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LOCALIZATION THEORIES FOR SIMPLICIAL PRESHEAVES

P. G. GOERSSAND J. F. JARDINE

ABSTRACT. Most extant localization theories for spaces, spectra and diagrams of
such can be derived from asimple list of axiomswhich are verified in broad generality.
Several new theories are introduced, including localizations for simplicial presheaves
and presheaves of spectra at homology theories represented by presheaves of spectra,
and a theory of localization along a geometric topos morphism. The f-localization
concept has an analog for simplicial presheaves, and specializes to the Al-local theory
of Morel-Voevodsky. This theory answers a question of Soulé concerning integral
homology localizations for diagrams of spaces.

Thiswork wasmotivated in part by the following question of Soulé&: givenasimplicial
presheaf X onasite C, how does one produce amap of simplicial presheavesX — LyzX
in such away that each of the maps in sections X(U) — LyzX(U), U € C, isanintegral
homology localization map in the sense of Bousfield? Secondly, if Y is a simplicial
presheaf which isintegrally homology local in asuitable sense, isit the casethat the map
X — LyzX induces an isomorphism

[LhzX. Y] = [X.Y]

relating sets of morphisms in the homotopy category of simplicial presheaves on C?
These questions are related to the definition of the K-theory of simplicial sheaves that
appearsin [8].

Thefirst of these questionsis easily answered by observing that associated fibrations
in the closed model category describing Bousfield's homology localizations are created
with small object constructionsand are therefore natural; in particular thereisafunctorial
method of picking out afibrant model Y — Ly7Y for arbitrary simplicial sets 'Y, which
restricts in particular to anatural simplicial presheaf map X(U) — LyzX(U), U € C.

The second question involves homotopy coherence, and is therefore much more sub-
tle: the analogous space-level problem can be solved by Bousfield's original techniques,
but this does not imply the functorial global solution that Soulé requires. The problem
is solved by using methodsintroduced in this paper, and in particular by applying Theo-
rem 3.9 below. In the case corresponding to the identity functor on the site C , the chaotic
topology on C and the constant presheaf of spectra associated to the Eilenberg-Mac
Lane spectrum HZ, Theorem 3.9 implies that there is aclosed simplicial model structure
in the sense of Quillen on the category SPre(C) of simplicial presheaves on C such
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that the cofibrations are the pointwise monomorphisms and the weak equivalences are
the pointwise integral homology isomorphisms. The map i: X — LyzX is then just a
choice of fibrant model (i.e., trivial cofibration, taking values in fibrant object) for this
closed model structure, and the induced mapsin sectionsi: X(U) — LyzX(U) arefibrant
models for the corresponding theory on simplicial sets (i.e., integral homology local-
izationsin Bousfield's original sense), because the U-sections functor has a left adjoint
which preserves cofibrations and takes integral homology isomorphisms to pointwise
integral homology isomorphisms. Furthermore, if we say that asimplicial presheaf Y is
integral homology local if it's fibrant with respect to this new closed model structure
on SPre(C), then Y is globally fibrant in the traditional sense, and the closed simplicial
model structure gives an isomorphism

m(Luz X, Y) == 7(X,Y)

in naive homotopy classes of mapswhich isinduced by the HZ-trivial cofibrationi (here
m(X,Y) = mphom(X,Y), for example).

This application is based on a very special case of the results that appear here,
which hold in striking generality. The overall point is that a very wide class of results,
which includes objects as apparently diverse as Theorem 3.9, the closed model structure
for simplicial presheaves [15] (see also Remark 2.9), a general f-localization theory
for simplicial presheaves (Theorem 4.6), the closed model structures of various stable
categories (Theorem 3.7) and ahomol ogy localization techniquefor presheavesof spectra
(Theorem 3.10), all arise from a simple collection of axioms for classes of cofibrations
and weak equival ences(seeaxioms E1-E7 almostimmediately below, and then sE1-sE7
for spectrain Section 3). The proofs, in all cases, involve relatively simple cardinality
counts which are modelled simultaneously on Bousfield's original work on homology
localization and the derivation of the closed model structures for simplicial presheaves.
Somenew theorieshave been discovered along theway, including anotion of localization
along ageometric topos morphism (Theorem 2.7, Theorem 3.10) and aresulting method
of localizing a space or a spectrum at a generalized homology theory arising from a
presheaf of spectra on an arbitrary site.

