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Abstract

We demonstrate the global existence of weak solutions to a class of semilinear strongly damped wave
equations possessing nonlinear hyperbolic dynamic boundary conditions. The associated linear operator
is (−∆W )θ∂tu, where θ ∈ [ 1

2 , 1) and ∆W is the Wentzell–Laplacian. A balance condition is assumed
to hold between the nonlinearity defined on the interior of the domain and the nonlinearity on the
boundary. This allows for arbitrary (supercritical) polynomial growth of each potential, as well as mixed
dissipative/antidissipative behaviour.
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1. Introduction

Our aim is to show the global existence of weak solutions to the fractional strongly
damped wave equation with nonlinear hyperbolic dynamic boundary conditions. We
establish the global existence of weak solutions under a balance condition imposed
on the nonlinear terms. This condition is motivated by [20, Lemma 3.1] and allows
both nonlinearities to have supercritical polynomial growth. Special attention is given
to obtaining the compact resolvent for the associated linear operator which contains
(fractional) Wentzell–Laplacians.

Let Ω be a bounded domain in R3 with smooth boundary Γ := ∂Ω. Throughout, we
assume that θ ∈ [ 1

2 , 1), ω ∈ (0, 1] and α ∈ (0, 1]. We consider the following equations
in the unknown u = u(t, x).

∂2
t u − ω∆θ∂tu + ∂tu − ∆u + u + f (u) = 0 in (0,∞) ×Ω, (1.1)

∂2
t u + ω∂θn∂tu + ∂nu − αω∆Γ∂tu + ∂tu − ∆Γu + u + g(u) = 0 on (0,∞) × Γ. (1.2)

c© 2019 Australian Mathematical Publishing Association Inc.

432

https://doi.org/10.1017/S0004972719000078 Published online by Cambridge University Press

https://orcid.org/0000-0002-5623-3140
https://doi.org/10.1017/S0004972719000078


[2] Strongly damped wave equations 433

Additionally, we impose the initial conditions

u(0, x) = u0(x) and ∂tu(0, x) = u1(x) at {0} ×Ω, (1.3)

and

u|Γ(0, x) = γ0(x) and ∂tu|Γ(0, x) = γ1(x) at {0} × Γ. (1.4)

Here, ∆Γ denotes the Laplace–Beltrami operator (see, for example, [6]).
We assume that f ∈ C(R) and g ∈ C1(R) satisfy the sign conditions

lim inf
|s|→∞

f (s)
s

> −M1, g′(s) ≥ −M2 for all s ∈ R, (1.5)

for some M1,M2 > 0, and the growth assumptions, for all s ∈ R,

| f (s)| ≤ `1(1 + |s|r1−1), |g(s)| ≤ `2(1 + |s|r2−1), (1.6)

for some positive constants `1 and `2, and where r1, r2 ≥ 2. In addition, we assume that
there exists ε ∈ (0, ω) so that the following balance condition holds: that is,

lim inf
|s|→∞

1
|s|r1

(
f (s)s +

|Γ|

|Ω|
g(s)s −

C2
Ω
|Γ|2

4ε|Ω|2
|g′(s)s + g(s)|2

)
> 0, (1.7)

for r1 ≥ max{r2, 2(r2 − 1)}, where CΩ > 0 is the best Sobolev constant in the Sobolev–
Poincaré inequality

‖u − 〈u〉Γ‖L2(Ω) ≤ CΩ‖∇u‖L2(Ω), 〈u〉Γ :=
1
|Γ|

∫
Γ

trD(u) dσ, for all u ∈ H1(Ω). (1.8)

Let us provide further context for the balance condition (1.7) in our setting (see also
[20] and [12] for other settings). Suppose that, for |y| → ∞, the internal and boundary
functions satisfy

lim
|y|→∞

f (y)
|y|r1−1 = (r1 − 1)c f , lim

|y|→∞

g′(y)
|y|r2−2 = (r2 − 1)cg,

for some constants c f , cg ∈ R \ {0}. In particular,

f (y)y ∼ c f |y|r1 , g(y)y ∼ cg|y|r2 as |y| → ∞.

