
JFP 29, e11, 60 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000066

Constructive Galois Connections

D A V I D DARAIS
University of Vermont, USA

(e-mail: David.Darais@uvm.edu)

D A V I D VAN HORN
University of Maryland, College Park, USA

(e-mail: dvanhorn@cs.umd.edu)

Abstract

Galois connections are a foundational tool for structuring abstraction in semantics, and their use lies
at the heart of the theory of abstract interpretation. Yet, mechanization of Galois connections using
proof assistants remains limited to restricted modes of use, preventing their general application in
mechanized metatheory and certified programming. This paper presents constructive Galois con-
nections, a variant of Galois connections that is effective both on paper and in proof assistants; is
complete with respect to a large subset of classical Galois connections; and enables more general
reasoning principles, including the “calculational” style advocated by Cousot. To design construc-
tive Galois connections, we identify a restricted mode of use of classical ones which is both general
and amenable to mechanization in dependently typed functional programming languages. Crucial to
our metatheory is the addition of monadic structure to Galois connections to control a “specifica-
tion effect.” Effectful calculations may reason classically, while pure calculations have extractable
computational content. Explicitly moving between the worlds of specification and implementation
is enabled by our metatheory. To validate our approach, we provide two case studies in mechaniz-
ing existing proofs from the literature: the first uses calculational abstract interpretation to design a
static analyzer, and the second forms a semantic basis for gradual typing. Both mechanized proofs
closely follow their original paper-and-pencil counterparts, employ reasoning principles not captured
by previous mechanization approaches, support the extraction of verified algorithms, and are novel.

1 Introduction

Abstract interpretation is a general theory of sound approximation widely applied in pro-
gramming language semantics, formal verification, and static analysis (Cousot & Cousot,
1976, 1977, 1979, 1992, 2014). In abstract interpretation, properties of programs are
related between a pair of partially ordered sets: a concrete domain, 〈C,�〉, and an abstract
domain, 〈A,�〉. When concrete properties have a �-most precise abstraction, the corre-
spondence is a Galois connection, formed by a pair of mappings between the domains
known as abstraction α ∈ C �→A and concretization γ ∈A �→ C such that c� γ (a) ⇐⇒
α(c)� a. Since its introduction by Cousot and Cousot in the late 1970s, this theory has
formed the basis of static analyzers, type systems, model-checkers, obfuscators, program
transformations, and many more applications (Cousot, 2008).

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066
mailto:David.Darais@uvm.edu
mailto:dvanhorn@cs.umd.edu
https://doi.org/10.1017/S0956796819000066

2 D. Darais and D. Van Horn

Given the remarkable set of tools contributed by this theory, an obvious desire is to
incorporate its use in proof assistants to mechanically verify proofs by abstract interpreta-
tion. When embedded in a proof assistant, verified algorithms such as static analyzers can
then be extracted from these proofs.

Monniaux first achieved the goal of mechanization for the theory of abstract interpre-
tation with Galois connections in Coq (1998). However, he notes that the abstraction side
(α) of Galois connections is problematic since it requires the admission of nonconstruc-
tive axioms. Use of these axioms prevents the extraction of certified programs. So while
Monniaux was able to mechanically verify proofs by abstract interpretation in its full
generality, certified artifacts could not be extracted in general.

Pichardie subsequently tackled the extraction problem by using a restricted formulation
of abstract interpretation that only relies on the concretization (γ) side of Galois connec-
tions 2005. Doing so avoids the use of axioms and enables extraction of certified artifacts.
This technique is effective and has been used to construct certified static analyzers (Barthe
et al., 2007; Pichardie, 2005; Cachera & Pichardie, 2010; Blazy et al., 2013), most notably
the Verasco static analyzer, part of the CompCert C compiler (Leroy, 2009; Jourdan et al.,
2015). Unfortunately, this approach sacrifices the full generality of the theory. While in
principle the technique could achieve mechanization of existing soundness theorems, it
cannot do so faithful to existing proofs. In particular, Pichardie writes 2005, p. 55:1

The framework we have retained nevertheless loses an important property of
the standard framework: being able to derive a correct approximation f � from
the specification α ◦ f ◦ γ . Several examples of such derivations are given
by Cousot (1999). It seems interesting to find a framework for this kind of
symbolic manipulation, while remaining easily formalizable in Coq.

This important property is the so-called “calculational” style, whereby an abstract inter-
preter (f �) is derived in a correct-by-construction manner from a concrete interpreter
(f) composed with abstraction and concretization (α ◦ f ◦ γ). This calculational method
detailed in Cousot’s monograph (1999), which concludes:

The emphasis in these notes has been on the correctness of the design by cal-
culus. The mechanized verification of this formal development using a proof
assistant can be foreseen with automatic extraction of a correct program from
its correctness proof.

In the subsequent 17 years, this vision has remained unrealized, and clearly the paramount
technical challenge in achieving it is obtaining both generality and constructivity in a single
framework.

This paper contributes constructive Galois connections, a framework for mechanized
abstract interpretation with Galois connections which supports calculational style proofs—
making use of both abstraction (α) and concretization (γ)—while also maintaining the
ability to extract certified static analyzers.

1 Translated from French by the present authors.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 3

We develop constructive Galois connections from the insight that many classical Galois
connections used in practice are of a particular restricted form, which is reminiscent of a
direct-style verification. Constructive Galois connections are the general abstraction theory
for this restricted setting and can be mechanized effectively.

Our constructive Galois connections consist of analogs to abstraction and concretiza-
tion, which we call extraction and interpretation and notate η and μ. Whereas classical
Galois connections map between posets α ∈ C �→A and γ ∈A �→ C, constructive Galois
connections differ only in that they carry a powerset on the codomain of interpretation,
so η ∈ C �→A and μ ∈A �→℘(C). This simple change supports all of the benefits of
abstract interpretation with classical Galois connections, while also supporting mechanized
verification of executable algorithms.

We observe that constructive Galois connections contain monadic structure which iso-
lates classical specifications from constructive algorithms. Within the effectful fragment,
all of classical Galois connection reasoning can be employed, while within the pure frag-
ment, functions must carry computational content. Remarkably, calculations can move
between these modalities and verified programs may be extracted from the end result of
calculation.

To support the utility of our theory, we build a library for constructive Galois connec-
tions in Agda (Norell, 2007) and mechanize two existing abstract interpretation proofs
from the literature. The first is drawn from Cousot’s monograph (1999), which derives a
correct-by-construction analyzer from a specification induced by a concrete interpreter and
Galois connection. The second is drawn from Garcia, Clark, and Tanter’s “Abstracting
Gradual Typing” (AGT) (2016), which uses abstract interpretation to derive static and
dynamic semantics for gradually typed languages from traditional static types. Both proofs
use the “important property of the standard framework” identified by Pichardie, which is
not handled by prior mechanization approaches. The mechanized proofs closely follow
the original pencil-and-paper proofs, which use both abstraction and concretization, while
still enabling the extraction of certified algorithms. Neither of these papers have been
previously mechanized. Moreover, we know of no existing mechanized proof involving
calculational abstract interpretation.

We make precise the relationship between constructive Galois connections and classical
Galois connections, and prove them sound and complete. These metatheory results are
also mechanized; claims are marked with “AGDA�” whenever they are proved in Agda.
(All claims are marked.)

Finally, we explore the relationship between classical and constructive Galois connec-
tions in much more detail. We do this through defining constructive analogs to classical
Galois connection primitives and connectives, and through two examples drawn from our
first case study worked out in full detail. In this part of the paper, we compare and contrast
the differences between abstraction-directed and concretization-directed calculations, and
between sound and complete calculations, for both classical and constructive styles. The
outcome of this study is a better understanding of how constructive calculations interact
with classical Galois connections, how the mechanics of optimality change between each
framework, and how to calculate multivalued algorithms in the constructive setting.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

4 D. Darais and D. Van Horn

Contributions. This paper contributes the following:

• A foundational theory of constructive Galois connections which is both general
and amenable to mechanization using a dependently typed functional programming
language;

• A proof library and two case studies from the literature for mechanized abstract
interpretation; and

• The first mechanization of calculational abstract interpretation; and
• A detailed discussion of the relationship between constructive and classical Galois

connections, and their interaction.

Relative to Darais & Van Horn 2016, we have expanded the description of construc-
tive Galois connections (Section 3) and the second case study (Section 5), created a new
section which provides details about the mechanization (Section 6), created four new sec-
tions which discuss the relationship between constructive and classical Galois connections
(Sections 8, 9, 10, and 11), and created a new short section which discusses perspectives
on foundations and connections to category theory (Section 13).

The remainder of the paper is organized as follows. First, we give a tutorial on verify-
ing a simple analyzer from two different perspectives: direct verification (Section 2.1) and
abstract interpretation with Galois connections (Section 2.2), highlighting mechanization
issues along the way. We then present constructive Galois connections as a marriage of
the two approaches (Section 3). We provide two case studies—the mechanization of an
abstract interpreter from Cousot’s calculational monograph (Section 4), and the mecha-
nization of Garcia, Clark, and Tanter’s work on gradual typing via abstract interpretation
(Section 5)—followed by a discussion of Agda-specific details from our mechanization
framework (Section 6). Next we formalize the metatheory of constructive Galois con-
nections (Section 7), define constructive analogs of common classical Galois connection
primitives and connectives (Section 8), and work through two extended examples in detail:
the first to compare and contrast calculation styles (Section 9) and discuss deriving optimal
interpreters (Section 10), and the second to explore multivalued constructive calculations
(Section 11). Finally, we relate our work to the literature (Section 12), share perspectives
on foundations (Section 13), and conclude (Section 14).

2 Verifying a simple static analyzer

In this section, we contrast two perspectives on verifying a static analyzer: using a direct
approach, and using the theory of abstract interpretation with Galois connections. The
direct approach is simple but lacks the benefits of a general abstraction framework.
Abstract interpretation provides these benefits, but at the cost of added complexity and
resistance to mechanized verification. In Section 3 we present an alternative perspec-
tive: abstract interpretation with constructive Galois connections—the topic of this paper.
Constructive Galois connections marry the worlds presented in this section, providing
the simplicity of direct verification, the benefits of a general abstraction framework, and
support for mechanized verification.

To demonstrate both verification perspectives we design a parity analyzer in each style.
For example, a parity analysis discovers that 2 has parity EVEN, succ(1) has parity EVEN,

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 5

and n+ n has parity EVEN if n has parity ODD. Rather than sketch the high-level details of
a complete static analyzer, we instead zoom into the low-level details of a tiny fragment:
analyzing the successor arithmetic operation succ(n). At this level of detail the differences,
advantages, and disadvantages of each approach become apparent.

2.1 The direct approach

Using the direct approach to verification, one first designs the analyzer, then defines what
it means for the analyzer to be sound, and finally completes a proof of soundness. Each
step is done from scratch, and in the simplest way possible.

This approach should be familiar to most readers and exemplifies how most researchers
approach formalizing soundness for static analyzers: first posit the analyzer and soundness
framework, and then attempt the proof of soundness. One limitation of this approach is
that the setup—which gives lots of room for error—isn’t known to be correct until after
completing the final proof. However, benefits of this approach are that it is simple and can
easily be mechanized.

Analyzing successor. A parity analysis answers questions like: “what is the parity of
succ(n), given that n is even?” To answer these questions, imagine replacing n with
the symbol EVEN, a stand-in for an arbitrary even number. This hypothetical expression
succ(EVEN) is interpreted by defining a successor function over parities, rather than num-
bers, which we call succ�. This successor operation on parities is designed such that if p is
the parity for n, succ�(p) will be the parity of succ(n):

P := {EVEN, ODD}
succ� : P→ P

succ�(EVEN) := ODD

succ�(ODD) := EVEN

Soundness. The soundness of succ� is defined using an interpretation for parities, which
we notate � p�:

� � : P→℘(N)
�EVEN� := {n | even(n)}
�ODD� := {n | odd(n)}

Given this interpretation, a parity p is a valid analysis result for a number n if the interpre-
tation for p contains n, that is n ∈ � p�. The analyzer succ�(p) is then sound if, when p is a
valid analysis result for some number n, succ�(p) is a valid analysis result for succ(n):

n ∈ � p� =⇒ succ(n) ∈ �succ�(p)� (DA-Snd)

The proof is by case analysis on p; we show the case p= EVEN:

n ∈ �EVEN�

⇔ even(n) � defn. of � � �

⇔ odd(succ(n)) � defn. of even/odd �

⇔ succ(n) ∈ �ODD� � defn. of � � �

⇔ succ(n) ∈ �succ�(EVEN)� � defn. of succ� �

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

6 D. Darais and D. Van Horn

An even simpler setup There is another way to define and prove soundness: use a function
which computes the parity of a number in the definition of soundness. This approach is
even simpler and will foreshadow the constructive Galois connection setup.

parity : N→ P
parity(0) := EVEN

parity(succ(n)) := flip (parity(n))

where flip(EVEN) := ODD and flip(ODD) := EVEN. This gives an alternative and equiva-
lent way to relate a number and a parity, due to the following correspondence:

n ∈ � p� ⇐⇒ parity(n)= p (DA-Corr)

The soundness of the analyzer is then restated:

parity (n)= p =⇒ parity(succ(n))= succ�(p)

or by substituting parity(n)= p:

parity(succ(n))= succ�(parity(n)) (DA-Snd*)

Both this statement for soundness and its proof are simpler than before. The proof follows
directly from the definition of parity and the fact that succ� is identical to flip.

The main idea. Correspondences like (DA-Corr)—between an interpretation for analysis
results (� p�) and a function which computes analysis results (parity(n))—are central to
the constructive Galois connection framework we will describe in Section 3. Using cor-
respondences like these, we build a general theory of abstraction that recovers this direct
approach to verification, mirrors all of the benefits of abstract interpretation with classi-
cal Galois connections, supports mechanized verification, and in some cases simplifies the
proof effort. We also observe that many classical Galois connections used in practice can
be ported to this simpler setting.

Mechanized verification. This direct approach to verification is amenable to mechaniza-
tion using proof assistants like Coq and Agda. These tools are founded on constructive
logic in part to support verified program extraction. In constructive logic, functions
f : A→ B are computable and often defined by primitive recursion over inductively
defined datatypes to ensure they can be extracted and executed as programs. Analogously,
propositions P : ℘(A) are encoded constructively as potentially undecidable predicates
P : A→ prop where x ∈ P⇔ P(x).

To mechanize the verification of succ� we first translate its definition to a construc-
tive setting unmodified. Next we translate � p� to a relation I(p, n) defined inductively via
inference rules:

I(EVEN, 0)

I(p, n)

I(flip (p), succ(n))

The mechanized proof of (DA-Snd) using I is analogous to the one we sketched, and
the mechanized proof of (DA-Snd*) follows directly by computation. The proof term for
(DA-Snd*) in both Coq and Agda is simply refl, the reflexivity judgment for syntactic
equality modulo computation in constructive logic.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 7

Wrapping up. Each approach to verification we will present is distinguished by which
parts are postulated and which parts are derived. Using the direct approach, the analysis
(succ�), the interpretation for parities (� p�), and the definition of soundness (DA-Snd) are
all postulated up-front. When the soundness setup is correct but the analyzer is wrong, the
proof at the end will not go through and the analyzer must be redesigned. Even worse, when
the soundness setup and the analyzer are both wrong, the proof might actually succeed,
giving a false assurance in the soundness of the analyzer. However, the direct approach is
attractive because it is simple and supports mechanized verification.

2.2 Classical abstract interpretation

To verify an analyzer using abstract interpretation with Galois connections, one first
designs abstraction and concretization mappings between sets N and P. These mappings
are used to synthesize an optimal specification for succ�. One then proves that a postulated
succ� meets this synthesized specification, or alternatively derives the definition of succ�

directly from the optimal specification.
In contrast to the direct approach, rather than design the definition of soundness, one

instead designs the definition of abstraction within a structured framework. Soundness is
then not designed, rather it is derived from the definition of abstraction. Finally, there is
added boilerplate in the abstract interpretation approach, which requires lifting definitions,
specifications, and proofs to powersets ℘(N) and ℘(P).

Abstracting sets. Powersets are introduced in abstraction and concretization functions to
support relational mappings, like mapping the symbol EVEN to the set of all even numbers.
The mappings are therefore between powersets ℘(N) and ℘(P). The abstraction and con-
cretization mappings must also satisfy correctness criteria, detailed below, at which point
they are called a Galois connection.

The abstraction mapping from ℘(N) to ℘(P) is notated α and is defined as the pointwise
lifting of parity(n):

α : ℘(N)→℘(P) α(N) := { parity(n) | n ∈N}
The concretization mapping from ℘(P) to ℘(N) is notated γ and is defined as the flattened
pointwise lifting of � p�:

γ : ℘(P)→℘(N) γ (P) := {n | p ∈ P∧ n ∈ � p�}
The correctness criteria for α and γ is the following correspondence:

N ⊆ γ (P) ⇐⇒ α(N)⊆ P (GC-Corr)

The correspondence means that to relate elements of different sets—in this case ℘(N) and
℘(P)—it is equivalent to relate them through either α or γ . Mappings like α and γ which
share this correspondence are called Galois connections.