Thereis a further application for these techniques, in that the Morel-Voevodsky A?-
localization theory [17], [18] is an instance of the f-localization results of Section 4
(see Remark 4.11, but note that we do not discuss properness). The collection of known
applicationsis, however, still quite small. It'srather difficult, in particular, to know what
localization along an arbitrary geometric morphism of toposes should mean in the context
of traditional homotopy theory. The fibrant objectsin all of these theories continue to be
really quite mysterious.

ACKNOWLEDGEMENT. The second author would like to thank Vladimir Voevodsky
for a series of conversations which helped to determine the final form of the axiom
list E1-E7.
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1. Fundamental results. Supposethat C is a small Grothendieck site, and that o
is an infinite cardinal. A simplicial presheaf X on C is said to be a-bounded if « is an
upper bound on the cardinality of all sets of sections of X in the sensethat [X,(U)| < o
for al n > 0 andall objects U of C.

Supposethat E is aclass of morphisms of SPre(C), and say that a monomorphism of
simplicial presheavesis acofibration. Say that asimplicial presheaf cofibration whichis
also amember of E isan E-trivia cofibration.

In many examples, we shall see that the class E and the class of cofibrations together
satisfy the following axioms:

E1l: Theclassof morphismsE is closed under retracts.
E2: Given acomposable pair of morphisms
f g
X—Y——7Z,
if any two of f, gand gf arein the classE, then soisthethird.
E3: Every pointwise weak equivalenceisin E.
E4: Theclassof E-trivia cofibrationsis closed under pushout.
E5: Suppose that 7 is a limit ordinal, and there is a functor X:¥ — SPre(C) such
that for each morphismi < j of v, the induced map X(i) — X(j) is an E-trivia
cofibration. Then the canonical maps

X(@i) —— lim X(j)

jey

are E-trivial cofibrations.
E6: Suppose that the morphismsfi: X; — Y, are E-trivial cofibrationsfor i € |. Then
the morphism

LI X — L)Y
iel el il
is an E-trivia cofibration.
E7: Thereisan infinite cardinal o which is an upper bound for the cardinality of the

set of morphisms of C, such that for every simplicial presheaf diagram

X

1

A—Y

with i an E-trivial cofibration and A «-bounded, there is a subobject B C Y such
that A C B, the object B is a-bounded, and theinclusionBN X — Bisan E-trivial
cofibration.
We shall refer to condition E7 as the bounded cofibration condition. It is the only
axiom of the list that is not a standard part of a closed model structure, and is almost
always the most difficult to verify.
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Say that amorphism p: X — Y isan E-fibration if it hastheright lifting property with
respect to all E-trivial cofibrations. An E-weak equivalenceis amember of the classE.

If Kisasimplicial set and X is a simplicia sheaf, then the tensor object X x K is
defined in sectionsfor U € C by

(X x K)(U) = X(U) x K.

For the simplicial presheaves X and Y, the function complex hom(X, Y) is the simplicial
set whose set of n-simplicesis defined by

hom(X, Y), = hom(X x A" Y)

where the morphism set on the right is in the category of simplicial presheaveson C.
The ordinary exponential law for simplicial sets bootstraps immediately to a simplicial
category structure on the simplicial presheaf category SPre(C). The exponential object
XK associated to asimplicial presheaf X and asimplicial set K isthe simplicial presheaf
which is defined in sections by the function spaces

X“(U) = hom(K, X(U))

forU e C.