For the case of bulk dissipation (that is, c f > 0) and antidissipative behaviour at the
boundary Γ (that is, cg < 0), assumption (1.7) is automatically satisfied provided that
r1 > max{r2, 2(r2 − 1)}. Furthermore, if 2 < r2 < 2(r2 − 1) = r1 and

c f >
1
4ε

(CΩ|Γ|cgr2

|Ω|

)2
,

for some ε ∈ (0, ω), then (1.7) is again satisfied. In the case when f and g are sublinear
(that is, r1 = r2 = 2 in (1.6)), the condition (1.7) is also automatically satisfied provided
that (

c f +
|Γ|

|Ω|
cg

)
>

1
ε

(CΩ|Γ|cg

|Ω|

)2
for some ε ∈ (0, ω).
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Notation and conventions. We use the following notation and conventions. Norms
are denoted by ‖ · ‖B, where B is the underlying Banach space. The notation (·, ·)H
denotes the inner product on the Hilbert space H. The dual product on H∗ × H is
denoted by 〈·, ·〉H∗×H . The notation 〈·, ·〉 is also used to denote the product on the
phase space and various other vectorial function spaces. The vector-valued function(

u
v

)
is denoted by (u, v)tr. Throughout, C > 0 will denote a generic constant which

may depend on various structural parameters such as |Ω|, |Γ|, M1, M2 and so on, and
may change from line to line. Also, Q : R+ → R+ will be a generic monotonically
increasing function whose specific dependence on other parameters will be made
explicit on each occurrence. All of these quantities are independent of the perturbation
parameters θ, α and ω.

Outline of the article. In Section 2 we establish the variational formulation of
Problem P and define weak solutions. A proof of the existence of global weak
solutions is developed in Section 3. Because of the nature of the balance condition,
a continuous dependence-type estimate is not available. We give some remarks on
this difficulty and plans for further research. Appendix A contains some explicit
characterisations for the fractional Wentzell–Laplacian used throughout the article, as
well as a compact embedding result that we need to draw upon.

2. Formulation of the model problem

In this section, we first recall the Wentzell–Laplacian defined on vectorial Hilbert
spaces (see [1, Section 2] and [10, Section 2 and Appendix]). Then we give the basic
functional set-up in order to formulate the model problem. We also provide various
results pertaining to the problem.

Let λΩ > 0 denote the best constant satisfying the Sobolev inequality in Ω: that is:

λΩ

∫
Ω

u2dx ≤
∫

Ω

(|∇u|2 + u2) dx.

The Laplace–Beltrami operator −∆Γ on the surface Γ is positive definite and self-
adjoint on L2(Γ) with domain D(∆Γ). The Sobolev spaces Hs(Γ), for s ∈ R, may be
defined as Hs(Γ) = D((∆Γ)s/2) endowed with the norm whose square is given by

‖u‖2Hs(Γ) := ‖u‖2L2(Γ) + ‖(−∆Γ)s/2u‖2L2(Γ) for all u ∈ Hs(Γ).

Let λΓ > 0 denote the best constant satisfying the Sobolev inequality on Γ: that is:

λΓ

∫
Γ

u2dσ ≤
∫

Γ

(|∇Γu|2 + u2) dσ.

Next, recall that Ω is a bounded domain of R3 with boundary Γ, which we assume
is of class C2. To this end, consider the space X2 = L2(Ω, dµ), where dµ = dx|Ω ⊕ dσ
is such that dx denotes the Lebesgue measure on Ω and dσ denotes the natural surface
measure on Γ. Then X2 = L2(Ω, dx) ⊕ L2(Γ, dσ) may be identified by the natural norm

‖u‖2
X2 =

∫
Ω

|u(x)|2dx +

∫
Γ

|u(x)|2dσ.
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If we identify every u ∈ C(Ω) with U = (u|Ω, u|Γ)tr ∈ C(Ω) ×C(Γ), we may also define
X2 to be the completion of C(Ω) with respect to the norm ‖ · ‖X2 . Thus, in general, any
function u ∈ X2 will be of the form u =

(
u1
u2

)
with u1 ∈ L2(Ω, dx) and u2 ∈ L2(Γ, dσ). It

is important to note that there need not be any connection between u1 and u2. From
now on, the inner product in the Hilbert space X2 will be denoted by 〈·, ·〉X2 . The
Dirichlet trace map trD : C∞(Ω)→ C∞(Γ), defined by trD(u) = u|Γ, extends to a linear
continuous operator trD : Hr(Ω)→ Hr−1/2(Γ), for all r > 1/2, which is onto for 1/2 <
r < 3/2. This map also possesses a bounded right inverse tr−1

D : Hr−1/2(Γ)→ Hr(Ω)
such that trD(tr−1

D ψ) = ψ for any ψ ∈ Hr−1/2(Γ). We can thus introduce the subspaces of
Hr(Ω) × Hr−1/2(Γ) and Hr(Ω) × Hr(Γ), respectively, by

Vr
0 := {U = (u, γ) ∈ Hr(Ω) × Hr−1/2(Γ) : trD(u) = γ},
Vr := {U = (u, γ) ∈ Vr

0 : trD(u) = γ ∈ Hr(Γ)},

for r > 1/2, and note that Vr
0, V

r are not product spaces. However, there are dense and
compact embeddings Vr1

0 ⊂ V
r2
0 for any r1 > r2 > 1/2 (by definition, this also true for

the sequence of spaces Vr1 ⊂ Vr2 ). The norms on the spaces Vr
0, V

r are defined by

‖U‖2Vr
0

:= ‖u‖2Hr(Ω) + ‖γ‖2Hr−1/2(Γ), ‖U‖2Vr := ‖u‖2Hr(Ω) + ‖γ‖2Hr(Γ).