An equivalent correspondence to (GC-Corr) is two laws relating compositions of α and
γ , called expansive and reductive:

N ⊆ γ (α(N)) (GC-Exp)

α(γ (P))⊆ P (GC-Red)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

8 D. Darais and D. Van Horn

Property (GC-Red) ensures α is the best abstraction possible w.r.t. γ . For example, a hypo-
thetical definition α(N) := {EVEN, ODD} is expansive but not reductive with respect to γ

as defined above because α(γ ({EVEN})) �⊆ {EVEN}.
In general, Galois connections are defined for arbitrary posets 〈C,�C〉 and 〈A,�A〉.

The correspondence (GC-Corr) and its expansive/reductive variants are generalized in
this setting to use partial orders �C and �A instead of subset ordering. We are omitting
monotonicity requirements for α and γ at this point in our presentation, although these
requirements are essential in the complete approach. Our example instantiates this general
framework with powersets ℘(N) and ℘(P) in place of C and A, and the subset operation ⊆
in place of �C and �A. Although Galois connections are often instantiated with powersets
(typically for the concrete domain, and sometimes also for the abstract domain, as in our
example), this need not always be the case.

Powerset lifting. The original functions succ and succ� cannot be related through α and γ

because they are not functions between powersets. To remedy this they are lifted pointwise:

↑succ : ℘(N)→℘(N)
↑succ� : ℘(P)→℘(P)

↑succ(N) := {succ(n) | n ∈N}
↑succ�(P) := {succ�(p) | p ∈ P}

These lifted operations are called the concrete interpreter and abstract interpreter, because
the former operates over the concrete domain ℘(Z) and the latter over the abstract domain
℘(P). In the framework of abstract interpretation, static analyzers are just abstract inter-
preters. Lifting succ and succ� to powersets is necessary to use the abstract interpretation
framework because the abstraction and concretization functions (α and γ) are defined
as mappings between powersets. This has the negative effect of adding boilerplate to
definitions and proofs of soundness.

Soundness. The definition of soundness for succ� is synthesized by relating ↑succ� to
↑succ composed with α and γ :

α(↑succ(γ (P)))⊆↑succ�(P) (GC-Snd)

The left-hand side of the ordering is an optimal specification for any abstraction of
↑succ (a consequence of (GC-Corr)), and the subset ordering says ↑succ� is an over-
approximation of this optimal specification. The reason to over-approximate is because the
specification is a mathematical description, and the abstract interpreter is usually expected
to be an algorithm, and there may not always exist an algorithm which can match the
specification precisely. The proof of (GC-Snd) is by case analysis on P. We do not show
the proof, rather we demonstrate a proof later in this section which also synthesizes the
definition of succ�.

One advantage of the abstract interpretation framework is that it provides a choice
between four soundness properties, all of which are equivalent and generated by α and γ :

α(↑succ(γ (P)))⊆↑succ�(P) (GC-Snd/αγ)

↑succ(γ (P))⊆ γ (↑succ�(P)) (GC-Snd/γ γ)

α(↑succ(N))⊆↑succ�(α(N)) (GC-Snd/αα)

↑succ(N)⊆ γ (↑succ�(α(N))) (GC-Snd/γα)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 9

Because each soundness property is equivalent (a consequence of GC-Corr), one can
choose whichever variant is easiest to prove. The soundness setup (GC-Snd) is the αγ

rule; however, any of the other rules can also be used. For example, one could choose αα

or γα; in these cases the proof considers four disjoint cases for N : N is empty, N con-
tains only even numbers, N contains only odd numbers, and N contains both even and odd
numbers.

Optimality. The mappings α and γ also synthesize an optimality statement for ↑succ�, by
stating that it under-approximates the optimal specification:

α(↑succ(γ (P)))⊇↑succ�(P)

Typically we are only interested in sound abstract interpreters, which are those that over-
approximate the optimal specification. A sound and optimal interpreter is then one that
both over-approximates (⊆) and under-approximates (⊇) the optimal specification, which
is equivalent to being equal to it. For this reason, we restate optimality as an equality
between the abstract interpreter and the optimal specification:

α(↑succ(γ (P)))=↑succ�(P) (GC-Opt)

Not all analyzers are optimal; however, optimality helps identify those which approximate
too much. Consider the analyzer ↑succ�′:

↑succ�′ : ℘(P)→℘(P) ↑succ�′(P) := {EVEN, ODD}
This analyzer reports that succ(n) could have any parity regardless of the parity for n;
it’s the analyzer that always says “I don’t know.” This analyzer is perfectly sound but
nonoptimal because ↑succ�′({EVEN})= {EVEN, ODD} �= α(↑succ(γ ({EVEN}))).

Just like soundness, four optimality (soundness+completeness) statements are generated
by α and γ ; however, the following statements are not all equivalent:

[optimal] α(↑succ(γ (P)))=↑succ�(P) (GC-Opt/αγ)

↑succ(γ (P))= γ (↑succ�(P)) (GC-Opt/γ γ)

α(↑succ(N))=↑succ�(α(N)) (GC-Opt/αα)

[precise] ↑succ(N)= γ (↑succ�(α(N))) (GC-Opt/γα)

Abstract interpreters which satisfy the αγ variant are called optimal because they lose no
more information than necessary, and those which satisfy the γα variant are called precise
because they lose no information at all. The abstract interpreter succ� is optimal, but not
precise because γ (↑succ�(α({1}))) �= ↑succ({1}).

To overcome mechanization issues with Galois connections, the state of the art is
restricted to use γ γ rules only for soundness (GC-Snd/γ γ) and optimality (GC-Opt/γ γ).
This is unfortunate for optimality properties because unlike soundness, each optimality
variant is not equivalent. In particular, abstract interpreters extracted from a calculation of
(GC-Opt/γ γ) are not guaranteed to be optimal by construction.

Calculational derivation of abstract interpreters. Rather than posit ↑succ� and prove it
correct directly, one can instead derive its definition through a calculational process. The
process begins with the optimal specification on the left-hand side of (GC-Opt) and reasons

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

10 D. Darais and D. Van Horn

equationally towards the definition of an algorithm. In this way, ↑succ� is not postulated,
rather it is derived by calculation, and the result is both sound and optimal by construction.

The derivation is by case analysis on P which has four cases: {}, {EVEN}, {ODD}, and
{EVEN, ODD}; we show P= {EVEN}:

α(↑succ(γ ({EVEN})))
= α(↑succ({n | even(n)})) � defn. of γ �

= α({succ(n) | even(n)}) � defn. of ↑succ �

= α({n | odd(n)}) � defn. of even/odd �

= {ODD} � defn. of α �

� ↑succ�({EVEN}) � defining ↑succ� �

The derivations for the other cases are analogous, and together they define the implemen-
tation of ↑succ�.

Deriving analyzers by calculus is attractive because it is systematic, and because it pre-
vents the issue where an analyzer is postulated and discovered to be unsound only after
failing to complete its soundness proof. However, this calculational style of abstract inter-
pretation is not amenable to mechanized verification with program extraction because α is
often nonconstructive, an issue we describe later in this section.

Added complexity. The abstract interpretation approach requires a Galois connection up-
front which necessitates the introduction of powersets ℘(N) and ℘(P). This results in
powerset-lifted definitions and adds boilerplate set-theoretic reasoning to the proofs.

This is in contrast to the direct approach which never mentions powersets of parities. Not
using powersets results in more understandable soundness criteria, requires no boilerplate
set-theoretic reasoning, and results in fewer cases for the proof of soundness. This boil-
erplate becomes magnified in a mechanized setting where all details must be spelled out
to a proof assistant. Furthermore, the simpler proof of (DA-Snd*)—which was immediate
from the definition of parity—cannot be recovered within the general abstract interpre-
tation framework, rather it must be formulated as a special case. Therefore, in the current
state of affairs, one is required to abandon potentially simpler proof techniques in exchange
for the benefits of the abstract interpretation framework.

Resistance to mechanized verification. Despite the beauty and utility of abstract inter-
pretation with Galois connections, advocates of the approach have yet to reconcile their use
with advances in mechanized reasoning: every mechanized verification of an executable
abstract interpreter to-date has resisted the use of Galois connections, even when initially
designed to take advantage of the framework.

The issue in mechanizing Galois connections amounts to a conflict between supporting
both classical set-theoretic reasoning and executable static analyzers. Supporting exe-
cutable analyzers calls for constructive mathematics, which is a problem for α functions
because they are often nonconstructive, an observation first made by Monniaux (1998). To
work around this limitation, Pichardie (2005) advocates for designing abstract interpreters
which are merely inspired by Galois connections, but ultimately avoid their use in veri-
fication, which he terms the “γ -only” approach. Successful verification projects such as
Verasco adopt this “γ -only” technique (Jourdan et al., 2015; Leroy, 2009), despite the use

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 11

of Galois connections in the design of Astrée (Blanchet et al., 2003), the analyzer upon
which Verasco is based.

While it is possible to verify abstract interpreters using Galois connections within
tools based on classical mathematics (e.g., Isabelle/HOL, or Coq extended with classi-
cal axioms), this approach requires a strict separation between the logical and algorithmic
fragments of the system. If extraction of certified algorithms is not desired, this poses
no issue at all, and if extraction is desired, then the use of Galois connections must be
separated completely from the defined program analyzer. This prohibits use of the calcula-
tional method, where the specification induced by Galois connections is transformed into
an algorithm, thereby crossing the barrier between logical and algorithmic fragments of
the system. Furthermore, it is common for calculationally derived analyzers to mention
abstraction (α) functions directly, which again poses an issue if algorithms and definitions
which rely on classical mathematics (like α) must be kept separate for the purposes of
program extraction. Overcoming this limitation—the inability to intermix classical Galois
connections and algorithmic definitions—is the primary motivation for our development
of constructive Galois connections.

To better understand the foundational issues with Galois connections and α functions,
consider verifying the abstract interpretation approach to soundness for our parity ana-
lyzer using a proof assistant built on constructive logic. In this setting, the encoding of
the Galois connection must support elements of infinite powersets—like the set of all even
numbers—as well as executable abstract interpreters which manipulate elements of finite
powersets—like {EVEN, ODD}. To support representing infinite sets, the powerset ℘(N) is
modeled constructively as a predicate N→ prop. To support defining executable analyz-
ers that manipulate sets of parities, the powerset ℘(P) is modeled as an enumeration of its
inhabitants, which we call Pc:

P
c := {EVEN, ODD,⊥,�}

where ⊥ and � represent {} and {EVEN, ODD}. This enables a definition for ↑succ� :
P

c → P
c which can be extracted and executed. The consequence of this design is a Galois

connection between N→ prop and P
c; the issue is now α:

α : (N→ prop)→ P
c

This version of α cannot be defined constructively, as doing so requires deciding predi-
cates over φ : N→ prop. To define α one must perform case analysis on predicates like
∃n, φ(n)∧ even(n) to compute an element of Pc, which is not possible for arbitrary φ. (The
exercise also fails if powersets are modeled with decidable predicates φ : N→B.) α func-
tions are often used directly in the definition of calculated abstract interpreters (as is the
case in Cousot’s monograph Cousot (1999)), and a non-algorithmic α function will prevent
extraction for these interpreters.

However, γ can be defined constructively as a relation (2-arity proposition):

γ : P
c → (N→ prop)

In general, any theorem of soundness using Galois connections can be rewritten to use only
γ , making use of (GC-Corr); this is the essence of the “γ -only” approach, embodied by the
soundness variant (GC-Snd/γ γ). However, this principle does not apply to all proofs of

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

12 D. Darais and D. Van Horn

soundness using Galois connections, many of which mention α in practice. For example,
the γ -only setup does not support calculation in the style advocated by Cousot Cousot
(1999). Furthermore, not all optimality theorems can be translated to γ -only style, such as
(GC-Opt/γα) [precise] which is used to show an abstract interpreter is fully precise.

Wrapping up. Abstract interpretation differs from the direct approach in which parts of
the design are postulated and which parts are derived. The direct approach requires pos-
tulating the analyzer and definition of soundness. Using abstract interpretation, a Galois
connection between sets is postulated instead, and definitions for soundness and opti-
mality are synthesized from the Galois connection. Because soundness and optimality
are synthesized rather than designed directly, it is more likely that they will be correct.
This high-assurance for the specification of correctness helps prevent situations where a
proof is completed successfully against a buggy specification, resulting in a buggy ana-
lyzer with false assurance. Finally, abstract interpretation supports deriving the definition
of a static analyzer directly from its proof of correctness. The derivation process will reject
buggy implementation fragments early, because every step of the derivation is checked for
correctness.

The downside of abstract interpretation is that it requires lifting succ and succ� into
powersets, which results in boilerplate set-theoretic reasoning in the proof of soundness.
Finally, due to foundational issues, the abstract interpretation framework is not amenable
to mechanized verification while also supporting program extraction using constructive
logic.

3 Constructive Galois connections

In this section, we describe abstract interpretation with constructive Galois connections.
Constructive Galois connections are a parallel universe of Galois connections analogous
to classical ones. The framework enjoys all the benefits of abstract interpretation, but like
the direct approach avoids the pitfalls of added complexity and resistance to mechanized
verification.

We will describe the framework of constructive Galois connections between sets C and
A. When instantiated to N and P, the framework recovers exactly the direct approach from
Section 2.1. We will initially describe constructive Galois connections in the absence of
partial orders, or more precisely, we will assume the discrete partial order: x� y⇔ x= y.
(Partial orders didn’t appear in our demonstration of classical abstract interpretation, but
they are essential to the general theory.) At the end of this section we describe generalizing
from sets to posets, generalizing from abstract and concrete functions to relations, and how
to recover classical soundness results from constructive ones. The fully general theory
of constructive Galois connections is described in Section 7, where it is again compared
side-by-side to classical Galois connections.

Abstracting sets. A constructive Galois connection between sets C and A contains two
mappings: the first is called extraction, notated η, and the second is called interpretation,
notated μ:

η : C → A μ : A→℘(C)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 13

η and μ are analogous to classical Galois connection mappings α and γ . In the parity
analysis described in Section 2.1, the extraction function was parity and the interpretation
function was � �.

Constructive Galois connection mappings η and μ must form a correspondence similar
to (GC-Corr):

x ∈μ(y) ⇐⇒ η(x)= y (CGC-Corr)

The intuition behind the correspondence is the same as before: to compare an element x in
C to an element y in A, it is equivalent to compare them through either η or μ.

Like classical Galois connections, the correspondence between η and μ is stated equiv-
alently through two composition laws. Extraction functions η which form a constructive
Galois connection are also a “best abstraction,” analogously to α in the classical setup:

x ∈μ(η(x)) (CGC-Exp)

x ∈μ(y) =⇒ η(x)= y (CGC-Red)

In general, it is possible to induce μ as the inverse-image of any function η (just like in the
classical framework where any α can induce a corresponding γ):

μ(y) := {x | η(x)= y}
This induced μ is guaranteed to satisfy (CGC-Corr). However, this inverse-image defini-
tion can be cumbersome to work with, and there are practical benefits to defining μ directly
for the purposes of proofs and calculations.

Aside. We use the term extraction function and symbol η from Nielson et al. Nielson
et al. (1999) where η is used to simplify the definition of an abstraction function α. We
recover α functions from η in a similar way. However, their treatment of η is a side-note to
simplifying the definition of α and nothing more. We take this simple idea much further to
realize an entire theory of abstraction around η/μ functions and their correspondences. In
this “lowered” theory of η/μ, we describe soundness/optimality criteria and calculational
derivations analogous to that of α/γ while also supporting mechanized verification, none
of which is true of Nielson et al.’s use of η.

Induced specifications. Four equivalent soundness criteria are generated by η and μ just
like in the classical framework. Each soundness statement uses η and μ in a different but
equivalent way (assuming CGC-Corr). For a concrete f : C →C and abstract f � : A→ A,
f � is sound iff any of the following properties hold:

x ∈μ(y) =⇒ η(f (x))= f �(y) (CGC-Snd/ημ)

x ∈μ(y) =⇒ f (x) ∈μ(f �(y)) (CGC-Snd/μμ)

η(f (x))= f �(η(x)) (CGC-Snd/ηη)

f (x) ∈μ(f �(η(x))) (CGC-Snd/μη)

In the direct approach to verifying an example parity analysis described in Section 2.1,
the first soundness property (DA-Snd) is generated by the μμ variant, and the second
soundness property (DA-Snd*) which enjoyed a simpler proof is generated by the ηη

variant. We discuss optimality equations in Section 3.1.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

14 D. Darais and D. Van Horn

Calculational derivation of abstract interpreters. The constructive Galois connection
framework also supports deriving abstract interpreters through calculation, analogously to
the calculation we demonstrated in Section 2.2. To support calculational reasoning, the
four logical soundness criteria are rewritten into statements about subsumption between
powerset elements:

{η(f (x)) | x ∈μ(y)} ⊆ {f �(y)} (CGC-Snd/ημ*)

{ f (x) | x ∈μ(y)} ⊆μ(f �(y)) (CGC-Snd/μμ*)

{η(f (x))} ⊆ { f �(η(x))} (CGC-Snd/ηη*)

{ f (x)} ⊆μ(f �(η(x))) (CGC-Snd/μη*)

Using the ημ* soundness rule, one calculates towards a definition for f � starting from the
left-hand side, which is the optimal specification for abstract interpreters of f .