THEOREM 1.1.

(1) Under the conditions E1-E7 listed above, there is a closed model structure on
SPre(C) such that the cofibr ationsarethe monomor phisms, the weak equivalences
are the E-weak equivalences, and fibrations (i.e., E-fibrations) are defined by a
right lifting property.

(2) Suppose further that, given an inclusion i: K — L of finite simplicial sets and a
cofibration j: X < Y, then the induced monomorphism

XX LUxxk YXK—=YXL

isan E-trivial cofibration if either i is aweak equivalence of simplicial setsor j is
an E-weak equivalence of simplicial presheaves. Then SPre(C) has the structure
of a closed simplicial model category.

The proof of thisresultisadistillation of ideaswhich are common to Bousfield’ swork
on homology localizations[2], and the homotopy theory of simplicial presheaves[12].

PrROOF. We only need to prove the first statement. Suppose that « is an infinite
cardinal which is an upper bound for the cardinality of the set of morphisms of asiteC.
Say that a cofibration A — B of SPre(C) is a-bounded if the object B is a-bounded.
We begin by showing that a morphism of SPre(C) is an E-fibration if and only it has
the right lifting property with respect to al «-bounded cofibrations which are E-weak
equivalences.
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Supposethat K isasimplicial set and U isan object of C, then the simplicial presheaf

LyK isdefinedfor V € C by
LuK(V)= || K.
¢:V—U

Observe that morphisms of simplicial presheavesLyK — X arein oneto one correspon-
dence with simplicial set maps K — X(U). If the simplicia set K is a-bounded in the
sensethat |Kn| < « for n > 0, then the simplicial presheaf LyK is «-bounded.

Suppose given adiagram

A— X

i 1// lp

B—Y

wherei is acofibration and an E-weak equivalence, and p has the right lifting property
with respect to all a-bounded E-trivial cofibrations. We shall show that the indicated
dotted arrow exists, making the diagram commute. Assume that the map i is not an
isomorphism, for otherwise the problem is solved trivially.

The object B is afiltered colimit of its a-bounded subobjects, since all generating
simplicial presheavesLyA" are a-bounded. The map i is not an isomorphism, so thereis
an a-bounded subobject D of B such that D is not a subobject of A. But then the bounded
cofibration condition E7 says that there is an a-bounded E such that D C E C B, and
such that the inclusion EN A — E is an E-weak equivalence. Form the diagram

ENRA— A — X

| 7

E — EUA p

l

B — Y

where the indicated partial lift exists since p is assumedto havetheright lifting property
with respect to all a-bounded cofibrations which are E-weak equivalences. Observe
further that the map i is an E-weak equivalence since the class of E-trivial cofibrations
is closed under pushout, by E4. It follows that the category of al such partia lifts is
non-empty. This category has maximal elements, by a Zorn's lemma argument and E5,
and any such maximal element must be a solution to the lifting problem.

Every simplicial presheaf map f: X — Y hasafactorization

f
X — Y

N
z
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wherepisan E-fibrationand i isaE-trivial cofibration. In effect, takeacardinal g > 2%,
and defineafunctor F: 3 — SPre(C) | Y by first setting F(0) = f: X — Y. We let

X(Q) = limX()

v<C
for limit ordinals ¢. Further, the map X(Y) — X(Y + 1) is defined by taking the set of all
diagrams
Up — X(fY)
D: ip l l F(v)
Vp — Y

suchthat ip is an a-bounded E-trivial cofibration, and then forming the pushout

|_|UD — X("/)
D

o ]

|_|VD — X(v +1).
D

Theni, isan E-trivial cofibration, by axioms E4 and E6, asisthemap i in the resulting
diagram
X —— v
id\ / F(8)
X(8),
by axiom E5, where X(8) = lim  X(7), and F(3) is induced by all maps F(7). In any
<8
diagram
U — X(3)

i l ///z J'F(B)

V — Y
where i is an a-bounded E-trivial cofibration, the simplicial presheaf U is a-bounded,
so that g must factor through some subcomplex X(7v) C X(3) withy < 3 (for otherwise
U hastoo many subobjects). It follows that the dotted arrow exists, making the diagram
commute.