We consider the basic (linear) operator associated with the model problem (1.1)–
(1.4), the so-called Wentzell–Laplacian. Let

∆W

(
u1

u2

)
:=

(
∆u1 − u1

−∂nu1 + ∆Γu2 − u2

)
,

with

D(∆W) :=
{
U =

(
u1

u2

)
∈ V1 : −∆u1 ∈ L2(Ω), ∂nu1 − ∆Γu2 ∈ L2(Γ)

}
.

By [10, see Appendix and, in particular, Theorem 5.3], the operator (∆W , D(∆W))
is a self-adjoint and strictly positive operator on X2, and the resolvent operator
(I + ∆W)−1 ∈ L(X2) is compact. Since Γ is of class C2, then D(∆W) = V2. Indeed, the
map L : U 7→ ∆WU, as a mapping from V2 into X2 = L2(Ω) × L2(Γ), is an isomorphism
and there is a positive constant C∗, independent of U = (u, γ)tr, such that

C−1
∗ ‖U‖V2 ≤ ‖L(U)‖X2 ≤ C∗‖U‖V2 for all U ∈ V2

(see Lemma 2.1 and also [7]).
The following basic elliptic estimate is taken from [11, Lemma 2.2].

Lemma 2.1. Consider the linear boundary value problem,{
−∆u = p1 in Ω,
−∆Γu + ∂nu + u = p2 on Γ.

If (p1, p2) ∈ Hs(Ω) × Hs(Γ) for s ≥ 0 and s + 1
2 < N then, for some constant C > 0,

‖u‖Hs+2(Ω) + ‖u‖Hs+2(Γ) ≤ C(‖p1‖Hs(Ω) + ‖p2‖Hs(Γ)).
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We also recall the following basic inequality which gives interior control over some
boundary terms (see [9, Lemma A.2]).

Lemma 2.2. Let s > 1 and u ∈ H1(Ω). Then, for every ε > 0, there exists a positive
constant Cε ∼ ε

−1 such that,

‖u‖sLs(Γ) ≤ ε‖∇u‖2L2(Ω) + Cε(‖u‖
γ
Lγ(Ω) + 1),

where γ = max{s, 2(s − 1)}.

For more details, we refer the reader to [5, 7] and [13].
Finally, since the operator ∆W with domain D(∆W) is positive and self-adjoint on

X2, we may define fractional powers of ∆W (see Appendix A). Indeed, with θ ∈ [ 1
2 , 1),

α ∈ (0, 1] and ω ∈ (0, 1], we define

∆θ
W

(
u1

u2

)
:=

(
∆θu1 − u1

−∂θnu1 + ∆Γu2 − u2

)
and

∆
θ,α,ω
W

(
u1

u2

)
:=

(
ω∆θu1 − u1

−ω∂θnu1 + αω∆Γu2 − u2

)
with domain

D(∆θ,α,ω
W ) :=

{
U =

(
u1

u2

)
∈ V1 : −ω∆θu1 ∈ L2(Ω), ω∂θnu1 − αω∆Γu2 ∈ L2(Γ)

}
.

Hence, ∆
θ,1,1
W = ∆θ

W . The fractional flux ∂θn is defined as follows. Consider ∂nu = ∇u · n,
and recall that ∂nu ∈ L2(Γ) whenever u ∈ H3/2(Ω). So we can define ∂θnu = ∇

θ/2
W u · n

when u ∈ H
1
2 +θ(Ω), which guarantees the fractional flux ∂θnu ∈ L2(Γ). (These fractional

flux operators are explicitly written in Appendix A.) To define the linear operator
associated with the model problem (1.1)–(1.4), let U = (u1, u2) ∈ V1, V = (v1, v2) ∈ X2

and X = (U,V). Motivated by [4], we define the unbounded linear operatorAθ,α,ω by

Aθ,α,ωX :=
(

0 I2×2

∆W ∆
θ,α,ω
W

) (
U
V

)
=

(
V

∆WU + ∆
θ,α,ω
W V

)
=

(
V

∆
θ,1,1
W (∆1−θ,1,1

W U + ∆
0,α,ω
W V)

)
with domain

D(Aθ,α,ω) :=
{
X =

(
U
V

)
∈ V1 × X2 : ∆

1−θ,1,1
W U + ∆

0,α,β
W V ∈ D(∆θ,1,1

W )
}
.