To demonstrate calculation using constructive Galois connections, we show the deriva-
tion of succ� from its induced specification, the result of which is sound by construction;
we show p= EVEN:

{ parity(succ(n)) | n ∈ �EVEN�}
= { flip(parity(n)) | n ∈ �EVEN�} � defn. of parity �

= { flip(EVEN)} � Eq. (DA-Corr) �

= { ODD} � defn. of flip �

� { succ�(EVEN)} � defining succ� �

Technically the result of the derivation is a singleton set lifting of succ�(EVEN), and the
abstraction for succ must be “unlifted” from this singleton set. We will show another per-
spective on this calculation later in this section, where the derivation of succ� is not only
sound by construction, but computable by construction as well.

Mechanized verification. In addition to the benefits of a general abstraction framework,
constructive Galois connections are amenable to mechanization in a way that classical
Galois connections are not. In our Agda library and case studies, we mechanize con-
structive Galois connections in full generality, as well as proofs that use both mapping
functions, such as calculational derivations.

As we discussed in Sections 2.1 and 2.2, the constructive encoding for infinite pow-
ersets ℘(A) is A→ prop. This results in the following types for η and μ when encoded
constructively:

η : N→ P μ : P→N→ prop

In constructive logic, the arrow type N→ P classifies computable functions, and the
arrow type P→N→ prop classifies potentially undecidable relations. (CGC-Corr) is then
mechanized without issue:

μ(p, n) ⇐⇒ η(n)= p

See the mechanization details in Section 2.1 for how η and μ are defined constructively
for the example parity analysis.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 15

Wrapping up. Constructive Galois connections are a general abstraction framework sim-
ilar to classical Galois connections. At the heart of the constructive Galois connection
framework is a correspondence (CGC-Corr) analogous to its classical counterpart. From
this correspondence, soundness and optimality criteria are synthesized for abstract inter-
preters. Constructive Galois connections also support calculational derivations of abstract
interpreters which are sound and optimal by construction. In addition to these benefits
of a general abstraction framework, constructive Galois connections are amenable to
mechanized verification. Both extraction (η) and interpretation (μ) can be mechanized
effectively, as well as proofs of soundness, optimality, and calculational derivations.

3.1 Partial orders, monotonicity, and relations

The full theory of constructive Galois connections generalizes to posets 〈C,�C〉 and
〈A,�A〉 by making the following changes:

• Powersets must be downward-closed, that is for X : ℘(C):

x ∈ X ∧ x′ � x =⇒ x′ ∈ X (PowerMon)

Singleton sets {x} are reinterpreted to mean {x′ | x′ � x}. For mechanization, this
means ℘(C) is encoded as an antitonic function, notated with a down-right arrow
C → prop, where the partial ordering on prop is by implication.

• Functions must be monotonic, that is for f : C →C:

x� x′ =⇒ f (x)� f (x′) (FunMon)

We notate monotonic functions f : C →C. Monotonicity is required for mappings
η and μ, and concrete and abstract interpreters f and f �.

• The constructive Galois connection correspondence is generalized to partial orders
in place of equality, that is for η and μ:

x ∈μ(y) ⇐⇒ η(x)� y (CGP-Corr)

or alternatively, by generalizing the reductive property:

x ∈μ(y) =⇒ η(x)� y (CGP-Red)

• Soundness criteria are also generalized to partial orders:

x ∈μ(y) =⇒ η(f (x))� f �(y) (CGP-Snd/ημ)

x ∈μ(y) =⇒ f (x) ∈μ(f �(y)) (CGP-Snd/μμ)

η(f (x))� f �(η(x)) (CGP-Snd/ηη)

f (x) ∈μ(f �(η(x))) (CGP-Snd/μη)

and optimality criteria are as follows:

[optimal] x ∈μ(y)∧ y′ � η(f (x)) ⇐⇒ y′ � f �(y) (CGP-Opt/ημ)

x ∈μ(y)∧ x′ � f (x) ⇐⇒ x′ ∈μ(f �(y)) (CGP-Opt/μμ)

y� η(f (x)) ⇐⇒ y� f �(η(x)) (CGP-Opt/ηη)

[precise] x′ � f (x) =⇒ x′ ∈μ(f �(η(x))) (CGP-Opt/μη)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

16 D. Darais and D. Van Horn

The x on the left-hand side of the first optimality rule is implicitly existentially
quantified, i.e., with explicit quantifiers the rule is:

∀y y′. (∃x. x ∈μ(y)∧ y′ � η(f (x))) ⇐⇒ y′ � f �(y)

Soundness criteria are merely simplifications of the left-to-right implication direc-
tion of the optimality criteria. Each of the optimality criteria are not equivalent, as
was also the case for classical Galois connections. Following the terminology of
classical Galois connections, we call abstract interpreters f � which satisfy the ημ

variant optimal and those which satisfy the μη variant precise.

To demonstrate when partial orders and monotonicity are necessary, consider designing a
parity analyzer for the max operator:

max� : P× P→ P
max�(EVEN, EVEN) := EVEN

max�(ODD, ODD) := ODD

max�(EVEN, ODD) := ?
max�(ODD, EVEN) := ?

The last two cases for max� cannot be defined because the maximum of an even and
odd number could be either even or odd, and there is no representative for “any num-
ber” in P. To remedy this, we add ANY to the set of parities: P

+ := P∪ {ANY}; the
new element ANY is interpreted: �ANY� := {n | n ∈N}; the partial order on P

+ becomes:
EVEN, ODD � ANY; and the correspondence continues to hold using this partial order:
n ∈ � p+� ⇐⇒ parity(n)� p+. max� is then defined using the abstraction P

+ and proven
sound and optimal following the abstract interpretation paradigm.

Generalizing to relations. The above soundness rules are stated for concrete functions
f : C →C. However, they generalize easily to relations R : ℘(C ×C) and predicate
transformers F : ℘(C) →℘(C) (i.e., collecting semantics). In both cases, we consider
f : C →℘(C) defined by:

f (x) := { y | R(x, y)}
in the case of relations, and

f (x) := F({x})
in the case of predicate transformers. Given a candidate abstraction f � : A →℘(A), the
four (equivalent) soundness criteria are as follows (which we write as set-subsumptions
rather than implications due to the number of existentially quantified variables involved):

{η(x′) | x ∈μ(y), x′ ∈ f (x)} ⊆ f �(y) (CGP-Snd-R/ημ)

{x′ | x ∈μ(y), x′ ∈ f (x)} ⊆ {x | y′ ∈ f �(y), x ∈μ(y′)} (CGP-Snd-R/μμ)

{η(x′) | x′ ∈ f (x)} ⊆ f �(η(x)) (CGP-Snd-R/ηη)

f (x)⊆ {x′ | y ∈ f �(η(x)), x′ ∈μ(y)} (CGP-Snd-R/μη)

The optimality criteria are analogous, but with set equality (=) in place of subsumption
(⊆). These equations come from the adjunction framework, which we describe in more
detail in Section 7. In particular, the shape of the set comprehensions and existentially
quantified variables arise from monadic composition in the powerset monad.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 17

3.2 Relationship to classical Galois connections

We clarify the relationship between constructive and classical Galois connections in three
ways:

• Any constructive Galois connection can be lifted to obtain an equivalent classical
Galois connection, and likewise for soundness and optimality proofs.

• Any classical Galois connection which can be recovered by a constructive one con-
tains no additional expressive power, rendering it an equivalent theory with added
boilerplate reasoning.

• Not all classical Galois connections can be recovered by constructive ones.

From these relationships, we conclude that one benefits from using constructive Galois
connections whenever possible, classical Galois connections when no constructive one
exists, and both theories together as needed. We make these claims precise in Section 7,
and explore the subtleties of their relationship and interaction in detail in Sections 9, 10,
and 11. We point out connections to more general categorical settings in Section 13.

Aside. We call the standard Galois connection framework “classical” because it is
not amenable to mechanization in full generality (i.e., including the calculational frag-
ment), and our proposed framework “constructive” because it is amenable to mechanized
verification in full generality. This is not to be confused with the classical or constructive
nature of the mathematics used to interpret either framework. It is possible to use both
frameworks side-by-side, each interpreted either using classical or constructive mathemat-
ics. However, classical Galois connections are less useful when interpreted constructively,
and likewise for constructive Galois connections interpreted classically.

A classical Galois connection is recovered from a constructive one through the following
lifting:

α : ℘(C)→℘(A)
γ : ℘(A)→℘(C)

α(X) := {η(x) | x ∈ X }
γ (Y) := {x | y ∈ Y ∧ x ∈μ(y)}

When a classical Galois connection can be written in this form for some η and μ, then one
can use the simpler setting of abstract interpretation with constructive Galois connections
without any loss of generality. We also observe that many classical Galois connections
in practice can be written in this form, and therefore can be mechanized effectively using
constructive Galois connections. The case studies presented in Sections 4 and 5 are two
such cases, although the original authors of those works did not initially write their classical
Galois connections in this explicitly lifted form.

An example of a classical Galois connection which is not recovered by lifting a con-
structive Galois is the independent attributes (IA) abstraction, which abstracts relations
R : ℘(A× B) with their component-wise splitting 〈Rl, Rr〉 : ℘(A)×℘(B):

α : ℘(A× B)→℘(A)×℘(B)
γ : ℘(A)×℘(B)→℘(A× B)

α(R) := 〈{x | ∃y.〈x, y〉 ∈ R}, {y | ∃x.〈x, y〉 ∈ R}〉
γ (Rl, Rr) := {〈x, y〉 | x ∈ Rl, y ∈ Rr}

This Galois connection is amenable to mechanized verification. In a constructive setting, α
and γ are maps between A× B→ prop and (A→ prop)× (B→ prop), and can be defined
directly using logical connectives ∃ and ∧:

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

18 D. Darais and D. Van Horn

α(R) := 〈λx.∃y.R(x, y), λy.∃x.R(x, y)〉
γ (Rl, Rr) := λ〈x, y〉.Rl(x)∧ Rr(y)

IA can be mechanized effectively because the Galois connection consists of mappings
between specifications, and the foundational issue of constructing values from specifica-
tions does not appear. IA is not a constructive Galois connection because there is no pure
function η underlying the abstraction function α.

Because constructive Galois connections can be lifted to classical ones, a constructive
Galois connection can interact directly with IA through its lifting, even in a mechanized
setting. However, once a constructive Galois connection is lifted it loses its computational
properties and cannot be extracted and executed. In practice, IA is used to weaken (�) an
induced optimal specification after which the calculated interpreter is shown to be optimal
(=) up-to-IA. IA never appears in the final calculated interpreter, so not having a construc-
tive Galois connection formulation poses no issue. We explore how a constructive Galois
connection derivation interacts with IA in detail in Sections 9 and 10.

3.3 The “specification effect”

The machinery of constructive Galois connections follow a monadic effect discipline,
where the effect type is the classical powerset ℘(); we call this a specification effect.
First, we will describe the monadic structure of powersets ℘() and what we mean by
“specification effect.” Then we will recast the theory of constructive Galois connections in
this monadic style, giving insights into why the theory supports mechanized verification,
and foreshadowing key fragments of the metatheory we develop in Section 7.

The monadic structure of classical powersets is standard and is analogous to the
nondeterminism monad familiar to Haskell programmers. However, the model ℘(A) :=
A→ prop is the uncomputable nondeterminism monad and mirrors the use of set-
comprehensions on paper to describe uncomputable sets (specifications), rather than the
use of monad comprehensions in Haskell to describe computable sets (constructed values).

We generalize ℘() to a monotonic monad, similar to how we generalized powersets to
posets in Section 3.1. This results in monotonic versions of monad operators ret and bind:

ret : A →℘(A)
ret(x) := {x′ | x′ � x}

bind : ℘(A)× (A →℘(B)) →℘(B)
bind(X , f) := {y | x ∈ X ∧ y ∈ f (x)}

We adopt Moggi’s notation Moggi (1989) for monadic extension where bind(X , f) is writ-
ten f ∗(X), or just f ∗ for λX .f ∗(X). The monad and functor laws hold for downward-closed
powersets (despite the contravariant occurrence of A in the definition of ℘(A)), and we
mechanize these proofs in our Agda development.

We call the powerset type ℘(A) a specification effect because it has monadic struc-
ture, supports encoding arbitrary properties over values in A, and cannot be “escaped
from” in constructive logic, similar to the IO monad in Haskell. In classical mathemat-
ics, there is an isomorphism between singleton powersets ℘1(A) and the set A. However,
no such constructive mapping exists for ℘1(A)→ A. Such a function would decide arbi-
trary predicates in A→ prop to compute the A inside the singleton set. This observation,

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 19

that you can program inside ℘() monadically in constructive logic, but you can’t escape
the monad, is why we call it a specification effect.

Given the monadic structure for powersets, and the intuition that they encode a spec-
ification effect in constructive logic, we can recast the theory of constructive Galois
connections using monadic operators. To do this we define a helper operator which injects
“pure” functions into the “effectful” function space:

pure : (A → B) → (A →℘(B)) pure(f)(x) := ret(f (x))

We then rewrite (CGC-Corr) using ret and pure:

ret(x)⊆μ(y) ⇐⇒ pure(η)(x)⊆ ret(y) (CGM-Corr)

and we rewrite the expansive and reductive variant of the correspondence using ret, bind
(notated ∗) and pure:

ret(x)⊆μ∗(pure(η)(x)) (CGM-Exp)

pure(η)∗(μ(y))⊆ ret(y) (CGM-Red)

The four soundness and optimality conditions can also be written in monadic style; we
show the ημ soundness property here:

pure(η)∗(pure(f)∗(μ(y)))⊆ pure(f �)(y) (CGM-Snd/ημ)

The left-hand side of the ordering is the optimal specification for f �, just like
(CGP-Snd/ημ) but using monadic operators. The right-hand side of the ordering is f � lifted
to the monadic function space. The constructive calculation of succ� we showed earlier in
this section is a calculation of this form.

Both sides of the ordering (CGM-Snd/ημ) have the monadic type ℘(P); however,
they differ in whether or not they contain specification effects. The specification on the
left has effects—because it makes use of the interpretation function μ—meaning it uses
classical reasoning and can’t be executed. (The monadic bind operation isn’t contribut-
ing any effects; it merely propagates them.) The abstract interpreter on the right has no
effects—because it is simply the injection of a “pure” function into the monadic function
space—meaning it can be extracted and executed. The calculated abstract interpreter is
thus not only sound and optimal by construction, it is computable by construction.

Constructive Galois connections are empowering because they treat specification like an
effect, which optimal specifications ought to have, and which algorithmic abstract inter-
preters ought not to have. Using a monadic effect discipline we support calculations which
start with a specification effect, and where the “effect” is eliminated through the process
of calculation. The monad laws are crucial in canceling uses of ret with bind to arrive at a
final pure computation. For example, the first step in a derivation for (CGM-Snd/ημ) can
immediately simplify using monad laws from:

pure(η)∗(pure(f)∗(μ(y)))⊆ pure(f �)(y)

to:

pure(η ◦ f)∗(μ(y))⊆ pure(f �)(y)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

20 D. Darais and D. Van Horn

4 Case study 1: calculational AI

In this section, we apply constructive Galois connections to the Calculational Design
of a Generic Abstract Interpreter from Cousot’s monograph Cousot (1999). To our
knowledge, we achieve the first mechanically verified abstract interpreter derived by
calculus.

The key challenge in mechanizing the interpreter is supporting both abstraction (α) and
concretization (γ) mappings, which are required by the calculational approach. Classical
Galois connections do not support mechanization of α without the use of axioms, and
these required axioms block computation, preventing the extraction of verified algorithms.
In particular, the analysis algorithm that Cousot derives via calculation mentions α directly
in its definition, making it even more critical to move to a constructive framework if
extraction of an executable algorithm is desired.

To verify Cousot’s generic abstract interpreter we use constructive Galois connections,
which we described in Section 3 and formalize in Section 7. Using constructive Galois
connections we encode extraction (η) and interpretation (μ) mappings as constructive
analogs to α and γ , calculate an abstract interpreter for an imperative programming lan-
guage which is sound and computable by construction, and recover the original classical
Galois connection results through a systematic lifting.

First we describe the setup for the analyzer: the abstract syntax, the concrete semantics,
and the constructive Galois connections involved. Following the abstract interpretation
paradigm with constructive Galois connections, we design abstract interpreters for deno-
tation functions and semantics relations. We show a fragment of our Agda mechanization
which closely mirrors the pencil-and-paper proof, as well as Cousot’s original deriva-
tion. See Section 6 for a more in-depth tutorial on our mechanization approach, e.g., our
encodings for posets, monotonic functions, and proof combinators in Agda.

4.1 Concrete semantics

The WHILE language is an imperative programming language with arithmetic expressions,
variable assignment, and while-loops. We show the syntax for this language in Figure 1.
WHILE syntactically distinguishes arithmetic, Boolean, and command expressions. rand
is an arithmetic expression which can evaluate to any integer. Syntactic categories ⊕, �,
and � range over arithmetic, comparison, and Boolean operators, and are introduced to
simplify the presentation. The WHILE language is taken from Cousot’s monograph Cousot
(1999).