Now, if amap f: X — Y hastheright lifting property with respect to all morphisms of
theform A C LyA", then f hastheright lifting property with respect to all cofibrations,
by an argument similar to that which characterizes E-fibrations above. A corresponding
transfinite small object argument then showsthat f has a factorization

f
X — Y

i\, 4
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wherej isacofibration, and g hastheright lifting property with respectto all cofibrations.
In particular, g is an E-fibration; it is also a pointwise trivia fibration and hence a
pointwise weak equivalence, since it has the right lifting property with respect to all
maps Lyd A" C LyA". Axiom E3 says that every pointwise weak equivalence is an
E-weak equivalence, so qisan E-trivia fibration.

We have therefore proved the factorization axioms. To verify the lifting axiom CM 4,
observethat if p: X — Y isaE-trivia fibration, then p has afactorization

X 2.y

N
W

wherej isacofibration and q hastheright lifting property with respect to all cofibrations.
But thenjisaE-trivial cofibration by E2 and E3, sinceqisapointwiseweak equivalence,
so that there is a commutative diagram

X 2 X
i e
W —Y,

q

and so pisaretract of g. In particular, p hasthe right lifting property with respect to al
cofibrations. Theweak equivalenceaxiom CM 2 isaxiom E2, and theretract axiom CM 3
isadirect consequence of axiom E1 and the definitions. ]
We say that a closed model structure on the category of simplicial presheaves on
asite C which arises from a class E of cofibrations which satisfies conditions E1-E7
is a localization theory. This usage is consistent with and specializes to the standard
examples of localization theoriesin ordinary homotopy theory. There are corresponding
localization theories for simplicial sheaf categories, according to the following result:

THEOREM 1.2. SQupposethat the conditions E1-E7 are satisfied for some cardinal o
which isan upper bound on the cardinality of the set of mor phismsof the site C . Suppose
further that the canonical map 17: X — L2X froma simplicial presheaf to its associated
simplicial sheaf is always an E-weak equivalence. Then we have the following;:

(1) The category SShv(C) inherits a closed model structure from the corresponding
simplicial presheaf category, for which the the cofibrations are the monomor-
phisms, and the weak equivalences are the maps which are E-weak equivalences
of simplicial presheaves.

(2) If the simplicial presheaf category on C has a closed simplicial model structure
with respect to these definitions, then the simplicial sheaf category SShv(C) is
also a closed simplicial model category.

(3) The associated sheaf functor and the inclusion SShv(C) c SPre(C) together
induce an equivalence

Hoe (SShv(C)) ~ Hoe(SPre(C))
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of the respective homotopy categories.

PrROOF. We shall only prove statements (1) and (2). The third statement is an auto-
matic consequence of (1) and the assumption that the canonical map n: X — L?X isan
E-weak equivalence.

To verify statement (1), observe that the closed model axioms CM 1, CM2 and CM 3
are immediate. The assumption on i guarantees that the associated sheaf functor pre-
serves E-weak equivalences, and it follows that a map p: X — Y is an E-fibration of
simplicial sheavesif and only if pisan E-fibration of simplicial presheaves. Thelifting
axiom CM 4 for simplicial sheaveson C is an easy consequence.