By [16, Theorem 3.1(a)], the resolvent (I4×4 +Aθ,α,ω)−1 ∈ L(V1 × X2) is compact.
Hence, we can support the local existence of weak solutions (defined below) with a
Galerkin method. Next, we define a nonlinear mapping on V1 × X2 by

F(U) :=
(

0
− f (u)

)
, G(U) :=

(
0
−g(γ)

)
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and

F (X) :=
(
F(U)
G(U)

)
=


0
− f (u)

0
−g(γ)

 for U ∈ V1.

Due to the two embeddings, H1(Ω) ↪→ Ls1 (Ω), s1 ∈ [1, 6], and H1(Γ) ↪→ Ls2 (Ω),
s2 ∈ [1,∞), one can show that, for r1 ∈ [1,3] in (1.6), F : V1 ×X2→ V1 ×X2 is locally
Lipschitz (see [14, Lemma 2.6]). With r1 ≥ 1 arbitrary, this motivates us to set

Ṽs,r1 = {U = (u, γ)tr ∈ [Hs(Ω) ∩ Lr1 (Ω)] × Hs(Γ) : trD(u) = γ}

with the canonical norm whose square is given by
‖U‖2

Ṽs,r1
:= ‖u‖2Hs(Ω) + ‖u‖r1

Lr1 (Ω) + ‖γ‖2Hs(Γ),

and to set H0 := Ṽ1,r1 × X2. The space H0 is a Hilbert space with the norm whose
square is given, for X = (U,V) ∈ H0, by
‖X‖2

H0
:= ‖U‖2

Ṽ1,r1
+ ‖V‖2

X2 = ‖u‖2H1(Ω) + ‖u‖r1
Lr1 (Ω) + ‖v‖2L2(Ω) + ‖γ‖2H1(Γ) + ‖δ‖2L2(Γ)

= ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) + ‖u‖r1
Lr1 (Ω) + ‖v‖2L2(Ω) + ‖∇Γγ‖

2
L2(Γ) + ‖γ‖2L2(Γ) + ‖δ‖2L2(Γ).

The spaceH0 is our weak energy phase space. GivenX0 = (U0,U1) ∈ H0 = Ṽ1,r1 ×X2,
the abstract formulation of Problem P takes the form

d
dt
X(t) =Aθ,α,ωX(t) + F (X(t)) for t > 0,

X(0) = X0.

We can now introduce the variational formulation of Problem P.
Definition 2.3. Let θ ∈ [ 1

2 , 1), α ∈ (0, 1], ω ∈ (0, 1], T > 0 and X0 = (U0,U1) ∈ H0. A
function X(t) = (U(t), ∂tU(t)) = (u(t), u|Γ(t), ∂tu(t), ∂tu|Γ(t)) satisfying

U ∈ L∞(0,T ;V1),

∂tU ∈ L∞(0,T ;X2),
√
ω∂tu ∈ L2(0,T ; Hθ(Ω)),

∂2
t U ∈ L∞(0,T ; (V1)∗),

for almost all t ∈ (0,T ] is called a weak solution to Problem P with initial data X0 if
d
dt
〈X(t),Ξ〉V−1×V1 = 〈Aθ,α,ωX(t),Ξ〉H0 + 〈F (X(t)),Ξ〉H0 (2.1)

holds almost everywhere on [0, T ] and for all Ξ = (Ξ1, Ξ2) ∈ V1 × V1. The initial
conditions (1.3)–(1.4) hold in the L2-sense, that is,

〈X(0),Ξ〉H0 = 〈X0,Ξ〉H0 for every Ξ ∈ V1 × V1.

We say that X(t) = (U(t), ∂tU(t)) is a global weak solution of Problem P if it is a weak
solution on [0,T ] for any T > 0.
Remark 2.4. Observe that we are solving a more general problem because γ0 and γ1,
from U0 and U1, respectively, may be taken to be initial data independent of u and ∂tu.
However, if ∂tu(t) ∈ Hs(Ω) for all t > 0 and for some s > 1/2, then γt(t) = ∂tu|Γ(t).
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3. Global existence

Theorem 3.1. Let X0 = (U0,U1) ∈ H0 satisfy ‖X0‖H0 ≤ R for some R > 0. Then there
exists a global weak solution to Problem P satisfying the additional regularity

√
αω∂tu ∈ L2(0,T ; H1(Γ)). (3.1)