The concrete semantics of WHILE is sketched without full definition in Figure 2.
Denotation functions � �a, � �c, and � �b give semantics to arithmetic, comparison, and
Boolean operators. The semantics of compound syntactic expressions are given opera-
tionally with relations ⇓a, ⇓b, and �→c. Relational semantics are given for arithmetic and
Boolean expressions due to the nondeterminism of rand and for command expressions
due to the nontermination of while. (Other techniques for handling termination would
also suffice, e.g., Domains à la Scott Scott (1975).) These semantics serve as the starting
point for designing an abstract interpreter.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 21

Fig. 1. Case Study 1: WHILE Abstract Syntax.

Fig. 2. Case Study 1: WHILE Concrete Semantics

4.2 Abstract semantics with constructive Galois connections

Using abstract interpretation with constructive Galois connections, we design an abstract
semantics for WHILE in the following steps:

1. An abstraction for each set Z, B, and env.
2. An abstraction for each denotation function � �a, � �c and � �b.
3. An abstraction for each semantics relation ⇓a, ⇓b, and �→c.

Each abstract set forms a constructive Galois connection with its concrete counterpart.
Soundness criteria is synthesized for abstract functions and relations using constructive

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

22 D. Darais and D. Van Horn

Galois connection mappings. Finally, we verify and calculate abstract interpreters from
these specifications which are sound and computable by construction. We describe the
details of this process only for integers and environments (the sets Z and env), arithmetic
operators (the denotation function � �a), and arithmetic expressions (the semantics relation
⇓a). See the Agda development accompanying this paper for the full mechanization of
WHILE, and Sections 9, 10, and 11 for a detailed account of binary arithmetic operators and
conditional command expressions.

Abstracting integers. We design a simple sign abstraction for integers, although more
powerful abstractions are certainly possible Cousot (1999); Miné (2006). The final abstract
interpreter for WHILE is parameterized by any abstraction for integers, meaning another
abstraction can be plugged in without added proof effort.

The sign abstraction begins with three representative elements: neg, zer, and pos, rep-
resenting negative integers, the integer 0, and positive integers. To support representing
integers which could be negative or 0, negative or positive, or 0 or positive, etc., we design
a set which is complete w.r.t. these logical disjunctions:

i� ∈Z
� := {none, neg, zer, pos, negz, nzer, posz, any}

Z
� is given meaning through an interpretation function μz, the analog of a γ from the

classical Galois connection framework:

μz : Z
� →℘(Z)

μz(none) := {}
μz(neg) := {i | i < 0}
μz(zer) := {0}
μz(pos) := {i | i > 0}

μz(negz) := {i | i≤ 0}
μz(nzer) := {i | i �= 0}
μz(posz) := {i | i≥ 0}
μz(any) := {i | i ∈Z}

The partial ordering on abstract integers coincides with subset ordering under μz, that is,
i�1 �z i�2 ⇐⇒ μz(i�1)⊆μz(i�2):

none�z i� �z any
neg�z negz, nzer
zer�z negz, posz
pos�z nzer, posz

and we write i�1 � i�2 as the least-upper bound (join) of i�1 and i�2, e.g., neg � zero= negz.
To be a constructive Galois connection, μz forms a correspondence with a best abstraction
function ηz:

ηz : Z→Z
� ηz(n) :=

⎧⎪⎪⎨
⎪⎪⎩

neg if i < 0

zer if i= 0

pos if i > 0

and the constructive Galois connection correspondence (CGC-Corr) easily follows:

i ∈μz(i�) ⇐⇒ ηz(i)�z i�

The Classical Design. The concretization function γ in the classical design is
identical to the interpretation function using constructive Galois connections:

γ z : Z
� →℘(Z) γ z(i�) := μz(i�)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 23

The abstraction function is the key difference using classical Galois connections, which is
recovered through a lifting of our ηz:

αz : ℘(Z) →Z
� αz(I) :=

⊔
i∈I

ηz(i)

Abstraction functions of this form—℘(C) → A, for some concrete set C and abstract set
A—are representative of most Galois connections used in the literature for static ana-
lyzers. However, these abstraction functions are precisely the part of classical Galois
connections which inhibit mechanized verification. The extraction function ηz does not
manipulate powersets, does not inhibit mechanized verification, and recovers the original
nonconstructive αz through this standard lifting.

Abstracting environments. An abstract environment maps variables to abstract integers
rather than concrete integers.

ρ� ∈ env� := var→Z
�

env� is given meaning through an interpretation function μr:

μr : env� →℘(env) μr(ρ�) := {ρ | ∀x.ρ(x) ∈μz(ρ�(x))}
An abstract environment represents concrete environments that agree pointwise with some
represented integer in the codomain.

The order on abstract environments is the standard pointwise ordering and coincides
with subset ordering under μr, that is, ρ

�

1 �r ρ
�

2 ⇐⇒ μr(ρ�

1)⊆μr(ρ�

2):

ρ
�

1 �r ρ2 := ∀x.ρ�

1(x)�z ρ
�

2(x)

To form a constructive Galois connection, μr forms a correspondence with a best
abstraction function ηr:

ηr : env→ env� ηr(ρ) := λx.ηz(ρ(x))

and the constructive Galois connection correspondence (CGC-Corr) easily follows:

ρ ∈μr(ρ�) ⇐⇒ ηr(ρ)�r ρ�

The Classical Design. To contrast with Cousot’s original design using classical
abstract interpretation, the key difference is again the abstraction function. The abstraction
function using classical Galois connections is:

αr : ℘(env) → env� αr(R) := λx.αz({ρ(x) | ρ ∈ R})
which is also not amenable to mechanized verification.

Abstracting functions. After designing constructive Galois connections for Z and env,
we define what it means for � �a�, some abstract denotation for arithmetic operators, to
be a sound abstraction of � �a, its concrete counterpart. This is done through a specifica-
tion induced by mappings η and μ, analogously to how specifications are induced using
classical Galois connections.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

24 D. Darais and D. Van Horn

The specification which encodes soundness and optimality for � �a� is generated using
the constructive Galois connection for Z:

〈i1, i2〉 ∈μz×z(i�1, i�2)∧ 〈i�′1 , i�′2 〉 � ηz(�ae�a(i1, i2))⇔〈i�′1 , i�′2 〉 � �ae�a�(i�1, i�2)

(See CGP-Opt/ημ [optimal] in Section 3 for the origin of this equation.) For � �a�, we pos-
tulate its definition and verify its correctness post-facto using the above property, although
we omit the proof details here. The definition of � �a� is standard, and returns none in the
case of division by zero. We show only the definition of + here:

� �a� : aexp→Z
� ×Z

� →Z
� �+�a�(i�1, i�2) :=

⊔

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pos if pos�z i�1 ∨ pos�z i�2
neg if neg�z i�1 ∨ neg�z i�2
zer if zer�z i�1 ∧ zer�z i�2
zer if pos�z i�1 ∧ neg�z i�2
zer if neg�z i�1 ∧ pos�z i�2

The definition follows the intuition of considering all cases of polarities for i�1 and i�2.
The first case can be read “if either argument could be positive, then the result could be
positive,” and the third case “if both arguments could be zero, then the result could be
zero.” The join outside the cases gives the “smallest” results which is consistent with each
case. For example,

�+�a�(posz, zero)=⊔{pos, none, zer, none, none} = posz

The Classical Design. To contrast with Cousot’s original design using classical
abstract interpretation, the key difference is that we avoid powerset liftings altogether.
Using classical Galois connections, the concrete denotation function must be lifted to
powersets:

� �a
℘ : aexp→℘(Z×Z)→℘(Z) �ae�a

℘(II) := {�ae�a(i1, i2) | 〈i1, i2〉 ∈ II}
and then � �a� is proven correct w.r.t. this lifting using αz and γ z:

αz(�ae�a
℘(γ z(i�1, i�2)))= �ae�a�(i�1, i�2)

This property cannot be mechanized without axioms because αz is nonconstructive.
Furthermore, the proof involves additional powerset boilerplate reasoning, which is not
present in our mechanization of correctness for � �a� using constructive Galois connec-
tions. The state-of-the art approach of “γ -only” verification would instead mechanize the
γ γ variant of correctness:

�ae�a
℘(γ z(i�1, i�2))= γ z(�ae�a�(i�1, i�2))

which is similar to our μμ rule:

〈i1, i2〉 ∈μz×z(i�1, i�2)∧ 〈i′1, i′2〉 = �ae�a(i1, i2)⇔〈i′1, i′2〉 ∈μz(�ae�a�(i�1, i�2))

The benefit of our approach is that soundness and optimality properties which also men-
tion extraction (η) can also be mechanized, like calculating abstract interpreters from their
specification.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 25

Abstracting relations. The verification of an abstract interpreter for relations is similar to
the design for functions: induce a specification using the constructive Galois connection,
and prove correctness w.r.t. the induced spec. The relations we abstract are ⇓a, ⇓b, and
�→c, and we call their abstract interpreters A�, B�, and C�. Rather than postulating the
definitions of the abstract interpreters, we calculate them from their specifications, the
results of which are sound and computable by construction. The arithmetic and Boolean
abstract interpreters are functions from abstract environments to abstract integers, and the
abstract interpreter for commands computes the next abstract transition states of execution.
(We only present select calculations for A�; see our accompanying Agda development for
each calculation in mechanized form, and Sections 9, 10, and 11 for detailed calculations
of binary arithmetic operators and conditional command expressions.) A� has type:

A�[] : aexp→ env� →Z
�

To induce a spec for A�, we first revisit the concrete semantics relation as a powerset-
valued function, which we call A:

A[] : aexp→ env→℘(Z) A[ae](ρ) := {i | ρ ae⇓a i}
The induced spec for A� is generated with the monadic bind operator, which we notate
using Moggi’s star notation ∗:

pure(ηz)∗(A[ae]∗(μr(ρ�)))⊆ pure(A�[ae])(ρ�)

which unfolds to:

{ηz(i) | ρ ∈μr(ρ�)∧ ρ ae⇓a i} ⊆ {A�[ae](ρ�)}
To calculate A�, we reason equationally from the spec on the left towards the singleton
set on the right, and declare the result the definition of A�. We do this by case analysis on
ae; we show the cases for ae= rand and ae= x in Figure 3. Each calculation can also be
written in monadic form, which is the style we mechanize; we repeat the variable case in
monadic form in the figure.

Mechanized calculation. Our Agda calculation of A� strongly resembles the on-paper
monadic one. We show the Agda proof code for abstract variable references in Figure 4.
The first line is the top level definition site for the derivation of A� for the Var case. The
proof-mode term is part of our “proof-mode” library which gives support for calcula-
tional reasoning in the form of Agda proof combinators with mixfix syntax. Statements
surrounded by double square brackets [[e]] restate the current proof state, which Agda
will check is correct. Reasoning steps are employed through � e � terms, which trans-
form the proof state from the previous form to the next. Equality steps (which do not lose
precision) are notated � e � [≈], whereas ordered steps (which may lose precision) are
notated � e � [�]. The term [focus-right [·] of e] focuses the goal to the right of the
outermost application, scoped between begin and end.

The mechanized proof proceeds by focusing to A[x]∗(μr(ρ�)) (Line 03). The proof state
is rewritten via an equality based on the definition of A[x] (Line 05), which corresponds
to the first step of the on-paper derivation. (The Agda expression pure lookup[x] is
identical to pure(λρ.ρ(x)). We don’t write the literal lambda in the Agda because each
lambda used in the calculation must come with a proof of monotonicity, which we instead

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

26 D. Darais and D. Van Horn

Fig. 3. Case Study 1: Select Constructive Galois Connection Calculations

Fig. 4. Case Study 1: Constructive Galois Connection Calculations in Agda

provide at the definition site of the helper operation lookup[].) The next step of the Agda
calculation (Line 07) replaces pure · lookup[x] " μr with an over-approximation
μz " pure · lookup�[x] (where " is the monadic composition operator) justified
by a separate small proof named lookup/μr/defn, and which corresponds to the second
step of the on-paper derivation. The Agda version includes an extra step (lines 09–10) to
explicitly reduce the monadic expression:

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 27

μz ∗ · (pure · lookup�[x] · ρ�) ≡ μz · (lookup�[x] · ρ�)

using one of the monad laws (the right-unit law, which is named ∗/right-unit in Agda),
whereas this step is implicit in the on-paper derivation. The last step is to apply the reduc-
tive property of the constructive Galois connection (Line 14), after which we define A�[]
through unification in Agda with the resulting definition.

Using constructive Galois connections, our mechanized calculation closely follows
Cousot’s classical one, uses both η and μ mappings, and results in a verified, executable
static analyzer. Such a result is not possible using classical Galois connections, due to the
appearance of α inside the calculated algorithm, and the inability to encode α functions
constructively.

We complete the full calculation of Cousot’s generic abstract interpreter for WHILE in
Agda as supplemental material to this paper, where the resulting interpreter is both sound
and computable by construction. We also provide our “proof-mode” library which supports
general calculational reasoning with posets.

The Classical Design. Classically, one first designs a powerset lifting of the concrete
semantics, called a collecting semantics:

A℘[] : aexp→℘(env) →℘(Z) A℘[ae](R) := {i | ρ ∈ R∧ ρ ae⇓a i}
The classical soundness specification for A�[ae](ρ�) is then:

αz(A℘[ae](γ r(ρ�)))�A�[ae](ρ�)

However, as usual, the abstraction αz cannot be mechanized effectively, preventing a
mechanized derivation of A� by calculus.

5 Case study 2: gradual type systems

Recent work in metatheory for gradual type systems (Garcia et al., 2016) shows how a
Galois connection discipline can guide the design of gradual typing systems. Starting with
a Galois connection between precise and gradual types, both the static and dynamic seman-
tics of the gradual language are derived systematically. This technique is called AGT.

The design presented by Garcia et al. is to begin with a precise type system, like the sim-
ply typed lambda calculus, and add a new type (?) which functions as the top element (�)
in the lattice of type precision. The precise typing rules are presented with meta-operators
for subtyping (<:) and for the join operator in the subtyping lattice (

..∨). The gradual type

system is then written using abstract variants of subtyping and join (<:� and
..∨�

) which are
proven correct w.r.t. specifications induced by the Galois connection.

The precise type system. The AGT paper describes two designs for gradual type systems
in increasing complexity. We chose to mechanize a hybrid of the two which is simple,
like the first design, yet still exercises key challenges addressed by the second. We also
made slight modifications to the design at parts to make mechanization easier, but without
changing the nature of the system.

The precise type system we mechanized is the simply typed lambda calculus with
Booleans, and top and bottom elements for a subtyping lattice, which we call any and
none:

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

28 D. Darais and D. Van Horn

Fig. 5. Case Study 2: Syntax Directed Precise Type System

τ ∈ type ::= none | B | τ → τ | any
Terms are standard Boolean terms with if/then/else conditionals, lambda expressions, and
a type ascription term e :: τ :

e ∈ exp ::= true | false | if e then e else e | x | λx.e | e(e) | e :: τ

The first design in the AGT paper does not involve subtyping, and their second design
incorporates record types with width and depth subtyping. By just focusing on none
and any, we exercise the subtyping machinery of their approach without the blowup in
complexity from formalizing record types.

The typing rules in AGT are written in strictly syntax-directed form, with explicit use
of subtyping in rule hypotheses. In Figure 5, we show three precise typing rules for if-
statements, application, and coercion. The subtyping lattice in the precise system is the
“safe for substitution” lattice, and well-typed programs enjoy progress and preservation.

Gradual types. The essence of AGT is to design a gradual type system by abstract inter-
pretation of the precise type system. To do this, a new top element is added to the precise
type system, although rather than representing the top of the subtyping lattice like any, it
represents the top of the precision lattice, and is notated ?:

τ � ∈ type� ::= none | B | τ � → τ � | any | ?

The partial ordering has ? at the top (τ � � ?) and is otherwise discrete, and arrow types are
monotonic (covariant) in both the domain and codomain:

(τ �

11 → τ
�

21)� (τ �

12 → τ
�

22) ⇐⇒ τ
�

11 � τ
�

12 ∧ τ
�

21 � τ
�

22

Just as in our other designs by abstract interpretation, type� is given meaning by an
interpretation function μ, which is the constructive analog of a classical concretization
function γ :

μ : type� →℘(type)
μ(τ �) := {τ } when τ � = τ ∈ {none, B, any}

μ(τ �

1 → τ
�

2) := {τ1 → τ2 | τ1 ∈μ(τ �

1)∧ τ2 ∈μ(τ �

2)}
μ(?) := {τ | τ ∈ type}

The extraction function η is, remarkably, the identity function:

η : type→ type� η(τ)= τ

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 29

and the constructive Galois correspondence (CGC-Corr) easily follows:

τ ∈μ(τ �) ⇐⇒ η(τ)� τ �

Constructive Galois connections in Agda. In Agda, the interpretation function μ takes
the form of an inductively defined relation:

data ∈μt[] : type→ type�→ Set where
� : ∀ {τ }→ τ ∈μt[�]
Any : Any ∈μt[Any]
None : None ∈μt[None]
〈B〉 : 〈B〉 ∈μt[〈B〉]
〈→〉 : ∀ {τ1 τ2 τ1� τ2�}
→ τ1 ∈μt[τ1�]
→ τ2 ∈μt[τ2�]
→ (τ1 〈→〉 τ2) ∈μt[τ1� 〈→〉 τ2�]

and the extraction function η is the identity injection from precise types to gradual types,
because in Agda type is not a subtype of type�, rather they are disjoint types:

ηt : type→ type�
ηt Any= Any
ηt None= None
ηt 〈B〉 = 〈B〉
ηt (τ1 〈→〉 τ2)= ηt τ1 〈→〉 ηt τ2

Gradual operators. Given the constructive Galois connection between gradual and pre-
cise types, we synthesize specifications for abstract analogs of subtyping (<:) and the

subtyping join operator (
..∨), and relate them to their abstractions (<:� and

..∨�
). In the AGT

paper, the specification for abstract subtyping is generated by predicate lifting on the RHS
of the following bi-implication:

τ
�

1 <:� τ
�

2 ⇐⇒ τ1 <: τ2 for some 〈τ1, τ2〉 ∈ 〈μ(τ �

1), μ(τ �

2)〉
The specification for abstract joins is generated via standard pre- and post-composition
with extraction (η) and interpretation (μ) functions on the RHS of the following equality:

τ
�

1

..∨�
τ

�

2 =
⊔
{η(τ1

..∨ τ2) | τ1 ∈μ(τ �

1), τ2 ∈μ(τ �

2)}
In Agda we define abstract subtyping and abstract join following the AGT paper, and
prove them sound w.r.t. their induced specifications. In particular, the above specifications
guarantee that the gradual type ? will satisfy the standard rules for gradual subtyping and
join:

? <:� τ � τ � <:� ? ?
..∨�

τ � = τ �
..∨�

?= ?