It therefore remains only to prove the factorization axiom CM5. We will show that
any map f: X — Y of simplicial sheaveshas afactorization

X — vy

N/
z

whereZ isasimplicial sheaf, pisan E-fibration andi isaE-trivial cofibration. The other
part of CM5 hasasimilar proof.
As before, take acardinal § > 2%, and form the factorization

f
X — Y

|x / F(8)
X(6);

in the category of simplicial sheaveson C, by analogy with the transfinite small object
argument appearing in the proof of Theorem 1.1. In particular, X(8) is the colimit in the
simplicial sheaf category of afunctor X: 3 — SShv(C) having

X() = limX()

r<C
at al limit ordinals¢ < 8. Themap X(Y) — X(v + 1) is defined by taking the set of al
diagrams

Up — X()

of ]

Vb — Y

of simplicial presheaf morphisms with ip an a-bounded E-trivial cofibration, and then
forming the pushout

L2(|B|UD) —  X()

J J

L2(| Vo) — X(v+1)
D
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of simplicial sheaves. Then the induced canonical map iz: X — X(3) is a trivia E-
cofibration of simplicial sheaves.

To prove that the map F(B): X(8) — Y is an E-fibration it suffices to show that any
simplicial presheaf map g: B — X(3) has afactorization

X(7)

e

B =~ X0

for some~ < g, provided that B is a-bounded.

Suppose that thisis not so. Write B(Y) = B xx(g X(¥). Then the ideais to show that,
for each v < 3, there is an ordinal ¢ with v < ¢ < 8 and such that B({) — B(Y) is
non-empty. Thiswould give acontradiction, for then the o-bounded simplicial presheaf
B would have too many subobjects.

Finally, if B(Y) # B, then thereis a section x € B(U) such that g(x) is not in X(7)(U).
The element g(x) lifts to elementsyy in the presheaf colimit lim ] X(¢), after refinement

(<

along members ¢:V — U of acovering sievefor U, since the associated sheaf map

mimX(Q) — X(@)
<B

isalocal epimorphism. At least one of the sectionsyy isnot in X(Y)(V), for otherwise g(x)

isin the image of the simplicial sheaf monomorphism X(7v) — X(73). We can therefore

assume that B has a section x such that g(x) liftsto somez € lim  X(¢) but is not in
—(<p

X(). But then z € X(¢) for some withy < { < 3, so we're done.

For statement (2), suppose that X is a simplicial sheaf and that K is a simplicial
set. The tensor object X ® K is defined to be the simplicial sheaf L2(X x K) which is
obtained by applying the associated sheaf functor to the corresponding tensor object in
the simplicial presheaf category. The function complex hom(X. Y) is the simplicial set
having n-simplices

hom(X.Y), = hom(X @ A", Y),

where the morphisms on the right are in the simplicial sheaf category. The simplicial
category structure on SShv(C) is then induced from the simplicial category structure on
the simplicial presheaf category, through the associated sheaf functor.

Assume that SPre(C) has the structure of a closed simplicial model category with
respect to the ambient definitions. Supposethat j: X < Y is a cofibration of simplicial
sheaves and an that i:K < L is an inclusion of simplicial sets. Then the induced
monomorphism

(1.3) X@LUxek YOK —Y®L
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of simplicial sheavesis obtained from the corresponding monomorphism
(1.4) XX LUxxk YXK—=YXxL

by applying the associated sheaf functor. If either i is a weak equivalence or j is an
E-weak equivalence, the simplicial presheaf map (1.4) is an E-weak equivaence by
assumption. The associated sheaf functor preserves E-weak equivalences, so that the
map (1.3) is an E-weak equivalence. L]

2. Geometric morphisms. We shall follow Mac Lane and Moerdijk [16] in saying

that a morphism of Grothendieck sitesis a functor F: C — D such that

(@ C and D are sites having al finite limits, and F preservesthem

(b) If R C hom( ,U) is a covering sieve for U € C, then the image F(R) of the

collection of morphisms of R under F generates a covering sieve for F(U).

In the presence of asite morphism, if X isasheaf on D, then the composite functor Xo F
isasheaf on C (whichis denoted by F,. X and called the direct image of X along F); this
condition is often paraphrased by saying that F is continuous.