Proof. We proceed in four steps.
Step 1. An a priori estimate. In (2.1), take Ξ = (∂tU, ∂tU) to find the differential identity

1
2

d
dt

{
‖∂tU‖2X2 + ‖U‖2

V1 + 2(F(u), 1)L2(Ω) + 2(G(u), 1)L2(Γ)
}

+ ω‖∇θ∂tu‖2L2(Ω) + ‖∂tu‖2L2(Ω) + αω‖∇∂tu‖2L2(Γ) + ‖∂tu‖2L2(Γ) = 0. (3.2)

Using (1.6) and setting F̃′ = f and G̃′ = g, a simple integration by parts on (1.5) gives,
for all u ∈ H1(Ω) and γ ∈ H1(Γ),

(F̃(u), 1)L2(Ω) ≥ ( f (u), u)L2(Ω) +
M1

2
‖u‖2L2(Ω) (3.3)

and

(G̃(γ), 1)L2(Γ) ≥ (g(γ), γ)L2(Γ) +
M2

2
‖γ‖2L2(Γ). (3.4)

To bound the products on the right-hand sides of (3.3) and (3.4) from below, we utilise
(1.7). Following [9, (2.22)], [12, (3.34)] and [20, (3.11)], we estimate the products as

( f (u), u)L2(Ω) + (g(u), u)L2(Γ)

=

∫
Ω

(
f (u)u +

|Γ|

|Ω|
g(u)u

)
dx −

|Γ|

|Ω|

∫
Ω

(
g(u)u −

1
|Γ|

∫
Γ

g(u)u dσ
)

dx. (3.5)

Using the Poincaré inequality (1.8) and Young’s inequality, for all ε > 0,

|Γ|

|Ω|

∫
Ω

(
g(u)u −

1
|Γ|

∫
Γ

g(u)u dσ
)

dx ≤ CΩ

|Γ|

|Ω|

∫
Ω

|∇(g(u)u)| dx

= CΩ

|Γ|

|Ω|

∫
Ω

|∇u(g′(u)u + g(u))| dx

≤ ε‖∇u‖2L2(Ω) +
C2

Ω
|Γ|2

4ε|Ω|2

∫
Ω

|g′(u)u + g(u)|2 dx.

(3.6)

Then combining (3.5) and (3.6) and applying assumption (1.7) yields

( f (u), u)L2(Ω) + (g(u), u)L2(Γ) ≥ ‖u‖
r1
Lr1 (Ω) − ε‖∇u‖2L2(Ω) −Cδ

for some positive constants δ and Cδ that are independent of t and ε. Hence, together
with (3.3) and (3.4), this becomes

(F(u), 1)L2(Ω) + (G(u), 1)L2(Γ) ≥ ‖u‖
r1
Lr1 (Ω) +

M1

2
‖u‖2L2(Ω) +

M2

2
‖u‖2L2(Γ) − ε‖∇u‖2L2(Ω) −Cδ.

(3.7)
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Moreover, (3.7) provides a lower bound to the functional

E(t) := ‖∂tU(t)‖2
X2 + ‖U(t)‖2

V1 + 2(F(u(t)), 1)L2(Ω) + 2(G(u(t)), 1)L2(Γ).

Integrating the identity (3.2) over (0, t),

E(t) + 2
∫ t

0

(
ω‖∇θ∂tu(τ)‖2L2(Ω) + αω‖∇∂tu(τ)‖2L2(Γ) + ‖∂tU(τ)‖2

X2

)
dτ = E(0). (3.8)

We can find an upper bound on E(0) with (1.6). Evidently,

2(F(u(0)), 1)L2(Ω) + 2(G(u(0)), 1)L2(Γ)

≤ `1(‖u(0)‖L1(Ω) + ‖u(0)‖r1
Lr1 (Ω)) + `2(‖u(0)‖L1(Γ) + ‖u(0)‖r2

Lr2 (Γ)). (3.9)

Hence, (3.9) and the embedding V1 ↪→ X2 show that

E(0) ≤ ‖∂tu(0)‖2L2(Ω) + ‖∇u(0)‖2L2(Ω) + ‖u(0)‖2L2(Ω) + ‖∂tu(0)‖2L2(Γ) + ‖∇u(0)‖2L2(Γ)

+ ‖u(0)‖2L2(Γ) + `1(‖u(0)‖L1(Ω) + ‖u(0)‖r1
Lr1 (Ω)) + `2(‖u(0)‖L1(Γ) + ‖u(0)‖r2

Lr2 (Γ))

≤ ‖∂tU(0)‖2
X2 + ‖U(0)‖2

V1 + C
(
‖U(0)‖V1 + ‖u(0)‖r1

Lr1 (Ω) + ‖u(0)‖r2
Lr2 (Γ)