The first two gradual subtyping rules for ? are surprising to those unfamiliar with the
literature on gradual typing. In the context of AGT, they are justified by the specification
induced by Galois connection.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

30 D. Darais and D. Van Horn

Fig. 6. Case Study 2: Systematically Constructed Gradual Type System

? <:� τ �

⇔ τ1 <: τ2 for some 〈τ1, τ2〉 ∈ 〈μ(?), μ(τ �)〉 � specification for <:� �

⇐ there exists τ s.t. 〈τ , τ 〉 ∈ 〈μ(?), μ(τ �)〉 � τ <: τ for all τ �

⇔ there exists τ s.t. τ ∈μ(τ �) � τ ∈μ(?) for all τ �

⇔ true � μ(τ �) �=∅ for all τ � �

Gradual metatheory. Using AGT, the gradual type system is a syntactic analog to the
precise one but with gradual types and operators, which we show in Figure 6. Using this
system, and constructive Galois connections, we mechanize in Agda three key metathe-
ory results from the AGT paper. We mechanize (1) equivalence for fully annotated terms
(FAT), which states that any term e which is typeable at τ under the precise system is
also typeable at τ under the gradual system. We mechanize (2) embedding of dynamic
language terms (EDL), which states that any closed untyped term is typeable under the
gradual system at type ? via an embedding $ % that annotates sub-terms with ?. Finally,
we mechanize (3) the gradual guarantee (GG), which states that decreasing the precision
of types (by going higher in the lattice) does not affect the typeability of any term under
the gradual system:

 e : τ ⇐⇒ G e : τ (FAT)

closed(e) =⇒ G $e% : ? (EDL)

 G e�

1 : τ
�

1 ∧ e�

1 � e�

2 =⇒ G e�

2 : τ
�

2 ∧ τ
�

1 � τ
�

2 (GG)

6 Mechanization in Agda

In this section, we guide the reader through the details of our mechanization approach in
Agda, and highlight areas of mechanization that were challenging or otherwise of interest.
The mechanization can be found at github.com/plum-umd/cgc.

Our mechanization consists of five Agda modules organized into folders: a custom core
library (folder/Prelude), a module for manipulating partially ordered sets and downward
closed powersets (folder/Poset), a module for Galois connections, both classical and
constructive (/Poset/GaloisConnection), the first case study of a calculating a generic

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 31

Fig. 7. Preorders, Partial Orders, and Posets in Agda

abstract interpreter (folder/CDGAI), and the second case study of verifying a gradual type
system via abstract interpretation with constructive Galois connections (folder/ADI).

In the rest of this section we show code snippets which are slightly simplified from the
exact code in the project for the purposes of presentation, e.g., we inline some definitions
and omit universe annotations to Agda datatypes.

Posets. We define partial orders in Agda first as preorders. These preorders induce an
equivalence relation, and the partial order we work with is the one induced by the preorder
w.r.t. its induced equivalence relation. We encode preorders as an Agda-dependent record
which contains the carrier relation as well as proofs of preorder laws, as shown in Figure 7.

The line open PreOrder {{...}} public makes this record a candidate for type-
class resolution, meaning a canonical instance of PreOrder X will be selected automati-
cally when an implicit argument is needed at that type. Implicit arguments which trigger
typeclass resolution are written {{_ : PreOrder X}}. We show the induced equivalence
relation _&_ and the antisymmetry law for the partial order induced by _�_ w.r.t. _&_.

We encode posets in Agda as a wrapper datatype Poset around a carrier set and its
PreOrder record where the wrapping is witnessed by ⇑, also shown in Figure 7. Elements
of partially ordered sets are encoded as a wrapper around elements of the carrier set, that
is 〈 x 〉 : ⟪⇑ A ⟫ when x : A. We do this wrapping to improve typechecking, e.g., Agda
sometimes has difficulty resolving implicit arguments when x : A, y : A, PreOrder A
is in scope, and x � y appears in the type of a term (e.g., like _�[�]_ shown previously).
However, these arguments are easily inferred by Agda when x � y appears in the type of
a term and x : ⟪ A ⟫, y : ⟪ A ⟫.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

32 D. Darais and D. Van Horn

Fig. 8. Monotonic Functions and Downward Closed Powersets in Agda

Monotonic functions and powersets. We encode monotonic functions as a native Agda
function paired with an explicit proof of monotonicity, as shown in Figure 8. The ordering
relation on functions is the pointwise ordering. We define notation for the lifting of mono-
tonic functions from an Agda Set into an Agda Poset. Finally, we introduce notation for
applying wrapped monotonic functions to wrapped elements of carrier sets.

We do this wrapping to control when native Agda function definitions are available for
reduction during Agda’s typechecking phase. During our abstract interpreter calculations,
the Agda typechecker must unify native Agda functions for definitional equality, e.g., as
justification for a rewrite step. By wrapping functions, this reduction will not happen for
functions supplied as parameters unless the function is explicitly unwrapped. For example,
the expression f · x · y is syntactically a monotonic function applied to two arguments, and
will remain neutral during typechecking because of the wrapping when f is a parameter.
However, if we unwrap f via pattern matching [λ f-native] = f (or did not used the
wrapped encoding), this expression would reduce to f-native x y, which discards the
fact that f-native is monotonic.

We encode downward closed powersets as Agda as an Agda characteristic function into
Set paired with an explicit proof of antitonicity, also shown in Figure 8. The ordering

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 33

Fig. 9. Classical and Constructive Galois Connections in Agda

relation on powersets is the pointwise ordering. We define notation for the lifting of down-
ward closed powersets from an Agda Set into an Agda Poset. Finally, we introduce
notation for element containment between a wrapped carrier set element and a wrapped
powerset characteristic function.

Like monotonic functions, we do this wrapping to control when native Agda predicates
are available for reduction during Agda’s typechecking phase. For example, the expres-
sion x ∈ ϕ is syntactically a proposition that x is an element of the downward closed
powerset ϕ, where ϕ is a parameter. However, if we unwrap ϕ via pattern matching
[ω ϕ-native] = ϕ, this expression would reduce to ϕ-native x, which discards the
fact that ϕ is antitonic.

Galois connections. Classical Galois connections are encoded as a dependent record con-
taining both abstraction and concretization mapping, as well as expansive and reductive
laws. Constructive Galois connections are encoded analogously, but for extraction and
interpretation variants of abstraction and concretization. Both of these encodings are shown
in Figure 9.

We define the identity function id and function composition _◦_ as lifted to the mono-
tonic function space ⟪ A B ⟫ (as opposed to native Agda functions A → B). return
and pure are defined for the downward closed powerset monad, and ⊗ is monadic
composition.

Proof mode library. To facilitate calculational style proofs, we develop a custom proof
mode library, as shown in Figure 10. Our actual implementation is more generic (and
therefore complicated) than what we show here, which has been simplified greatly for the
sake of presentation. This library is loosely inspired by the PreorderReasoning library
in Agda’s standard library Danielsson et al. (2011).2 Other than the superficial differences
in syntax, our library improves upon PreorderReasoning with the ability to easily focus
proofs inside of monotonic contexts.

2 https://agda.github.io/agda-stdlib/Relation.Binary.PreorderReasoning.html.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://agda.github.io/agda-stdlib/Relation.Binary.PreorderReasoning.html
https://doi.org/10.1017/S0956796819000066

34 D. Darais and D. Van Horn

Fig. 10. Proof Mode Library in Agda

We define a new type for “proof mode” calculations [�] x �→ y as the type of an
ordered derivation starting from x and concluding with y, via a chain of equational and/or
ordered reasoning. Derivations begin with [proof-mode] do ε � where ε is some deriva-
tion term written in Agda using the proof mode library. We write proof mode combinators
inside of an Agda abstract block so that they are not reduced to their definitions during
interactive type checking. For example, writing [proof-mode] do ? � in Agda’s inter-
active mode will create a hole in place of ? and display the type of the hole to the user,
which will be [�] x �→ y rather than its unfolding x � y. Ultimately, this proof mode
library is just syntactic convenience for dealing with long chains of transitive and nested
ordered reasoning.

The syntax _�_ composes two chains of reasoning and is designed with interactive use
in mind. If the interactive goal is [�] x �→ z and the user has a sub-derivation ε : [�] x �→
y, they can write in the hole ε �−?− which will display the new proof state as [�] y �→
z. If there are unresolved meta-variables in the proof state, the user can write [[x]] �
? which will succeed if the proof state can be unified with [�] x �→ z for some z

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 35

(which may still contain metas). Reasoning steps may proceed by definitional equality
�ε � [≡] when ε : x ≡ y and the proof state is [�] x �→ z, resulting in a new proof
state [�] y �→ v. Analogously, they can also proceed by equivalence �ε � [≈] when
ε : x ≈ y, and by weakening �ε � [�] when ε : x � y.

The proof library supports focusing inside the outer-term of the current proof state with
[focus-in f] begin ε end. This combinator is used when the current proof state is
a function application f · x , and the user wants to proceed by ordered reasoning on the
argument x, which is valid due to the monotonicity of f. Two variants are also provided for
2-ary functions, one which focuses on the first (left) argument, and another which focuses
on the second (right): [focus-left f of y] or [focus-right f of x] when the
current proof state is f · x · y.

It is common when using the proof mode library to begin a derivation with type [�] x �→
y where x is fully resolved—e.g., as induced specification for an abstract interpreter—but
where y is an unresolved metavariable—e.g., the implementation of the abstract interpreter
which will be discovered via the process of calculation. For example, a common setup is
as follows:

f� : ⟪ A B ⟫

f� = ?

calc : ∀ {x}→ α· f · x � pure · f�· x
calc = [proof-mode]

do [[α· f · x]]

� [[(pure ·η) * · (f * · (μ· x))]]

� ?

� [[pure f�· x]]

�
where the hole in the definition of calc (written ?) must be filled in with a derivation that
calculates from the induced specification to some pure Agda function, which is guaranteed
to carry algorithmic content. Once the derivation is complete, there will be some concrete
term that will be unified with f� within the definition of calc. The user can then ask Agda
to automatically fill in the definition of f� above using the interactive “auto” command in
the Emacs frontend, which Agda will solve via unification with the derivation term calc.

7 Constructive Galois connection metatheory

In this section, we develop the full metatheory of constructive Galois connection and
prove precise claims about their relationship to classical Galois connections. We develop
the metatheory of constructive Galois connections as an adjunction between posets with
powerset-Kleisli adjoint functors. This is in contrast to classical Galois connections which
come from an identical setup, but with the monotonic function space as adjoint functors, as
shown in Figure 11. See Section 13 for a brief discussion on connections to more general
category-theoretic constructions than those shown here.

We connect constructive to classical Galois connections through an isomorphism
between a subset of classical to the entire space of constructive. To form this isomorphism

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

36 D. Darais and D. Van Horn

Fig. 11. Comparison of Constructive and Classical Galois Connection Adjunctions

Fig. 12. Relationship Between Classical, Kleisli, and Constructive Galois Connections

we introduce an intermediate structure, Kleisli Galois connections, which we show are
isomorphic to the classical subset, and isomorphic to constructive ones. This second iso-
morphism uses the constructive theorem of countable choice, as depicted in Figure 12.
Both isomorphisms are themselves constructive, meaning they are suitable for use in
mechanized verification with program extraction.

Kleisli Galois connections are introduced for two reasons. First, they are the “natural”
structure generated by a bi-adjunction with powerset-Kleisli adjoint functors. It is therefore
easier to defend Kleisli Galois connections as being a proper abstract interpretation frame-
work because they are merely adjunctions, just like classical Galois connections. This is
in contrast to constructive Galois connections which do not obviously follow an adjunc-
tion discipline. Second, we prove a surprising fact about Kleisli Galois connections, which
is that they are isomorphic to constructive Galois connections. The insight gained here is
that the monadic effect type on the abstraction side of the adjunction for Kleisli Galois
connections (κα : C →℘(A)) is provably benign, meaning it may as well be a pure func-
tion. Constructive Galois connections are Kleisli Galois connections where the abstraction
function is written as a pure function without any loss of generality.

These results—in particular the isomorphism between Kleisli and constructive Galois
connections—hold in any meta-mathematical setting where the axiom of countable choice
is sound, e.g., Zermelo-Fraenkel set theory with Choice (ZFC), constructive set the-
ory, intentional type theory (incl. with propositional truncation, e.g., Coq’s Prop), and
homotopy type theory (incl. with propositional truncation). However, only in constructive

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 37

settings without the use of propositional truncation is the isomorphism fully constructive
and supportive of algorithmic extraction.

Classical Galois connections. We review classical Galois connections in Figure 11.
A Galois connection between posets C and A contains two adjoint functors α and
γ which share a correspondence. An equivalent formulation of the correspondence is
two unit equations called expansive and reductive. Abstract interpreters are sound by
over-approximating a specification induced by α and γ .

Powerset monad. See Sections 3.1 and 3.3 for the downward-closure monotonicity prop-
erty, and monad definitions and notation for the monotonic powerset monad. The monad
operators obey standard monad laws. We introduce one new operator for monadic function
composition: (g � f)(x) := g∗(f (x)).

A note about constructivity. We described the monad operators—return and bind—in
Section 3.3; we repeat the definitions here:

ret : A →℘(A)
ret(x) := {x′ | x′ � x}

bind : ℘(A)× (A →℘(B)) →℘(B)
bind(X , f) := {y | x ∈ X ∧ y ∈ f (x)}

Hidden in the definition of bind is an existentially quantified variable x; an explicit notation
for this would be as follows:

bind(X , f) := {y | ∃x ∈ X . y ∈ f (x)}
Because we interpret this existential in a constructive framework, an element of the pow-
erset bind(X , f) contains the witness value x ∈ X in addition to a proof of y ∈ f (x). It is
for this reason that we say our encoding of the specification effect has computational con-
tent. This constructive interpretation of the existential quantifier in the definition of bind
is crucial to our results which show an isomorphism between Kleisli and classical Galois
connections. If we were to encode bind using a classical existential quantifier (encoded
constructively as a double negation):

bind(X , f) := {y | ¬¬(∃x ∈ X . y ∈ f (x))}
This would “strengthen” the space of Kleisli Galois connections to be strictly more expres-
sive, and include adjoints 〈κα, κγ 〉 which do not correspond to any constructive Galois
connection. The return function would also need to be redefined with double negation in
order for monadic laws to hold:

ret(x) := {x′ | ¬¬(x′ � x)}
Using this classical existential quantifier (or a “merely exists” quantifier via propositional
truncation in Homotopy Type Theory Univalent Foundations Program (2013)) would
result in a more powerful theory of Galois connections; however, we leave a precise
characterization of Kleisli Galois connections which use a nonconstructive existential as
future work—both in terms of added expressiveness and any practical implications on
mechanization techniques.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

38 D. Darais and D. Van Horn

We provide two empirical observations regarding our use of a constructive existential
for the specification effect modality: (1) all of our case studies are completed successfully
using a constructive existential, and we are not aware of specifications used for abstract
interpreters in practice that would warrant the need to relax the existential quantifier to a
classical or truncated modality; and (2) a classical existential would result in much more
cumbersome proofs, as each proof is no longer an idiomatic straightforward induction, but
now a proof by contradiction. A “merely exists” quantifier would strike a balance between
expressiveness and idiomatic proofs; however, the ability to recover an extraction func-
tion η from a Kleisli Galois connection is lost in this setting w.r.t. the purely constructive
setting.

Kleisli Galois connections. We summarize Kleisli Galois connections in Figure 11.
Kleisli Galois connections are analogous to classical ones, but with monadic analogs to α

and γ , and monadic identity and composition operators ret and � in place of the function
space identity and composition operators id and ◦.

Although the type of κα suggests that Kleisli Galois connections are more general
than constructive Galois connections, there is actually a pure version of κα hidden in the
formulation of expansiveness for Kleisli Galois connections. As a result, Kleisli Galois
connections are equivalent to constructive Galois connections and the additional general-
ity in the type of κα cannot actually be used. In what follows, we demonstrate a formal
proof of this fact in the form of an isomorphism.

