 0 then (2.5) is obviously true. The inequality (2.4) now quickly follows from (2.5).

We now use (2.4) to show that there is r > 0 for which $g(n) = O(n^{1/r})$. From (2.4) it follows that $g(2^n) \leq M2^n(1-\delta)^n$ for n = 0, 1, 2, ... Let d_n be defined by

$$d_n = [2(1-\delta)]^{\log_2 n}.$$

Since $\{g(k)\}$ and $\{d_k\}$ are increasing sequences and

$$2Md_{2^n} \ge g(2^{n+1})$$

for each *n*, it follows that $g(n) = O(d_n)$. If p is any number with $1 > 1/p \ge 1 + \log_2(1-\delta)$, we have $d_n = O(n^{1/p})$ since

$$\log_2(d_n/n^{1/p}) = \log_2 n\{1 + \log_2(1-\delta) - 1/p\} \le 0.$$

Thus if $1/r > 1 + \log_2(1 - \delta)$, $l^r \subset S$ by Theorem 2.2 (b).

(b) If X is uniformly smooth then X^* is uniformly convex [1, (8), p. 114] and X is reflexive. The coefficient functionals $\{f_i\}$ of the basis $\{x_i\}$ form a basis of X^* . Since $\inf_n ||x_n|| > 0$, $\sup_n ||f_n|| < \infty$. Thus by the argument of (a) there is s' > 1 such that $l^{s'} \subset T$ where T is the associated sequence space of $\{f_n\}$. The inclusion $l^{s'} \subset T$ implies $T^{\gamma} \subset l^s$ where

$$T^{\gamma} = \{(s_i) : \sup_n \{ \left| \sum_{i=1}^n s_i t_i \right| < \infty \text{ for each } (t_i) \in T \}$$

and 1/s + 1/s' = 1. However, $T^{\gamma} = S$ the associated sequence space of $\{x_n\}$ by [7, Corollary 3.3].

WILLIAM H. RUCKLE

3. Further results on the associated sequence space.

3.1 PROPOSITION. Suppose $\{x_n\}$ is a sequence of vectors in a Banach space X such that $l^p \subset S(\{x_n\})$.

(a) If $X = l^1$, l^r or L^r with $1 < r \le 2$ and p > 2, then $\sum_{n=1}^{\infty} ||x_n||^s < \infty$ where s = 2p/(p-2).

(b) If $X = l^r$ or L^r with $2 \le r < \infty$ and p > r, then $\sum_{n=1}^{\infty} ||x_n||^s < \infty$ where s = pr/(p-r).

Proof. (a) If $l^p \subset S$ then for each (s_i) in l^p , (s_ix_i) is unconditionally convergent. This is because $(s_i(e_i))$ converges unconditionally, the inclusion from l^p into S is continuous, and the operator $T(s_i) = \sum_{i=1}^{\infty} s_i x_i$ is continuous, from S into X. Consequently $(||s_ix_i||)$ is in l^2 for each $(s_i) \in l^p$ (see [1, p. 63]). This means that $(||x_i||)$ determines a diagonal operator from l^p into l^2 , so that $(||x_i||)$ must be in the space l^s where s = 2p/(p-2). (See [10]; note however that the values in the 3rd column of the table on p. 48 should be $l^{pq/(p-q)}$ and $l^{(pq-p+q)/pq}$.)

(b) The proof of this assertion is like that of (a).

3.2 THEOREM. Let $\{x_n\}$ be a basis of a Banach space X such that $\inf_n ||x_n|| = m > 0$ and $\sup_n ||x_n|| = M < \infty$. Denote the associated sequence space of $\{x_n\}$ by S.

(a) If X is Hilbert space and $S \supset l^p$, then $p \leq 2$; if $S \subset l^p$, then $p \geq 2$.

(b) If X is a subspace of l^r or L^r with 1 < r < 2 and $l^p \supset S$, then $p \leq 2$; if $S \supset l^p$, then $p \geq r$.

(c) If X is a subspace of l^r or L^r with $2 < r < \infty$ and $l^p \subset S$, then $p \leq r$; if $S \supset l^p$ then $p \geq 2$.