)
. (3.10)

Thus (3.8) and (3.10) yield, for all t ≥ 0,

‖∂tU(t)‖2
X2 + ‖U(t)‖2

V1 + 2(F(u(t)), 1)L2(Ω) + 2(G(u(t)), 1)L2(Γ)

+ 2
∫ t

0

(
ω‖∇θ∂tu(τ)‖2L2(Ω) + αω‖∇∂tu(τ)‖2L2(Γ) + ‖∂tU(τ)‖2

X2

)
dτ

≤ ‖∂tU(0)‖2
X2 + ‖U(0)‖2

V1 + C
(
‖U(0)‖V1 + ‖u(0)‖r1

Lr1 (Ω) + ‖u(0)‖r2
Lr2 (Γ)

)
≤ ‖∂tU(0)‖2

X2 + ‖U(0)‖2
V1 + C

(
‖U(0)‖V1 + ‖u(0)‖r1

Lr1 (Ω) + 1
)
, (3.11)

where the last inequality follows from Lemma 2.2. Now we see that, for any T > 0,

U ∈ L∞(0,T ;V1), (3.12)

∂tU ∈ L∞(0,T ;X2), (3.13)
√
ω∂tu ∈ L2(0,T ; Hθ(Ω)), (3.14)

√
αω∂tu ∈ L2(0,T ; H1(Γ)), (3.15)

F(u) ∈ L∞(0,T ; L1(Ω)), (3.16)

G(u) ∈ L∞(0,T ; L1(Γ)). (3.17)

We have found X ∈ L∞(0, T ;H0). Moreover, ∆WU ∈ L∞(0, T ; (V1)∗) because
U ∈ L∞(0, T ;V1) and ∆

θ,α,ω
W ∂tU ∈ L2(0, T ; (V1)∗) because

√
αω∂tU ∈ L2(0, T ;V1).

Therefore, after comparing terms in the first equation of (3.2), we see that

∂2
t U ∈ L2(0,T ; (V1)∗). (3.18)

Hence, this justifies our choice of test function in (3.2). With (3.15), we also find (3.1),
as claimed. This concludes Step 1.
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Step 2. A Galerkin basis. According to Section 2, for each θ ∈ [ 1
2 , 1), the operator

Aθ,α,ω admits a system of eigenfunctions Ψ
θ,α,ω
i = (ψθ,α,ω, φθ,α,ω, ψθ,α,ω

|Γ
, φθ,α,ω
|Γ

) such that

{Ψ
θ,α,ω
i }∞i=1 ⊂ D(Aθ,α,ω) ∩ (C2(Ω) ×C2(Γ) ×C2(Ω) ×C2(Γ)) and

Aθ,α,ωΨ
θ,α,ω
i = ΛiΨ

θ,α,ω
i for i = 1, 2, . . . ,

where the eigenvalues Λi = Λ
θ,α,ω
i ∈ (0, +∞) may be put into increasing order and

counted according to their multiplicity to form a diverging sequence. This means that
the pair (Λi,Ψi), Ψi = Ψ

θ,α,ω
i is a classical solution of the elliptic problem{
−∆ψi + ψi + ω(−∆)θφi + φi = Λiψi in Ω

−αω∆Γφi|Γ + φi|Γ − ∆Γψi|Γ + ψi|Γ = Λiψi|Γ on Γ.

By the standard spectral theory, these eigenfunctions form an orthogonal basis in H0
that is orthonormal in L2(Ω) × L2(Ω) × L2(Γ) × L2(Γ).

Let T > 0 be fixed. For n ∈ N, define the spaces

Hn := span{Ψθ,α,ω
1 , . . . ,Ψθ,α,ω

n } ⊂ H0 and H∞ :=
∞⋃

n=1

Hn.

Obviously, H∞ is a dense subspace of H0. For each n ∈ N, let Pn :H0 → Hn denote
the orthogonal projection ofH0 onto Hn. We seek functions of the form

X(n)(t) =

n∑
i=1

Ai(t)Ψθ,α,ω
i (3.19)

that will satisfy the associated discretised Problem Pn described below. The functions
Ai are assumed to be (at least) C2((0,T )) for i = 1, . . . , n. Precisely,

u(n)(t) =

n∑
i=1

Ai(t)ψθ,α,ωi , ∂tu(n)(t) =

n∑
i=1

A′i(t)ψ
θ,α,ω
i , (3.20)

and

u(n)
|Γ

(t) =

n∑
i=1

Ai(t)φθ,α,ωi|Γ , ∂tu
(n)
|Γ

(t) =

n∑
i=1

A′i(t)φ
θ,α,ω
i|Γ . (3.21)