Kleisli to classical and Back. All Kleisli Galois connections 〈κα, κγ 〉 between C and
A can be lifted to recover a classical Galois connection 〈α, γ 〉 between ℘(C) and ℘(A)
through a monadic lifting operator on Kleisli Galois connections 〈κα, κγ 〉∗:

〈α, γ 〉� 〈κα, κγ 〉∗ := 〈κα∗, κγ ∗〉
This lifting is sound, meaning Kleisli soundness and optimality results can be translated to
classical ones.

Theorem 1 (KGC-Sound AGDA�). For any Kleisli relationship of soundness between f and
f �, that is κα � f � κγ � f �, its lifting to classical is also sound, that is α ◦ f ∗ ◦ γ � f �∗

where 〈α, γ 〉 = 〈κα, κγ 〉∗, and likewise for optimality relationships α � f � κy= f �.

This lifting is also complete, meaning classical Galois connection soundness and
optimality results can always be translated to Kleisli ones, when α and γ are of lifted form.

Theorem 2 (KGC-Complete AGDA�). For any classical relationship of soundness between
f ∗ and f �∗, that is α ◦ f ∗ ◦ γ � f �∗, its lowering to Kleisli is also sound when
〈α, γ 〉 = 〈κα, κγ 〉∗, that is κα � f � κγ � f �, and likewise for optimality relationships
α ◦ f ∗ ◦ γ = f �∗.

Due to soundness and completeness, one can work with the simpler setup of Kleisli
Galois connections without any loss of generality. The setup is simpler in cases when the
classical Galois connection is the lifting of a Kleisli Galois connection, because Kleisli

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 39

Galois connection theorems only quantify over individual elements rather than elements
of powersets. For example, the soundness criteria κα � f � κγ � f � is proved by showing
κα∗(f ∗(κγ (y)))⊆ f �(y) for an arbitrary element y : A, whereas in the classical proof (when
derived from a lifted Kleisli setup) one must show κα∗(f ∗(κγ ∗(Y)))⊆ f �∗(Y) for arbitrary
sets Y : ℘(A).

Constructive Galois connections. Constructive Galois connections are a restriction of
Kleisli Galois connections where the abstraction mapping is a pure rather than monadic
function. We call the left adjoint extraction, notated η, and the right adjoint interpretation,
notated μ. The constructive Galois connection correspondence, alternative expansive and
reductive formulation of the correspondence, and soundness and optimality criteria are
identical to Kleisli Galois connections where 〈κα, κγ 〉 = 〈pure(η), μ〉.

Constructive to Kleisli and Back. Our main theorem which justifies the soundness and
completeness of constructive Galois connections is an isomorphism between constructive
and Kleisli Galois connections. The easy direction is soundness, where a Kleisli Galois
connection is formed by defining 〈κα, κγ 〉 = 〈pure(η), μ〉. Soundness and optimality
theorems are then lifted from constructive to Kleisli without modification.

Theorem 3 (CGC-Sound AGDA�). For any constructive relationship of soundness between f
and f �, that is pure(η) � f �μ� f �, its lifting to Kleisli is sound, that is κα � f � κγ � f �

where 〈κα, κγ 〉 = 〈pure(η), μ〉, and likewise for optimality relationships pure(η) � f �
μ= f �.

The other direction, completeness, is much more surprising. First, we establish a
lowering for Kleisli Galois connections.

Lemma 1 (CGC-Induce AGDA�). For every Kleisli Galois connection 〈κα, κγ 〉, there exists
a constructive Galois connection 〈η, μ〉 where 〈pure(η), μ〉 = 〈κα, κγ 〉.

Proof Because the mapping from Kleisli to constructive is interesting we provide a proof,
which to our knowledge is novel. The proof builds a constructive Galois connection
〈η, μ〉 from a Kleisli 〈κα, κγ 〉 by exploiting the Kleisli correspondence and making use
of the axiom of countable choice (which is a theorem in constructive logic). To turn
an arbitrary Kleisli Galois connection into a constructive one, we show that the effect
on κα : C →℘(A) is benign, or in other words, that there exists some η such that
κα= pure(η).

We first expand the Kleisli expansive property, unfolding definitions of � and ret, to get
an equivalent logical statement:

∀x.∃y.y ∈ κα(x)∧ x ∈ κγ (y) (KGC-Exp)

Statements of this form can be used in conjunction with an axiom of countable choice,
which is:

(∀x.∃y.R(x, y)) =⇒ ∃f .∀x.R(x, f (x)) (AxChoice)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

40 D. Darais and D. Van Horn

This theorem is admitted as an axiom in classical mathematics, but in constructive
logic—the setting used for extracting verified algorithms–(AxChoice) is definable as a
theorem, due to the computational interpretation of logical connectives ∀ and ∃. (The for-
mula AxChoice technically changes meaning when embedded in constructive logic, and
is no longer equivalent to the classical axiom of choice once interpreted constructively.
However, the construction is still valid in establishing the isomorphism in a classical
setting.) We define (countable) (AxChoice) as a theorem in Agda without trouble:

choice : ∀ {A B} {R : A → B → Set}
→ (∀ x → ∃ y st R x y)
→ (∃ f st ∀ x → R x (f x))

choice P = 〈∃ (λ x → π1 (P x)) , (λ x → π2 (P x)) 〉
Applying (AxChoice) to (KGC-Exp) then gives:

∃η.∀x.η(x) ∈ κα(x)∧ x ∈ κγ (η(x)) (ExpChoice)

which proves the existence of a pure function η : C → A.
In order to form a constructive Galois connection η and μ must satisfy the correspon-

dence, which we prove in split form:

x ∈μ(η(x)) (CGC-Exp)

x ∈μ(y) =⇒ η(x)� y (CGC-Red)

The expansive property is immediate from the second conjunct in (ExpChoice). The
reductive property follows from the Kleisli reductive property:

x ∈ κγ (y)∧ y′ ∈ κα(x) =⇒ y′ � y (KGC-Red)

The constructive variant of reductive is proved by satisfying the first two premises of
(KGC-Red), where x ∈ κγ (y) is by assumption and y′ ∈ κα(x) is by the first conjunct in
(ExpChoice).

So far we have shown that for a Kleisli Galois connection 〈κα, κγ 〉, there exists a
constructive Galois connection 〈η, μ〉 where μ= κγ . However, we have yet to show
pure(η)= κα. To show this, we prove an analog of a standard result for classical Galois
connections: that α and γ uniquely determine each other.

Lemma 2 (Unique Abstraction AGDA�). For any two Kleisli Galois connections 〈κα1, κγ1〉
and 〈κα2, κγ2〉, κα1 = κα2 iff κγ1 = κγ2

We then conclude pure(η)= κα as a consequence of the above lemma and the fact that
μ= κγ . �

Given the above mapping from Kleisli Galois connections to constructive ones, we
prove the completeness of this mapping.

Theorem 4 (CGC-Complete AGDA�). For any Kleisli relationship of soundness between f and
f �, that is κα � f � κγ � f �, its lowering to constructive is also sound, that is pure(η) �
f �μ� f � where 〈η, μ〉 is induced, and likewise for optimality relationships κα � f �
κγ = f �.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 41

Wrapping up. In this section, we showed that constructive Galois connections are sound
w.r.t. classical Galois connections, and complete w.r.t. the subset of classical Galois con-
nections recovered by lifting constructive ones. We showed this by introducing Kleisli
Galois connections, and by establishing two isomorphisms: (1) between a subset of
classical and Kleisli, and (2) between Kleisli and constructive. The proof of isomorphism
between constructive and Kleisli yielded an interesting proof which applies the axiom of
countable choice to the Kleisli Galois connection correspondence laws.

8 Constructing constructive Galois connections

The classical Galois connection framework comes with a library of connectives which are
used to build larger Galois connections out of smaller, primitive ones Cousot & Cousot
(1994). For example, it is common to create a Galois connection for Cartesian products
(A× B) as the product abstraction of two Galois connections, one for each side (A and B).

In this section, we define the constructive analog of many classical Galois connection
connectives and primitives. Each constructive Galois connection we define is uniquely
determined by just η, since μ is always derivable as its inverse image μ(y) := {x | η(x)�
y}. However, we provide the canonical μ with a more direct definition. In later sections, we
will highlight similarities and differences between constructive and classical calculations
(Section 9), how derivations of optimal abstract interpreters varies between the two settings
(Section 10), and how multivalued computations are supported in the constructive setting
(Section 11). Each section will make use of the connectives and primitives defined in this
section without explicit introduction.

By convention we notate classical Galois connections A−−→←−−α

γ

B, that is with α and γ

below and above the arrows, and constructive Galois connections A−−→←−−η
μ

B, that is with

η and μ below and above the arrows. In the case of classical Galois connections, the
domain and codomain of α and γ are immediate from the notation, that is, α : A → B and
γ : B → A. However, for constructive Galois connections, the domain and codomain are
only immediate from the notation for η but not μ because it maps to a powerset in the
codomain, that is η : A → B but μ : B →℘(A). We notate pure(x) compactly as *x, and
assume all powersets are downward closed. In this section, we abandon the convention of
writing C for the concrete set and A for the abstract set. Instead, we write A, B, etc. for
arbitrary posets, and annotate with a sharp sign for abstractions, e.g., A� as the abstraction
of A.

8.1 Strictly classical Galois connections

IA abstraction. The IA abstraction is defined for relations (℘(A× B)) and constructs the
classical Galois connection:

℘(A× B)−−→←−−
IA
α

IA
γ

℘(A)×℘(B)
IA
α : ℘(A× B) →℘(A)×℘(B)
IA
γ : ℘(A)×℘(B) →℘(A× B)

IA
α(XY) := 〈{x | ∃y.〈x, y〉 ∈ XY }, {y | ∃x.〈x, y〉 ∈ XY }〉

IA
γ (X , Y) := {〈x, y〉 | x ∈ X ∧ y ∈ Y }

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

42 D. Darais and D. Van Horn

8.2 Primitive Galois connections—classical and constructive

Identity abstraction. The classical identity abstraction is defined for partially ordered
sets A and constructs the classical Galois connection:

A−−−→←−−−
αID

γ ID

A
αID : A → A
γ ID : A → A

αID(x) := x
γ ID(x) := x

The constructive analog is defined for partially ordered sets A and constructs the construc-
tive Galois connection:

A−−−→←−−−
ηID

μID

A
ηID : A → A
μID : A →℘(A)

ηID(x) := x
μID(x) := {x}

Fact 1 (Identity Abstraction Correspondence). The classical identity abstraction instanti-
ated to ℘(B) is equal to the classical lifting of the constructive identity abstraction, that is:
αID = *ηID,∗ and γ ID =μID∗.

Elementwise abstraction. The elementwise abstraction (generalized to posets) is defined
given a monotonic function f : A → B and constructs the classical Galois connection:

℘(A)−−−→←−−−
[f]
α

[f]
γ

℘(B)
[f]
α : ℘(A) →℘(B)
[f]
γ : ℘(B) →℘(A)

[f]
α (X) := {f (x) | x ∈ X }
[f]
γ (Y) := {x | f (x) ∈ Y }

The constructive analog is defined given a monotonic function f : A → B and constructs

a constructive Galois connection A−−→←−−η
μ

B where:

[f]
η : A → B
[f]
μ : B →℘(A)

[f]
η (x) := f (x)
[f]
μ(y) := {x | f (x)� y}

Fact 2 (Elementwise Abstraction Correspondence). The classical elementwise abstraction

is equal to the classical lifting of the constructive elementwise abstraction, that is:
[f]
α =

*[f]
η ,∗ and

[f]
γ = [f]

μ
∗
.

Least-upper-bound abstraction. The least-upper-bound abstraction is defined for join-
semilattices A and constructs the classical Galois connection:

℘(A)−−→←−−�
α

�
γ

A
�
α : ℘(A) → A
�
γ : A →℘(A)

�
α(X) := ⊔

x∈X
x

�
γ (x) := {x}

The constructive analog is defined for join-semilattices A and constructs the classical
Galois connection:

℘(A)−−−→←−−−
�℘
α

�℘
γ

℘1(A)

�℘

α : ℘(A) →℘1(A)
�℘

γ : ℘1(A) →℘(A)

�℘

α (X) := {x | x� ⊔
x∈X

x}
�℘

γ (X) := {x | x ∈ X }
We notate singleton (downward closed) powersets ℘1(), which classically are isomorphic
to the carrier set (℘1(A)−→←− A), but not constructively.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 43

8.3 Composing Galois connections—classical and constructive

Abstraction composition. The composition of two classical abstractions is defined given
abstractions B−−−→←−−−

α1

γ1
C and A−−−→←−−−

α2

γ2
B and constructs the classical Galois connection:

A−−−→←−−−
1◦2
α

1◦2
γ

C
1◦2
α : A →C

1◦2
γ : C → A

1◦2
α (x) := α1(α2(x))
1◦2
γ (z) := γ2(γ1(z))

The constructive analog is defined given abstractions B−−−→←−−−
η1

μ1
C and A−−−→←−−−

η2

μ2
B and

constructs the constructive Galois connection:

A−−−→←−−−
1◦2
η

1◦2
μ

C
1◦2
η : A →C

1◦2
μ : C →℘(A)

1◦2
η (x) := η1(η2(x))

1◦2
μ (z) := μ∗

2(μ1(z))

Fact 3 (Abstraction Composition Correspondence). The classical composition of lifted
constructive abstractions is equal to the lifting of the constructive composition of those
abstractions, that is: *η1,∗ ◦ *η2,∗ = (*η1,� *η2,)∗ and μ∗

2 ◦μ∗
1 = (μ2 �μ1)∗.

Product abstraction. The classical product abstraction is defined given abstractions

A−−−→←−−−
αA

γ A

A� and B−−−→←−−−
αB

γ B

B� and constructs the classical Galois connection:

A× B−−−−→←−−−−
A×B
α

A×B
γ

A� × B�

A×B
α : A× B → A� × B�

A×B
γ : A� × B� → A× B

A×B
α (x, y) := 〈αA(x), αB(y)〉

A×B
γ (x�, y�) := 〈γ A(x�), γ B(y�)〉

The constructive analog is defined given abstractions A−−−→←−−−
ηA

μA

A� and B−−−→←−−−
ηB

μB

B� and

constructs the constructive Galois connection:

A× B−−−−→←−−−−
A×B
η

A×B
μ

A� × B�

A×B
η : A× B → A� × B�

A×B
μ : A� × B� →℘(A× B)

A×B
η (x, y) := 〈ηA(x), ηB(y)〉

A×B
μ (x�, y�) := {〈x, y〉 | x ∈μA(x�)∧ y ∈μB(y)}

Fact 4 (Product Abstraction Correspondence). The classical product abstraction instan-
tiated to powersets is equal to the lifted constructive product abstraction com-
posed with the independent attributes abstraction when applied to nonempty power-
sets, that is: αA×B(X , Y)= (αIA ◦ *ηA×B,∗ ◦ γ IA)(X , Y) and γ A×B(X �, Y �)= (αIA ◦μA×B∗ ◦
γ IA)(X �, Y �) when X ,Y ,X � and Y � are nonempty. (In the case that X –Y � could be empty, the
classical product is equal-to or larger (-) than the lifted constructive product composed
with IA.)

Functional abstraction. The classical functional abstraction is defined given abstractions

A−−−→←−−−
αA

γ A

A� and B−−−→←−−−
αB

γ B

B� and constructs the classical Galois connection:

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

44 D. Darais and D. Van Horn

A → B−−−−→←−−−−
A �→B

α

A �→B
γ

A� → B�

A�→B
α : (A → B) → A� → B�

A�→B
γ : (A� → B�) → A → B

A�→B
α (f)(x�) := αB(f (γ A(x�)))

A�→B
γ (f �)(X) := γ B(f �(αA(X)))

The constructive analog is defined given constructive abstractions A−−−→←−−−
ηA

μA

A� and B−−−→←−−−
ηB

μB

B� and constructs the classical Galois connection:

A →℘(B)−−−−→←−−−−
A

℘�→B
α

A
℘�→B
γ

A� →℘(B�)
A

℘�→B
α : (A →℘(B)) → A� →℘(B�)

A
℘�→B
γ : (A� →℘(B�)) → A →℘(B)

A
℘�→B
α (f)(x�) := *ηB,∗(f ∗(γ A(x�)))

A
℘�→B
γ (f �)(x) := μB∗(f �(ηA(x)))

Fact 5 (Functional Abstraction Correspondence). The classical functional abstraction
instantiated to powersets ℘(A), ℘(B), ℘(A�), and ℘(B�) is equal to the lifted constructive

analog, that is:
℘(A)�→℘(B)

α = (
A

℘�→B
α)∗ and

℘(A)�→℘(B)
γ = (

A
℘�→B
γ)∗.

9 Comparing classical and constructive approaches

In this section, we aim to further clarify to what extent classical Galois connection calcu-
lations, which have been used successfully for decades, are related and/or inter-derivable
with constructive Galois connection calculations. We will demonstrate this relationship an
extended example drawn from our first case study.