REMARK 2.1. Any geometric morphism f:F — E is induced by a site morphism
F:C — D, for a suitable choices of sites C and D underlying the toposes E and
F respectively. This is a consequence of the inner workings of Giraud's Theorem.
Implicitly, the claim that E is a Grothendieck toposmeans, in part, that E hasa small set
of generators G(E). Thetopos E hasall finite limits, so that the original set of generators
can be expanded to anew set of generatorsthat we shall call Ob(C) whichisclosed under
finite limits. The full subcategory C C E on this set of generators comes equipped with
a canonical choice of Grothendieck topology (the covering families are the epimorphic
families), in such away that the sheaf category Shv(C) is equivalent to thetopos E. The
corresponding set Ob(D) of generatorsfor thetopos F is obtained by closing up the set
of objects G(F ) U f*(Ob(C)) under finite limits. The full subcategory D c F hasa
canonical topology such that Shv(D) is equivalent to the topos F , and theinverseimage
functor f*: E — F restricts to asite morphismf’: C — D which induces the geometric
morphism f in the sense that f, can be identified up to isomorphism with composition
with f/, and f* isequivalent to f'*.

Not to worry: any continuous map of topological spaces or any scheme homomor-
phism induces a site morphism between the corresponding Grothendieck sites straight
up, for al of the favourite topologies, since al such sites have finite limits which are
preserved by the corresponding functors.

Recall [12], [15] that the category SPre(C) of simplicial presheaves on a small
Grothendieck siteis a proper closed simplicial model category in which the cofibrations
are the monomorphisms. The weak equivalences of simplicial presheaveson C are the
local weak equivalences, which can be described asmapsthat induceisomorphismsin all
local sheavesof homotopy groups: in the casewhere the topos Shv(C ) has enough points,
this meansthat alocal weak equivalenceis a map which induces aweak equivalence of
ordinary simplicial setsin all stalks. The fibrations of SPre(C) are the global fibrations,
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which are those maps which have the right lifting property with respect to all maps
which are simultaneously local weak equivalences and cofibrations. The associated
sheaf maps 17: X — L2X are local weak equivalences, and the proper closed simplicial
model structure on SPre(C) restricts to a proper closed simplicial model structure on
the category SShv(C) for which the cofibrations are the monomorphisms, the weak
equivalences (respectively fibrations) are those maps of simplicial sheaves which are
local weak equivalences (respectively global fibrations) of simplicial presheaves. The
associated sheaf functor and the inclusion functor SShv(C) — SPre(C) both preserve
weak equivalences, and induce an adjoint equivalence

Ho(Sshv(C)) ~ Ho(SPre(C))

of associated homotopy categories.

The reader who has visited the first section of this paper might now be experiencing
a hit of dga vu, for good reason: the method of proof of the existence of the closed
model structure on SPre(C) that appearsin [15] can be interpreted as showing that the
collection of local weak equivalences, suitably defined, satisfies axioms E1-E7, so that
Theorems 1.1 and 1.2 apply. In other words, the standard homotopy theory of simplicial
presheavesand sheaveson an arbitrary small Grothendieck site C isatype of localization
theory.

More explicitly, recall that a Boolean localization of the topos Shv(C) is a geometric
morphism g: Shv(B) — Shv(C) such that B is a complete Boolean algebra and such
that the associated inverse image functor ©*: Shv(C) — Shv(B) is faithful. Any topos
Shv(C) has a Boolean localization—this is a result of Barr and Diaconescu [16]. The
game, asit's played in [15], is first to show that the axiom of choice for the Boolean
topos Shv(B) implies that every locally fibrant simplicial presheaf on B is actually
a presheaf of Kan complexes, and that every local weak equivalence f: X — Y of
simplicia sheaveson B isaweak equivalence of simplicial setsin each section. We've
always known, one way or another (but see Lemma 2.6 below), that inverse image
functors preserve local weak equivalences, so one is led to decree that a local weak
equivalence on simplicia presheaveson C is amap g:Z — W such that the induced
map g.: p*L?Ex*Z — p*L?Ex™ W is a local (hence pointwise) weak equivaence
of sheaves of Kan complexes on B. Note the use of Kan's Ex*°-functor [9]; this is a
functorial and combinatorial method of replacing asimplicial set by a Kan complex, and
hence can be applied to simplicial presheaves.