Proof. We shall prove only (c); the proofs of (a) and (b) are similar.

(c) If $l^p \subset S$ then $p \leq r$ by (b) of 3.1 plus the hypothesis that $\inf_n ||x_n|| > 0$. The space S is isomorphic to a subspace of l^r or L^r so S^r is isomorphic to a subspace of $l^{r'}$ or $L^{r'}$ where 1 < r < 2 and 1/r + 1/r' = 1. Since S is reflective $\{e_i\}$ forms a basis in S and since $\sup_n ||x_n|| < \infty$, $\inf_n ||e_n|| > 0$. The inclusion $S \supset l^p$ implies $S^r \subset l^{p'}$ where 1/p + 1/p' = 1. By (a) of 3.1 we conclude that $p' \leq 2$ or $p \geq 2$.

3.3 THEOREM. Let $\{x_n\}$ be a basis of a Banach space X such that $\inf_n ||x_n|| = m > 0$ and $\sup_n ||x_n|| = M < \infty$. Denote the associated sequence space of $\{x_n\}$ by S and the biorthogonal sequence of coefficient functionals by $\{f_n\}$. If for $1 \le p < \infty$ either (a) $S \subset l^p$, or (b) $l^{p'} \subset S$ where 1/p + 1/p' = 1, then for each $x \in X$ and $f \in X^*$ we have

(3.1)
$$\sum_{n=1}^{\infty} |f_n(x)f(x_n)|^p < \infty.$$

Proof. The conclusion that (a) implies (3.1) follows trivially from the fact that $(f_n(x)) \in l^p$ and $\sup_n ||f_n|| < \infty$.

SEQUENCE SPACE

If (b) is valid then $l^{p'} \subset M(S)$ the multiplier algebra of S [6]. For, if $(u_i) \in l^{p'}$ and $(s_i) \in S$, then (s_i) is a bounded sequence because m > 0 so that $(u_i s_i) \in l^p \subset S$. Since $l^{p'} \subset M(S)$, $M(S)^{\gamma} \subset l^p$. But $M(S)^{\gamma}$ contains all sequences of the form $(f_n(x)f(x_n))$ where $x \in X$ and $f \in X^*$ [11].

3.4 COROLLARY. Let $\{x_n\}$ be a basis for a Banach space X with coefficient functionals $\{f_n\}$. If X is either uniformly convex or uniformly smooth there is $p < \infty$ such that for each x in X and f in X*

$$\sum_{n=1}^{\infty} |f(x_n)f_n(x)|^p < \infty.$$

References

- 1. M. M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math. 45 (1944), 375-385.
- 2. —— Normed linear spaces (Academic Press, New York, 1962).
- 3. N. I. Gurarii, On sequences of coefficients of expansion by a basis in Hilbert and Banach spaces, Izv. Akad. Nauk SSR Ser. Math. 34 (1970), 216-223.
- Some theorems on bases in Hilbert and Banach spaces, Dokl. Akad. Nauk SSSR 193 (1970), 974–977, Soviet Math. Dokl. 11 (1970), 1042–1045.
- 5. N. I. Gurarii and V. I. Gurarii, On bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Math. 34 (1970), 210-215.
- 6. R. J. McGivney and W. Ruckle, Multiplier algebras of biorthogonal systems, Pacific J. Math. 29 (1969), 375-387.
- 7. W. H. Ruckle, On the construction of sequence spaces that have Schauder bases, Can. J. Math. 18 (1966), 1281-1293.
- 8. ——— Symmetric coordinate spaces and symmetric bases, Can. J. Math. 19 (1967), 828-838.
- 9. —— On perfect symmetric BK-spaces, Math. Ann. 175 (1968), 121–126.
- 10. W. H. Ruckle, Diagonals of operators, Studia Math. 38 (1970), 43-49.
- Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 511–528.
- 12. W. L. C. Sargent, Some sequence spaces related to the l^p spaces, J. London Math. Soc. 35 (1960), 161–171.
- 13. Ivan Singer, Bases in Banach spaces (Springer, Berlin-Heidelberg-New York, 1970).
- 14. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).

Clemson University, Clemson, South Carolina