In Section 4, we showed calculations for the random number expression (rand) and
variable reference (x). The inductive case for binary operators (ae⊕ ae) was omitted for
brevity; however, its calculation is particularly interesting because it involves interacting
with a classical Galois connection during the calculation (in both constructive and classical
settings). In this section, we will work through this calculation in detail to demonstrate the
differences and similarities between classical and constructive approaches, as well as to
demonstrate the effectiveness of constructive Galois connections used in conjunction with
classical ones.

Setup. To set the stage, we review in Figure 13 the types for the arithmetic operator
denotation (� �a), its abstraction (� �a�), the arithmetic expression relational semantics
(⇓a), its functional variant (A[]) and collecting semantics (A℘[]), its abstraction

(A�[]), as well as classical and constructive Galois connections for integers (Z−−−→←−−−
αz

γ z

Z
�

and Z−−−→←−−−
ηz

μz

Z
�) and environments (env−−−→←−−−

αr

γ r

env� and env−−−→←−−−
ηr

μr

env�).

First, we will show the original classical calculation for binary arithmetic operator
expressions which does not make explicit use of the IA abstraction (Section 9.1). We

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 45

Fig. 13. Review: Calculational Derivation for Binary Arithmetic Operator Expressions

will then make IA explicit in the classical calculation (Section 9.2), and then show the
constructive analog with explicit use of IA (Section 9.3).

9.1 Review: Cousot’s original classical calculation

In the classical Galois connection framework, the abstraction (A�[]) for the arithmetic
relational semantics (⇓a) is calculated by first defining the collecting semantics
(A℘[] : aexp→℘(env) →℘(Z)), and then relating the collecting semantics to the
abstract semantics through a functional abstraction, that is:

r �→z
α (A℘[ae])(ρ�)= αz(A℘[ae](γ r(ρ�)))� . . .�A�[ae](ρ�)

Cousot’s original calculation proceeds by induction on the syntax for arithmetic expres-
sions, so for arithmetic operator expressions, the calculation goal is:

αz(A℘[ae1 ⊕ ae2](γ r(ρ�)))� . . .�A�[ae1 ⊕ ae2](ρ�)

along with an assumed inductive hypothesis for subexpressions ae1 and ae2. The calcula-
tion is shown in Figure 14. Steps 1–3 unfold semantic function and relation definitions; at
Step 4, the specification is weakened explicitly to break the equality relationship between
the environment used to evaluate ae1 and ae2; Step 5 rewrites the goal in terms of collect-
ing semantics operations; Step 6 applies the inductive hypothesis; Step 7 applies a sound
abstract interpreter for binary operators (a parameter to the calculation); Step 8 collapses
neighboring abstraction and concretization functions; and Step 9 declares the final state of
the calculation to be the definition of the algorithm.

Although there was no mention of the IA abstraction in this calculation, its effects are
there implicitly. In particular, Step 4, which breaks the equality relationship between envi-
ronments, is implicitly performing the function of the IA abstraction: to break relationships
between elements of concrete sets of pairs. Step 4 is also the only step in the deriva-
tion which loses precision (uses � instead of =) unnecessarily, whereas the other losses
of precision are unavoidable (inductive hypothesis, abstraction for binary operators, and
collapsing abstraction and concretization function). In the next subsection, we will make
explicit use of the IA abstraction, rather than through the ad hoc line of reasoning contained
in Step 4.

9.2 Using IA explicitly

In this section, we recreate the calculation for binary arithmetic operator expressions from
last section, but in a way that makes explicit use of the IA abstraction.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

46 D. Darais and D. Van Horn

Fig. 14. Classical Calculation for Binary Arithmetic Operator Expressions

Fig. 15. Classical Calculation for Binary Arithmetic Operator Expressions Using Independent
Attributes

The calculation is shown in Figure 15. The beginning of the derivation is as before
(Steps 1–3); Step 4.1 rewrites the calculation into a form that mentions IA concretization;
Step 4.2 pulls the collecting semantics for binary operators out of the union operation; Step
5.1 introduces the explicit IA abstraction; Step 5.2 collapses the union operation between

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 47

IA abstraction and concretization based on a key observation (see below); Step 5.3 unfolds
the definition of IA concretization; and the rest of the derivation is as before (Steps 6–9).

The key observation in this derivation is the fact that the IA abstraction is transparent

w.r.t. element-wise relationships, that is pairing (
IA
γ) and splitting (

IA
α) two functions over

related elements (f (x1) and g(x2) for x1 = x2 ∈ X), is equivalent to pairing each functions
applied to unrelated elements (f ∗(X) and g∗(X)):

Fact 6 (IA Split Equality).

IA
α(

⋃
x∈X

IA
γ (f (x), g(x)))= 〈 f ∗(X), g∗(X)〉 (IA-Split)

This observation captures locally the fact that if relational information is eventually
going to be explicitly removed, then nothing is lost by splitting the equality relationship
between arguments to each function.

One of the benefits of the calculational approach to abstract interpretation is that any
loss of precision w.r.t. the induced specification is made explicit. In this derivation, the
only nonessential loss in precision came from an explicit introduction of the IA abstraction,
which in turn makes explicit the fact that the resulting analysis may not be relational. If
a relational analyzer Cousot & Halbwachs (1978) was desired, one could point exactly
where in the calculation this information was lost via the IA abstraction, and correct it
locally. For example, recent results in information flow analysis show how to obtain more
precise analyzers in exactly this way: by pinpointing and correcting the loss of precision
after deriving the analysis using the calculational method Assaf et al. (2017).

9.3 Calculating with constructive Galois connections

In the constructive framework, the abstract interpretation of binary arithmetic operator
expressions (A�[ae1 ⊕ ae2]) is derived in a similar way, and also has the option of explic-
itly using the classical IA abstraction along the way. The constructive calculation proceeds
from the induced specification:

r
℘�→z
α (A[ae])(ρ�)= *ηz,∗(A[ae]∗(μr(ρ�)))� . . .� *A�[ae],(ρ�)

Two notable differences in the constructive calculation setup are:

1. The codomain type for both sides is ℘(Z�), not Z�. This powerset modality makes
explicit the transition from “specification” to “algorithm.”

2. The specification on the left-hand side is stronger than the classical one, because it
does not collapse the set of abstract integers I� : ℘(Z�) into a single least-upper-
bound abstract integer i� = ⊔

i�′∈I�
i�′.

The original classical equation is recovered (in a constructive setting) by composing with

the constructive least-upper-bound-abstraction (
�℘

α : ℘(Z�) →℘1(Z�)):

�℘

α (*ηz,∗(A[ae]∗(μr(ρ�))))� . . .� *A�[ae],(ρ�)

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

48 D. Darais and D. Van Horn

Fig. 16. Constructive Calculation for Binary Arithmetic Operator Expressions

However, we will continue our demonstration with the original induced equation, where
the constructive least-upper-bound-abstraction is not present.

The constructive calculation for the binary expression case proceeds in a similar fash-
ion to Cousot’s classical derivation. To mimic the classical derivation, the IA abstraction
is introduced to weaken the specification to discard the equality relationship between
evaluation environments used to evaluate ae1 and ae2.

The calculation is shown in Figure 16. Steps 1–4 unfold semantic function and relation
definitions; Step 5 explicitly weakens the specification using IA; Step 6 applies the key IA
observation; Step 7 applies the inductive hypothesis; Step 8 combines concretization for IA
and the abstraction for integers; Step 9 applies a sound abstract interpreter for binary arith-
metic operators (a parameter to the calculation); Step 10 collapses neighboring abstraction
and concretization functions; and Step 11 declares the final state of the calculation to be
the definition of the algorithm.

What this calculation shows is that constructive Galois connections are able to work in
tandem with classical Galois connections, as this constructive calculation made use of the
classical IA abstraction.

10 Optimal calculations—constructive and classical

All of the derivations shown in the previous section follow a γ -directed approach to calcu-
lation. In this style, the next step of the calculation pushes concretization (γ) through the

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 49

concrete semantics, from right to left, until it meets abstraction (α) on the far left-hand side,
at which point they collapse. In this section, we explore the alternative approach of going
to the other direction: push abstraction from left-to-right until it meets concretization.

In the classical Galois connection framework, both γ -directed and α-directed
approaches are similar, and the choice to use one or the other appears at first to be cos-
metic. However, in the constructive framework, abstraction (η) is of a different nature than
concretization (μ): it is a pure function with algorithmic content, rather than a relation.
This means abstraction is easier to push through the concrete semantics, and therefore
η-directed derivations can be simpler than μ-directed ones.

Because constructive and classical Galois connections are so tightly connected, we show
how this insight of η-directed calculations can be translated back to the world of classical
Galois connections. To do this, we (1) recall a fact about all classical Galois connections,
and then (2) introduce a restriction on collecting semantics which often holds in practice:

1. Fact: All abstraction functions (α : ℘(A) → A�) are complete join morphisms, that
is:

α(
⋃
i∈I

Xi)=
⊔
i∈I

(α(Xi))

for all indexed families X : I → A�

2. Restriction: The predicate transformer (t : ℘(A)→℘(B)) must be a complete union
morphism, that is:

f (
⋃
i∈I

Xi)=
⋃
i∈I

(f (Xi))

for all indexed families X : I →℘(A)

The restriction (2) is equivalent to the existence of a monadic semantics relation, or f :
A→℘(B), where:

t(X)=
⋃
x∈X

f (x) and f (x)= t({x})

It follows that in any setting where classical Galois connections are used where the col-
lecting semantics t : ℘(A) →℘(B) is a complete union morphism, it suffices to work
purely with constructive Galois connections without any loss of generality. These gen-
erality results coincide with the completeness theorems for Kleisli and constructive Galois
connections described in Section 7 (KGC-Complete and CGC-Induce).

As a consequence of this, our observation above about η-directed calculations being
easier to “push through” the calculation for constructive Galois connections also holds
for α-directed classical calculations when the collecting semantics is a complete union
morphism.

The η-directed calculation of an abstract interpreter for binary arithmetic operator
expressions is shown in Figure 17. The beginning of the calculation is as before (Steps
1–2); Step 3 pushes the abstraction function through the union operation; Step 4 applies a
sound abstract interpretation for binary operators (a parameter to the calculation); Step 5
pushes the abstraction function through the set comprehension; Step 6 applies the induc-
tive hypothesis; Step 7 applies the fact that the abstract denotation for binary operators is
monotonic, and that powerset is downward closed; Step 8 pushes abstraction again through

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

50 D. Darais and D. Van Horn

Fig. 17. Constructive Calculation for Binary Arithmetic Operator Expressions—Optimal and
η-directed

the set comprehension; Step 9 collapses the neighboring abstraction and concretization
functions; and Step 10 declares the final state of the calculation to be the definition of the
algorithm.

This abstraction-directed calculation is not only simpler due to how easily the abstrac-
tion function distributes through powerset operations, but it is also optimal. Unlike the
classical calculation (and the constructive μ-directed calculation), no loss in precision is
explicitly introduced, and no use of IA is made, explicitly or implicitly. This does not
mean that the prior derivations result in a less-precise algorithm. (The resulting algorithm
is the same as before.) Rather, it means that before there was no guarantee via the deriva-
tion process that the result was optimal, whereas now we have such a guarantee. The
prior derivations were optimal, but this fact was not made manifest in the calculation.
Next, we show how to port this optimal calculation back to the classical Galois connection
framework.

Porting the optimal derivation Back to Classical. In this η-directed constructive calcu-
lation, no steps lose precision unnecessarily. However, the classical calculation seemed to
require an explicit loss of precision through the IA abstraction. How can this be? To shed
light on this question, we show that the constructive abstraction-directed calculation can
be back-ported to a classical calculation, leveraging the fact that the abstraction side of
Galois connections are always complete join morphisms, that is:

αz(
⋃
i∈I

Xi)=
⊔
i∈I

(αz(Xi))

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 51

Fig. 18. Classical Calculation for Binary Arithmetic Operator Expressions—Optimal and α-directed

With this observation, a classical derivation is possible which doesn’t need to interact with
IA to induce a final algorithm.

The classical calculation of binary arithmetic operator expressions is shown in Figure 18.
The beginning of the calculation is as before (Steps 1–3); Step 4 pushes abstraction through
the union operation, due to being a complete join morphism; Step 5 applies a sound abstrac-
tion for binary operators; Step 6 applies the inductive hypothesis; Step 7 pulls abstraction
out of the set comprehension; Step 8 pushes abstraction through the set comprehension, due
to being a complete join morphism; Step 9 collapses adjacent abstraction and concretiza-
tion functions; and Step 10 declares the final state of the calculation to be the definition of
the algorithm.

In this section, we have shown two new calculations which are equivalent to Cousot’s
original derivation, but which are also guaranteed to be optimal by construction. The
insight for optimality came from the constructive Galois connection framework, where the
extraction function (η) is algorithmic, and therefore easier to “push through” the induced
specification towards the definition of an algorithm. This insight was then ported to the
classical setting, where it took the form of exploiting the complete-join-morphism property
of abstraction functions (α).

11 Multivalued constructive Galois connections

In this section, we argue that constructive Galois connections support multivalued Galois
connections, concrete semantics, and abstract interpreters, while maintaining their ability
to be mechanized effectively.

To explore multivalued constructive Galois connections, we again work through an
extended example based on the first case study, but this time deriving an abstract interpreter

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

52 D. Darais and D. Van Horn

Fig. 19. Review: calculating abstraction for conditional expressions

for conditional expressions (if be then ce else ce) in the command language (cexp)
rather than arithmetic expressions (aexp).

Setup. To set the stage, we review in Figure 19 the types for the command expression rela-
tional semantics (�→c), its functional variant (C[]) and collecting semantics (C℘[]),
its abstraction (C�[]), as well as classical and constructive Galois connections for integers

(Z−−−→←−−−
ηz

μz

Z
� and Z−−−→←−−−

αz

γ z

Z
�) and environments (env−−−→←−−−

ηr

μr

env� and env−−−→←−−−
αr

γ r

env�).

11.1 Review: cousot’s original classical calculation

In the classical Galois connection framework, the abstraction (C�[]) for the command
small-step relational semantics (�→c) is calculated first by constructing the collecting
semantics (C℘[]), and then relating the collecting semantics to the abstract semantics
through a functional abstraction, that is:

� �→�
α (C℘[ce])(��) � α�(C℘[ce](γ �(��)))� . . .� C�[ce](��)

where configurations (ς ∈�) are abstracted through a composition of IA and a product
abstraction over environments:

℘(�)−−→←−−
IA
α

IA
γ

℘(env)×℘(cexp)−−−−→←−−−−
r×id
α

r×id
γ

�� α� : ℘(�) →��

γ � : �� →℘(�)
α� := r×id

α ◦ IA
α

γ � := IA
γ ◦ r×id

γ

In Cousot’s original derivation, the abstract interpreter is derived for the reflexive transitive
closure of the small step relation directly. We will instead present the abstract interpreter
for just the small step relation, factored out from the reflexive transitive closure.

The classical calculation begins by case analysis on the syntax for command expres-
sions, so for conditional expressions the calculation is:

α�(C℘[if be then ce1 else ce2](γ r(ρ�)))� . . .� C�[if be then ce1 else ce2](ρ�)

The calculation is shown in Figure 20. Steps 1–4 unfold semantic function and relation
definitions; Step 5 weakens the specification through an (implicit) IA abstraction; Step 6
applies a sound abstract interpreter for Boolean expressions (a parameter to the calcula-
tion); Step 7 weakens the case when neither branch is valid, which would result in the
returned abstract environment being bottom (⊥), or the empty map (∅); Step 8 collapses
adjacent abstraction and concretization functions; and Step 9 declares the final state of the
calculation as the definition of the algorithm.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 53

Fig. 20. Classical Calculation for Conditional Command Expressions

11.2 The constructive calculation

The goal is now to recreate this calculation using constructive Galois connections. Up
until this point, the use of powersets has been entirely restricted to describing classical
specifications. However, in this classical derivation, finite powersets appear in the result-
ing algorithm. Thus, powersets served double-duty: both for classical specification and
for multivalued algorithmic results. When porting to constructive Galois connections, this
distinction must be made explicit in order to support extraction of a verified algorithm.

Constructed finite sets. We introduce new notation to distinguish between classical
powersets and constructed finite sets. We will continue to notate classical powersets as
℘(A), which are modeled as downward-closed A→ prop, and introduce new notation for
constructed finite sets as p(A), which must be representable using a data structure such as a
sorted list, binary tree, or hashed dictionary. We will continue to notate elements of power-
sets of posets X : ℘(A) as { x | P(x) } , which is valid for any downward-closed proposition
P : A→ prop, and introduce notation for elements of constructed finite sets (X : p(A)) as

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

54 D. Darais and D. Van Horn

{{x | P(x)}}, which is valid for any decidable downward-closed proposition P : A→ B with
finite support (A finite).