Thefaithfulnessof theinverseimagefunctor p* isthen used to show that thisdefinition
of local weak equivalence coincideswith the standard notion involving isomorphisms of
local sheavesof homotopy groups. On closer examination, one sees that the faithfulness
of the functor ©* only appearsat the very end, and isin fact independent of the existence
of aclosed model structure for the simplicial presheaf category SPre(C).

This is the point of this section: we show here that any geometric morphism f: E —
Shv(C) determines a closed model structure on SPre(C) for which the cofibrations are
the monomorphisms and the weak equivalences are those maps g: X — Y for which the
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induced maps f*L2g: f*L2X — f*L2Y are local weak equivalences of simplicial objects
of E. Thisresult is Theorem 2.7. This closed model structure coincideswith the standard
oneon SPre(C) if theinverseimagefunctor f*: Shv(C) — E isfaithful (seeRemark 2.9),
but is otherwise new.

Thereisatechnical assumption, which will appear from time to time in what follows,
that f:C — D is a continuous functor between small sites which induces a geometric
morphism Shv(D) — Shv(C). The functor f is the sort of thing that arises most easily
when one wants to construct asite level functor underlying a geometric topos morphism
E — shv(C) according to the trick involving Giraud's Theorem which is described in
Remark 2.1, and in the case where one has reason to avoid adding finite limits to the site
C inside the topos Shv(C). It istypical, for example, that one wouldn’t want to fatten up
the site C in any way when the focus of concern is the category of simplicial presheaves
on C. Note that there is a fairly extensive discussion in [16] concerning the question
of when afunctor C — D between Grothendieck sites induces a geometric morphism;
in their terminology a continuous functor f:C — D induces a geometric morphism
Shv(D) — shv(C) if and only if f isalso “flat”, or equivalently “filtering”.

We begin by establishing atechnical condition (Lemma 2.3) which leadsto instances
of the bounded cofibration axiom E7 that hold quite generally for base changealong any
functor between Grothendieck sites.

Supposethat f: X — Yisamorphism of simplicial presheavesonasmall Grothendieck
siteC,andleti: K C L beaninclusion of finite simplicial sets. Wesay that f hasthelocal
right lifting property with respect to i if given any commutative diagram of simplicial

set maps
K — X(U)
2.2) 1 lf
L — Y(U)

and for any object U of C there is a covering sieve R ¢ hom( . U) such that for each
¢:V — U in Rthereis acommutative diagram of simplicial set maps

K — X(U) -2 X(U)
1/ lf
L™— Y(U) — Y(V)
In other words, all lifting problems having the form of diagram (2.2) have solutions

after refinement along covering sieves. This condition is equivalent, variously, to the
requirement that the induced sheaf map

i f.
L2xt B 2pK o Lon L2V
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is asheaf epimorphism, and to the requirement that the presheaf map
Xt 0Dk s Y

isalocal epimorphism in the sensethat all sections of the baselift to X- after refinement
along some covering sieve. Here, for example, X" is the presheaf on C which is defined
viasimplicial set mapsin sections by the formula

X-(U) = homg(L, X(U)).

Suppose that the functor F:C — D is any functor between two Grothendieck sites.
The direct image functor F,: Pre(D) — Pre(C) is nevertheless defined by composition
with F—it's just that F, might not preserve sheaves. Furthermore, the functor F, always
hasaleft adjoint FP: Pre(C) — Pre(D), which can be defined explicitly for apresheaf Y
on D, in sections, by

FPY(d)= lim Y(c).
d—F(QinD

If the cardinal « is an upper bound for the size of the set of morphisms of D and the
presheaf Y on C is a-bounded, then the presheaf FPY is a-bounded.