Using semigroup properties of Aθ,α,ω, the domain D(Aθ,α,ω) is dense in H0. So, to
approximate the given initial data X0 ∈ H0, we may take X(n)

0 ∈ D(Aθ,α,ω) such that
X

(n)
0 →X0 inH0.
For T > 0 and for each integer n ≥ 1, the weak formulation of the approximate

Problem Pn is as follows: find X(n) given by (3.19) such that, for all X = (U,V) ∈ Hn,〈
∂tX

(n),X
〉
H0

+
〈
Aθ,α,ωX

(n),X
〉
H0

+
〈
PnF

(
X(n)),X〉

H0
= 0 (3.22)

for almost all t ∈ (0,T ), subject to the initial conditions〈
X(n)(0),X

〉
H0

=
〈
X

(n)
0 ,X

〉
H0
. (3.23)
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To show the existence of at least one solution to (3.22)–(3.23), we now suppose that
n is fixed and we take X = X(k) for some 1 ≤ k ≤ n. Then, substituting the discretised
functions (3.20)–(3.21) into (3.22)–(3.23), we find a system of ordinary differential
equations in the unknowns Ak = Ak(t) on X(n). Also, we recall that〈

PnF
(
X(n)),X(k)〉

H0
=

〈
F

(
X(n)),PnX

(k)〉
H0

=
〈
F

(
X(n)),X(k)〉

H0
.

Since f ∈ C(R) and g ∈ C1(R), we may apply Cauchy’s theorem for ordinary
differential equations to find that there is Tn ∈ (0, T ) such that Ak ∈ C2((0, Tn)), for
1 ≤ k ≤ n, and that (3.22) holds in the classical sense for all t ∈ [0,Tn]. This shows the
existence of at least one local solution to the approximate Problem Pn and ends Step 2.

Step 3. Boundedness and continuation of approximate maximal solutions. The a priori
estimate (3.11) holds for any approximate solution X(n) of Problem Pn on the interval
[0,Tn), where Tn < T . Thanks to the boundedness of the projector Pn,

‖∂tU(n)(t)‖2
X2 + ‖U(n)(t)‖2

V1 + 2(F(u(n)(t)), 1)L2(Ω) + 2(G(u(n)(t)), 1)L2(Γ)

+ 2
∫ t

0

(
ω‖∇θ∂tu(n)(τ)‖2L2(Ω) + αω‖∇∂tu(n)(τ)‖2L2(Γ) + ‖∂tU(n)(τ)‖2

X2

)
dτ

≤ ‖∂tU(0)‖2
X2 + ‖U(0)‖2

V1 + C
(
‖U(0)‖V1 + ‖u(0)‖r1

Lr1 (Ω) + ‖u(0)‖r2
Lr2 (Γ)

)
. (3.24)

Since the right-hand side of (3.24) is independent of n and t, every approximate
solution may be extended to the whole interval [0, T ], and because T > 0 is arbitrary,
any approximate solution is a global one. From Step 1, we also obtain the uniform
bounds (3.12)–(3.18) for each approximate solution X(n). Thus,

U(n) ∈ L∞(0,T ;V1), (3.25)

∂tU(n) ∈ L∞(0,T ;X2), (3.26)
√
ω∂tu(n) ∈ L2(0,T ; Hθ(Ω)), (3.27)

√
αω∂tu(n) ∈ L2(0,T ; H1(Γ)), (3.28)

F(u(n)) ∈ L∞(0,T ; L1(Ω)), (3.29)

G(u(n)) ∈ L∞(0,T ; L1(Γ)). (3.30)

This concludes Step 3.

Step 4. Convergence of approximate solutions. By applying Alaoglu’s theorem
(see, for example, [19, Theorem 6.64]) to the uniform bounds (3.25)–(3.30), we
see that there is a subsequence of X(n), generally not relabelled, and a function
X = (u, ∂tu, u|Γ, ∂tu|Γ) that obey (3.12)–(3.18) such that, as n→∞,

U(n) ⇀ U weakly-∗ in L∞(0,T ;V1), (3.31)

∂tU(n) ⇀ ∂tU weakly-∗ in L∞(0,T ;X2), (3.32)
√
ω∂tu(n) ⇀ u weakly in L2(0,T ; Hθ(Ω)), (3.33)

√
αω∂tu(n) ⇀ u weakly in L2(0,T ; H1(Γ)), (3.34)

∂tU(n) ⇀ ∂tU weakly in L2(0,T ; (V1)∗). (3.35)
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Using the above convergences (3.31) and (3.32), as well as the fact that the injection
V1 ↪→ X2 is compact, we draw upon the conclusion of the Aubin–Lions lemma (see
Lemma A.1) to deduce that the embedding