We relate classical powersets (℘(A)) to constructive finite sets (p(A)) using a construc-
tive Galois connection:

p(A)−−→←−−
p
η

p
μ

℘(A)
p
η : p(A) →℘(A)
p
μ : ℘(A) →℘(p(A))

p
η(X) := {x | x ∈ X }
p
μ(X) := {X | ∀x.x ∈ X ⇔ x ∈X}

and define a singleton abstraction for constructive finite sets:

A−−−→←−−−
1p
η

1p
μ

p(A)
1p
η : A → p(A)
1p
μ : p(A) →℘(A)

1p
η (x) := {{x}}

1p
μ(X) := {x | x ∈X}

Finally, we redefine abstract configurations (ς� ∈��) to use constructive finite sets:

ς� ∈�� := env� × p(cexp)

In this new setting for abstract configurations, the constructive Galois connection for
concrete configurations (ς ∈�) is:

� −−−−→←−−−−
r×1p

η

r×1
μ

��

r×1p
η : �→��

r×1p
μ : �� →℘(�)

r×1p
η (ρ, ce) := 〈ηr(ρ), {{ce}}〉

r×1p
μ (ρ�, CE) := {〈ρ, ce〉 | ρ ∈μr(ρ�)∧ cd ∈CE}

Using constructive finite sets and this new definition for abstract configurations, we
will perform the same calculation as before, but entirely within the constructive Galois
connection framework, and in abstraction-directed form.

The calculation. We show the calculation for the abstract interpretation of conditional
expressions using constructive Galois connections in Figure 21. Steps 1–3 unfold semantic
function and relation definitions; Step 4 applies commutativity of set union; Step 5 pushes
abstraction through the set comprehension; Step 6 introduces adjacent concretization and
abstraction functions, justified by Galois connection expansiveness (an explicit loss in pre-
cision); Step 7 applies the constructive Galois connection correspondence; Step 8 applies
a sound abstract interpreter for Boolean expressions; Step 9 pulls abstraction out of the set
comprehension; Step 10 collapses adjacent abstraction and concretization functions; and
Step 11 declares the final state of the calculation as the definition of the algorithm.

What this calculation shows is that constructive Galois connections support manip-
ulating multivalued abstractions and algorithms, via an explicit finite set construction,
which carries algorithmic content in a constructive logic setting. What classically was
just a powerset with finite elements becomes an explicit finite set, and what classically
was an undecidable specification of potentially infinite elements remains a powerset.
Supporting relational abstraction can be done in this way as well, for example a rela-

tional abstraction for environments would have the shape of
rel
ηr : p(env) → env� and

rel
μr : env� →℘(p(env)).

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 55

Fig. 21. Conditional Expressions Constructive Calculation

12 Related work

This work connects two long strands of research: abstract interpretation via Galois con-
nections and mechanized verification via dependently typed functional programming.
The former is founded on the pioneering work of Cousot & Cousot Cousot & Cousot

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

56 D. Darais and D. Van Horn

(1977, 1979); the latter on that of Martin-Löf Martin-Löf (1984), embodied in Norell’s
Agda Norell (2007). Our key technical insight is to use a monadic structure for Galois
connections, following the example of Moggi Moggi (1989) for the λ-calculus.

Calculational abstract interpretation. Cousot describes calculational abstract interpre-
tation by example in his lecture notes Cousot (2005) and monograph Cousot (1999), and
Cousot & Cousot recently introduced a unifying Galois connection calculus Cousot &
Cousot (2014). Our work mechanizes Cousot’s calculations and provides a foundation
for mechanizing other instances of calculational abstract interpretation (e.g., Midtgaard
& Jensen (2008); Sergey et al. (2012)). We expect our work to have applications to the
mechanization of calculational program design Bird & de Moor (1996); Bird (1990) by
employing only Galois retractions, i.e., α ◦ γ is an identity Cousot & Cousot (2014). There
is prior work on mechanized program calculation Tesson et al. (2011), but it is not based
on abstract interpretation.

Verified static analyzers. Efforts in verified abstract interpretation have shown many
promising results Pichardie (2005); Cachera & Pichardie (2010); Blazy et al. (2013);
Barthe et al. (2007), scaling up to large-scale real-world static analyzers Jourdan et al.
(2015). However, mechanized abstract interpretation has yet to benefit from the Galois
connection framework. Until now, approaches use classical axioms or “γ -only” encod-
ings of soundness and (sometimes) optimality. Our techniques for mechanizing Galois
connections should complement these approaches.

Galculator. The Galculator Silva & Oliveira (2008) is a proof assistant founded on an
algebra of Galois connections. This tool is similar to ours in that it mechanically veri-
fies Galois connection calculations. Our approach is more general, supporting arbitrary
set-theoretic reasoning and embedded within a general purpose proof assistant; however,
their approach is fully automated for the small set of derivations which reside within their
supported theory.

Deductive synthesis. Fiat Delaware et al. (2015) is a library for the Coq proof assis-
tant which supports semi-automated synthesis of programs as refinements of their
specifications. Fiat uses the same powerset type and monad as we do, and their “deduc-
tive synthesis” process similarly derives correct-by-construction programs by calculus.
Fiat derivations start with a user-defined specification and calculate towards an under-
approximation (-), whereas calculational abstract interpretation starts with an optimal
specification and calculates towards an over-approximation (�). It should be possible
to generalize their framework to use partial orders to recover aspects of our work, or
to invert the lattice used in our abstract interpretation framework to recover aspects of
theirs. A notable difference in approach is that Fiat makes heavy use of Coq’s tactic
programming language to automate rewrites inside respectful contexts, whereas our sys-
tem provides no interactive proof automation and each calculational step must be notated
explicitly.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 57

Monadic abstract interpretation. Monads in abstract interpretation have recently been
applied to good effect for modularity Sergey et al. (2013); Darais et al. (2015). However,
that work uses monads to structure the semantics, not the Galois connections and proofs.

Future directions. Now that we have established a foundation for constructive
Galois connections, we see value in verifying larger calculations (e.g., Midtgaard &
Jensen Midtgaard & Jensen (2008); Sergey et al. Sergey et al. (2012)). Furthermore,
we would like to explore whether or not our techniques have any benefit in the space
of general-purpose program calculations à la Bird.

Currently our framework requires the user to justify every detail of the program cal-
culation, including monotonicity proofs and proof scoping for rewrites inside monotonic
contexts. We imagine much of this can be automated, requiring the user to only pro-
vide the interesting parts of the proof, à la Fiat Delaware et al. (2015). Our experience
has been that even Coq’s tactic system slows down considerably when automating all of
these details, and we foresee using proof by reflection in either Coq (e.g., Rtac Malecha &
Bengtson (2016)) or Agda to automate these proofs in a way that maintains proof-checker
performance.

There have been recent developments on compositional abstract interpretation frame-
works Darais et al. (2015) where abstract interpreters and their proofs of soundness are
systematically derived side-by-side. That framework relies on correctness properties trans-
ported by Galois transformers, which we posit would benefit from mechanization since
they hold both computational and specification content.

13 Perspectives on foundations

In this paper, we present a foundation for constructive Galois connections, but certainly
not the foundation for constructive Galois connections. Just as the classical Galois connec-
tion framework is an instantiation of the more general framework of adjunctions between
functors, our constructive (and Kleisli) Galois connection setup can also be seen as an
instantiation more general category-theoretic definitions.

To generalize our framework, monotonic functions (f : A → B) become functors
(f : A�B), powersets (X : ℘(A)) become presheaves (X : Aop � Set), and monotonic
powerset-monadic functions (f : A →℘(B)) generalize to profunctors (f : Bop ×A�

Set), or equivalently functors into presheaves (f : A�Bop � Set). The fact that any
functor F : A�B induces adjoint profunctors L. R where L(b, a) �→ hom(b, F(a)) and
R(a, b) �→ hom(F(a), b) is well known, and corresponds to our lifting of η : A → B to
a Kleisli Galois connection κα � κγ with Kleisli abstraction function κα(x) := {y | y�
η(x)} and (inverse-image) induced Kleisli concretization function κγ (y) := {x | η(x)� y}.
However, it is not clear to the authors what general conditions on categories is required to
recover our proof of constructive isomorphism between constructive and Kleisli Galois
connections. It has been suggested by Max New3 that the necessary restriction is for
the base categories to be Cauchy complete; however, this warrants further investiga-
tion (in particular its amenability to mechanized verification with program extraction) in
future work.

3 http://prl.ccs.neu.edu/blog/2016/11/16/understanding-constructive-galois-connections/.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

http://prl.ccs.neu.edu/blog/2016/11/16/understanding-constructive-galois-connections/
https://doi.org/10.1017/S0956796819000066

58 D. Darais and D. Van Horn

14 Conclusions

This paper realizes the vision of mechanized and constructive Galois connections fore-
shadowed by Cousot (Cousot, 1999, p. 85), giving the first mechanically verified proof
by calculational abstract interpretation; once for his generic static analyzer and once
for the semantics of gradual typing. Our proofs by calculus closely follow the orig-
inals. The primary discrepancy is the use of monads to isolate specification effects.
By maintaining this discipline, we are able to verify calculations by Galois connec-
tions and extract computational content from pure results. The resulting artifacts are
correct-by-verified-construction, thereby avoiding known bugs in the original.4

Acknowledgments

We thank Ron Garcia and Éric Tanter for discussions of their work. Éric also helped with
our French translation. We thank the Colony Club in D.C. and the Board & Brew in College
Park for providing fruitful environments in which to work. We also thank the anonymous
reviewers of ICFP 2016 and JFP, and the first author’s thesis committee for their helpful
feedback. This material is partially based on the research sponsored by DARPA under
agreement number AFRL FA8750-15-2-0104.

References

Assaf, M., Naumann, D. A., Signoles, J., Totel, É., & Tronel, F. (2017). Hypercollecting semantics
and its application to static analysis of information flow. In Principles of Programming Languages
(POPL). New York, NY, USA: ACM.

Barthe, G., Pichardie, D., & Rezk, T. (2007). A certified lightweight non-interference Java bytecode
verifier. In European Symposium on Programming (ESOP). Berlin, Heidelberg: Springer-Verlag.

Bird, R. (1990). A calculus of functions for program derivation. In Research Topics in Functional
Programming. Boston, MA, USA: Addison-Wesley Longman Publishing Co.

Bird, R. & de Moor, O. (1996). The algebra of programming. Upper Saddle River, NJ, USA:
Prentice Hall.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., & Rival, X.
(2003). A static analyzer for large safety-critical software. InProgramming Language Design and
Implementation (PLDI). New York, NY, USA: ACM.

Blazy, S., Laporte, V., Maroneze, A., & Pichardie, D. (2013). Formal verification of a C value
analysis based on abstract interpretation. In Static Analysis Symposium (SAS). Berlin, Heidelberg:
Springer-Verlag.

Cachera, D. & Pichardie, D. (2010). A certified denotational abstract interpreter. Interactive Theorem
Proving (ITP). Berlin, Heidelberg: Springer-Verlag.

Cousot, P. (1999). The calculational design of a generic abstract interpreter. In Calculational System
Design. NATO ASI Series F. Amsterdam: IOS Press.

Cousot, P. (2005). Abstract interpretation. MIT course 16.399, http://web.mit.edu/16.399/
www/.

Cousot, P. (2008). Abstract interpretation. http://www.di.ens.fr/~cousot/AI/.
Cousot, P. & Cousot, R. (1976). Static determination of dynamic properties of programs. In

International Symposium on Programming (ISOP). Paris, France: Dunod.

4 http://www.di.ens.fr/~cousot/aisoftware/Marktoberdorf98/Bug_History.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

http://web.mit.edu/16.399/www/
http://web.mit.edu/16.399/www/
http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/aisoftware/Marktoberdorf98/Bug_History
https://doi.org/10.1017/S0956796819000066

Constructive Galois Connections 59

Cousot, P. & Cousot, R. (1977). Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Principles of Programming Languages
(POPL). New York, NY, USA: ACM.

Cousot, P. & Cousot, R. (1979). Systematic design of program analysis frameworks. In Principles
of Programming Languages (POPL). New York, NY, USA: ACM.

Cousot, P. & Cousot, R. (1992). Inductive definitions, semantics and abstract interpretations. In
Principles of Programming Languages (POPL). New York, NY, USA: ACM.

Cousot, P. & Cousot, R. (1994). Higher-order abstract interpretation (and application to comportment
analysis generalizing strictness, termination, projection and PER analysis of functional languages),
invited paper. In International Conference on Computer Languages (ICCL). Los Alamitos, CA,
USA: IEEE Computer Society Press, pp. 95–112.

Cousot, P. & Cousot, R. (2014). A Galois connection calculus for abstract interpretation. In
Principles of Programming Languages (POPL). New York, NY, USA: ACM.

Cousot, P. & Halbwachs, N. (1978). Automatic discovery of linear restraints among variables of a
program. In Principles of Programming Languages (POPL). New York, NY, USA: ACM.

Danielsson, N. A., Norell, U., Mu, S. C., Bronson, S., Doel, D., Jansson, P., & Chen, L. T. (2011).
The Agda standard library. Url: http://www. cs. nott. ac. uk/˜ nad/repos/lib.

Darais, D. & Van Horn, D. (2016). Constructive Galois connections: Taming the Galois connection
framework for mechanized metatheory. In International Conference on Functional Programming
(ICFP). New York, NY, USA: ACM.

Darais, D., Might, M., & Van Horn, D. (2015). Galois transformers and modular abstract inter-
preters: Reusable metatheory for program analysis. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). New York, NY, USA: ACM.

Delaware, B., Pit-Claudel, C., Gross, J., & Chlipala, A. (2015). Fiat: Deductive synthesis of abstract
data types in a proof assistant. In Principles of Programming Languages (POPL). New York,
NY, USA: ACM.

Garcia, R., Clark, A. M., & Tanter, É. (2016). Abstracting gradual typing. In Principles of
Programming Languages (POPL). New York, NY, USA: ACM.

Jourdan, J.-H., Laporte, V., Blazy, S., Leroy, X., & Pichardie, D. (2015). A formally-verified C static
analyzer. In Principles of Programming Languages (POPL). New York, NY, USA: ACM.

Leroy, X. (2009). Formal verification of a realistic compiler. In Communications of the ACM
(CACM). New York, NY, USA: ACM.

Malecha, G. & Bengtson, J. (2016). Extensible and efficient automation through reflective tactics. In
Programming Languages and Systems (PLAS). New York, NY, USA: Springer-Verlag.

Martin-Löf, P. (1984). Intuitionistic type theory. Studies in proof theory. Naples, Italy: Bibliopolis.
Midtgaard, J. & Jensen, T. (2008). A calculational approach to control-flow analysis by abstract

interpretation. In Static Analysis Symposium (SAS). Berlin, Heidelberg: Springer-Verlag.
Miné, A. (2006). The octagon abstract domain. In Higher Order and Symbolic Computation (HOSC).

Hingham, MA, USA: Kluwer Academic Publishers.
Moggi, E. (1989). An abstract view of programming languages. Tech. rept. University of Edinburgh.
Monniaux, D. (1998). Réalisation mécanisée d’interpréteurs abstraits. Rapport de DEA, Université

Paris VII. In French.
Nielson, F, Nielson, H. R., & Hankin, C. (1999). Principles of program analysis. New York, NY,

USA: Springer-Verlag.
Norell, U. (2007). Towards a practical programming language based on dependent type theory.

PhD thesis, Chalmers University of Technology.
Pichardie, D. (2005). Interprétation abstraite en logique intuitionniste: Extraction d’analyseurs Java

certifiés. PhD thesis, Université Rennes 1. In French.
Scott, D. (1975). Data types as lattices. ISILC Logic Conference. Berlin, Heidelberg: Springer Berlin

Heidelberg.
Sergey, I., Midtgaard, J., & Clarke, D. (2012). Calculating graph algorithms for dominance and

shortest path. In Mathematics of Program Construction (MPC). Berlin, Heidelberg: Springer-
Verlag.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000066

60 D. Darais and D. Van Horn

Sergey, I., Devriese, D., Might, M., Midtgaard, J., Darais, D., Clarke, D., & Piessens, F. (2013).
Monadic abstract interpreters. In Programming Language Design and Implementation (PLDI).
New York, NY, USA: ACM.

Silva, P. F., & Oliveira, J. N. (2008). Galculator: Functional prototype of a Galois-connection based
proof assistant. In Principles and Practice of Declarative Programming (PPDP). New York, NY,
USA: ACM.

Tesson, J., Hashimoto, H., Hu, Z., Loulergue, F., & Takeichi, M. (2011). Program calculation in Coq.
In Algebraic Methodology and Software Technology (AMAST). Berlin, Heidelberg: Springer-
Verlag.

The Univalent Foundations Program. (2013). Homotopy type theory: Univalent foundations of
mathematics. Institute for Advanced Study. https://homotopytypetheory.org/book.

https://doi.org/10.1017/S0956796819000066 Published online by Cambridge University Press

https://homotopytypetheory.org/book
https://doi.org/10.1017/S0956796819000066

	Constructive Galois Connections
	Introduction
	Verifying a simple static analyzer
	The direct approach
	Classical abstract interpretation

	Constructive Galois connections
	Partial orders, monotonicity, and relations
	Relationship to classical Galois connections
	The ``specification effect''

	Case study 1: calculational AI
	Concrete semantics
	Abstract semantics with constructive Galois connections

	Case study 2: gradual type systems
	Mechanization in Agda
	Constructive Galois connection metatheory
	Constructing constructive Galois connections
	Strictly classical Galois connections
	Primitive Galois connections—classical and constructive
	Composing Galois connections—classical and constructive

	Comparing classical and constructive approaches
	Review: Cousot's original classical calculation
	Using IA explicitly
	Calculating with constructive Galois connections

	Optimal calculations—constructive and classical
	Multivalued constructive Galois connections
	Review: cousot's original classical calculation
	The constructive calculation

	Related work
	Perspectives on foundations
	Conclusions

