Behavior of sulfur in extremely metal-poor stars

Masahide Takada-Hidai¹ and Wallace L.W. Sargent²

¹Liberal Arts Education Center, Tokai University, Hiratsuka, Kanagawa, 259-1292 Japan email: hidai@apus.rh.u-tokai.ac.jp

²Department of Astronomy, Caltech, MC 105-24, Pasadena, CA 91125, USA email: wws@astro.caltech.edu

Abstract. The LTE abundances of sulfur (S) were explored in the sample of 15 metal-poor stars with the metallicity range of -4 < [Fe/H] < -1.5, based on the equivalent widths of the S I(1) 9212 and 9237 Å lines measured on high-resolution spectra, which were observed by the Keck I HIRES. Combining our results and those of Takada-Hidai *et al.* (2005), we found that the behavior of [S/Fe] against [Fe/H] shows a nearly flat trend in the range of metallicity down to [Fe/H] ~ -4 .

Keywords. Stars: abundances, stars: Population II, stars: atmospheres

1. Introduction

The behavior of sulfur (S) in the metallicity range of [Fe/H] < -1 has been investigated by a pioneering work by François (1988), and the recent studies by Israelian & Rebolo (2001), Takada-Hidai *et al.* (2002), Nissen *et al.* (2004), Ryde & Lambert (2004), and Takada-Hidai *et al.* (2005).

Among these studies, Israelian & Rebolo (2001) and Takada-Hidai *et al.* (2002) suggested that [S/Fe] shows a linearly increasing trend with decreasing [Fe/H] in the range of -3 < [Fe/H] < 0. On the contrary, François (1988), Nissen *et al.* (2004), Ryde & Lambert (2004), and Takada-Hidai *et al.* (2005) argued that [S/Fe] shows a nearly flat trend in the range of -3.2 < [Fe/H] < -1. However, the behavior of [S/Fe] is almost unknown in the range of [Fe/H] < -3 due to few observations.

To explore the S behavior in the range of -4 < [Fe/H] < -1 and the validity of the nearly flat trend, we analyzed the S abundances, assuming LTE, in the sample of 15 metal-poor stars with the metallicity range of -4 < [Fe/H] < -1.5.

2. Observations and Analyses

Our sample stars are listed in Table 1 together with the atmospheric parameters and their references in column 9. The CCD echelle spectra were observed by the Keck I HIRES on 2004 May 9–10 in a wavelength range of 6910 - 9250 Å and a resolution of 45000. The equivalent widths of the S I(1) 9212 and 9237 Å lines were measured by the *splot* task of IRAF, and were analyzed to obtain the S abundances using WIDTH9 code and ATLAS9 atmospheric models (Kurucz 1993). Resulting abundances are given in column 7 of Table 1. Adopting the abundances of [Fe/H] from the references in column 9, which are shown in column 6, we estimated [S/Fe], which are given in column 8.

Table 1. Model 1 analieters and Houndances of ite and 5								
Star	$T_{\rm eff}$	$\log~g$	$[\mathrm{Fe}/\mathrm{H}]$	ξ	$[{\rm Fe}/{\rm H}]^a$	$[S/H]^a$	[S/Fe]	$\operatorname{Ref.}^{b}$
	(K)			$({\rm km \ s^{-1}})$				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
HD 88609	4570	0.75	-2.65	2.1	-2.77	-2.42	0.35	1
HD 115444	4720	1.5	-2.85	1.7	-2.79	-2.32	0.47	2
HD 122563	4650	1.36	-2.65	1.9	-2.47	-2.15	0.32	1
HD 126587	4960	2.10	-2.78	1.8	-2.72	-2.14	0.58	2
HD 140283	5830	3.67	-2.55	1.9	-2.36	-1.97	0.39	1
HD 165195	4190	0.96	-2.15	1.7	-1.82	-1.48	0.34	1
	4450	1.10	-2.00	1.9	-2.17	-1.73	0.44	3
$BD + 58^{\circ}1218$	5000	2.20	-3.00	1.0	-2.65	-2.31	0.34	3
$BD + 23^{\circ}3130$	5154	2.93	-2.66	1.3	-2.59	-1.89	0.70	4
$BD - 18^{\circ}5550$	4750	1.4	-3.0	1.8	-3.01	-2.32	0.69	5
G 64-012	6511	4.39	-3.17	1.5	-3.10	-2.76	0.34	6
BS 16084-160	4730	1.31	-2.95	2.0	-2.91	-2.45	0.46	7
BS 16085-050	4950	1.8	-2.91	1.8	-2.85	-2.06	0.79	2
BS 16467-062	5200	2.5	-4.0	1.6	-3.72	-2.99	0.73	5
CS 22885-096	5050	2.6	-4.0	1.8	-3.73	< -3.05	< 0.68	5
CS 30325-094	4950	2.0	-3.4	1.5	-3.25	-2.45	0.80	5

Table 1. Model Parameters and Abundances of Fe and S

^a Solar values of log S = 7.14 and log Fe = 7.45 are adopted from Asplund *et al.* (2005).

^b1=Takada-Hidai *et al.* (2005); 2= Honda *et al.* (2004); 3= Burris *et al.* (2000); 4= Israelian *et al.* (2004); 5= Cayrel *et al.* (2004); 6= Nissen *et al.* (2004); 7= this study + Schuster *et al.* (2004).

3. Results

Inspecting the behavior of [S/Fe] against [Fe/H] given in Table 1, we may suggest that [S/Fe] shows a nearly flat trend in the range of metallicity down to $[Fe/H] \sim -4$ with an average of [S/Fe] = +0.52 dex. If we combine our results of [S/Fe] with those of Takada-Hidai *et al.* (2005), we may confirm that the behavior of S inferred from the S I(1) lines follows a nearly flat trend in the range of -4 < [Fe/H] < -1.5.

Acknowledgements

We would like to thank the staff of the Keck Observatory for their help with our observations. M. T.-H. acknowledges the financial support by a grant-in-aid for scientific research (C-2, No. 17540218) from JSPS.

References

Asplund, M., Grevesse, N., & Sauvel, A.J. 2005, ASP Conf. Ser. in press
Burris, D., et al. 2000, ApJ 544, 302
Cayrel, R., et al. 2004, A&A 416, 1117
François, P. 1988, A&A 195, 226
Honda, S., et al. 2004, ApJ 607, 474
Israelian, G. & Rebolo, R. 2001, ApJ (Letters) 557, L43
Israelian, G., et al. 2004, A&A 421, 649
Kurucz, R.L. 1993, CD-ROM No. 13
Nissen, P.E., et al. 2004, A&A 415, 993
Ryde, N. & Lambert, D.L. 2004, A&A 422, 527
Takada-Hidai, M., et al. 2002, ApJ 573, 614
Takada-Hidai, M., et al. 2005, PASJ 57, 347