W := {U ∈ L2(0,T ;V1) : ∂tU ∈ L2(0,T ;X2)} ↪→ L2(0,T ;X2) (3.36)

is compact (see, for example, [22]). Thus,

U(n) → U strongly in L2(0,T ;X2) (3.37)

and U(n) converges to U almost everywhere in Ω × (0,T ). The last strong convergence
property is enough to pass to the limit in the nonlinear terms since f , g ∈ C1(R) (see,
for example, [9, 13]). Indeed, on account of standard arguments (see also [5]),

PnF (X(n)) ⇀ F (X) weakly in L2(0,T ;H0). (3.38)

At this point, the convergence properties (3.31)–(3.38) are sufficient to pass to the limit
as n→∞ in equation (3.22). Additionally, we recover (2.1) using standard density
arguments. The proof of the theorem is finished. �

Concerning uniqueness. A proof of the following conjecture is needed to show that
the weak solutions to Problem P, constructed above, depend continuously on initial
data, and hence are unique.

Conjecture 3.2. Let T > 0, R > 0 andX01 = (U01,U11),X02 = (U02,U12) ∈ H0 be such
that ‖X01‖H0 ≤ R and ‖X02‖H0 ≤ R. Any two weak solutions, X1(t) and X2(t), to
Problem P on [0,T ] corresponding to the initial data X01 and X02, respectively, satisfy

‖X1(t) − X2(t)‖H0 ≤ eQ(R)t‖X01 − X02‖H0 for all t ∈ [0,T ].

In order to prove the conjecture, typically, one needs to control products of the form

( f (u1) − f (u2), ∂tū)L2(Ω) and (g(u1) − g(u2), ∂tū)L2(Γ),

where u1 and u2 are two weak solutions corresponding to (possibly the same) data
X01 = (U01,U11) = (u01, γ01, u11, γ11) and X02 = (U02,U12) = (u02, γ02, u12, γ12). A
suitable control on ‖ f (u1) − f (u2)‖Lq(Ω), for example, is readily available when we
assume (1.6) with r1 ∈ [1, 3] (see [14, Lemma 2.6])), but this is no longer valid
when we assume that r1 ≥ 1 is arbitrary. In the later case, it would be interesting to
investigate whether a generalised semiflow in the sense of [2, 3] exists. Under certain
conditions, such generalised semiflows admit global attractors which have similar
properties to their well-posed counterparts (see [15]).

Appendix A

As introduced in Section 2, the Wentzell–Laplacian ∆W on X2 with domain

D(∆W) := {U = (u, γ)tr ∈ V1 : −∆u ∈ L2(Ω), ∂nu = −γ + ∆Γγ ∈ L2(Γ), γ = trD(u)}
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is positive, self-adjoint and has compact resolvent [1]. From [18, Theorem A.37
(Spectral Theorem) and (A.28)], for each θ ∈ [ 1

2 , 1),

D(∆θ
W) =

{
U = (u, γ)tr ∈ D(∆W) :

∞∑
j=1

Λ2θ
j |(U,W j)|2 <∞

}
, where ∆WW j = Λ jW j,

and the sequence (Λ j)∞j=1 contains real, strictly positive eigenvalues, each having finite
multiplicity, which can be ordered into a nondecreasing sequence in which

lim
j→∞

Λ j = +∞.

We mention some results from [10, Theorem 5.2 (c)] concerning the regularity of
the eigenfunctions W j. If Γ is Lipschitz, then every eigenfunction W j ∈ V

1 and
W j ∈ C(Ω) ∩ C∞(Ω) for every j. If Γ is of class C2, then every eigenfunction
W j ∈ V

1 ∩C2(Ω) for every j.
We define the fractional powers of the Wentzell–Laplacian with a Fourier series,

∆θ
WU =

∞∑
j=1

Λ2θ
j (U,W j)W j,

and we can rely on [8, (2.6)] to define the fractional flux, where

∆
θ/2
W U = ∇θWU =

N∑
i=1

∂θU
∂xθi

ei

and
dθU
dxθ

=
1

Γ(1 − θ)
d
dx

∫ x

−∞

(x − y)−θU(y) dy.

The following result is the classical Aubin–Lions lemma (see [17] and, for example,
[21, Lemma 5.51] or [23, Theorem 3.1.1]).

Lemma A.1. Let X, Y, Z be Banach spaces, where Z ←↩ Y ←↩ X with continuous
injections, the second being compact. Then the following embeddings are compact:

W := {χ ∈ L2(0,T ; X), ∂tχ ∈ L2(0,T ; Z)} ↪→ L2(0,T ; Y).
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