LEMMA 2.3. Suppose that F:C — D is any functor between small Grothendieck
sites. Let o be an infinite cardinal which is an upper bound on the cardinalities of the
sets of morphisms for the categories C and D. Suppose that f: X — Y is a map of
simplicial presheaveson C and that Z C Y is an a-bounded subcomplex of Y. Assume
further that

(1) FPf:FPX — FPY has the local right lifting property with respect to a family
Ki C L; of simplicial set monomorphisms, whereL; isfinite,i € 1, and |I| < «,

(2) thereis a functor defined on the o-bounded subcomplexes W C Y with Z C W,
taking valuesin commutative diagrams of simplicial presheaf maps of the form

Xw—>x

W

W — Y

such that Xy isa-bounded, and suchthatf = lim fw and further that the functor
V — fy preservesfiltered colimitsin the categ_o}zyct\)/\]é a-bounded subobjectsV C X
withZ C V.
Then there is some a-bounded subcomplex W C Y with Z C W such that the map
FPfw: FPXw — FPW hasthe local right lifting property with respect to all K; C L.
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ProoF. The functor FP has a right adjoint, so that V — FPfy preserves filtered
colimitsin V.

The simplicial presheaves FPXz; and FPZ are o-bounded, so there is an a-bounded
collection of diagrams of simplicial set maps

Ki — FPXz(U) — FPX(U)
(2.9 1 J FPf, l FPf

Li — FPZ(U) — FPY(U)
Given such adiagram, thereisacoveringsieveR C hom(U, ) suchthat for all ¢:V — U
thereis alifting

Ki — FPXz(U) — FPX(U) — FPX(V)
1 / Jpr
L — FPZ(U) — FPY(U) — FPY(V)
The simplicial set L; is finite, and FPX = I|m FPXW It follows that there is an

a-bounded W with Z C W' such that all x, I|ve in FPXy. Taking the union of all
such subcomplexes W over al diagrams 2.4 gives an a-bounded subcomplex Z; of Y
suchthat Z C Z; and such that al lifting problems 2.4 are solved in FPXz,. Repeat the
construction of obtain a sequence of a-bounded subobjects

=20 CZ1CZC---
such that all local lifting problems
Ki — FPXz (V)

1 [

Li — FPZ(U)

are solved over Zj,1.
Let W be the a-bounded subcomplex defined by
W= U Zj.
j>0
Then FPXy = I|m FPXz, and any map K; — FPXy(U) factors through some map
>0

K — FPXZJ(U) smce Ki is finite. It follows that that the induced map FPfyy: FPXyw —
FPW hasthe local right lifting property with respect to all K; C L. ]

REMARK 2.5. Thereis anatural source of functors V — fy, satisfying condition (2)

of Lemma 2.3. Suppose that f: X — Y is a map of simplicial presheaves on a site C.
Then f has afactorization

X_j.

f \

©

n

Y
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such that p, isapointwise Kan fibration and j . is a pointwise weak equivalence, and this
factorization is natural and preservesfiltered colimitsin f. To see this, take the standard
factorization
Ex® X j
= T B0 X Xy hOM(AL EXY)
Ex>®Y " P

and pull it back to Y using the diagram

X —— Ex® X

| e

Y — Ex*X

so that
X =Y Xggeoy EX® X X g0y hom(AL EX®Y).

The maps v are pointwise weak equivalences, and weak equivalences are preserved
by pullback along fibrations in the simplicial set category, so the induced map j. is a
pointwise weak equivalence. This construction is natural in morphismsf, and preserves
filtered colimits in the category of simplicial presheaf morphisms. Note finally that if X
and Y are a-bounded simplicial presheaves, then sois X.

It follows, for example, that if g: X — Y is a morphism of simplicial presheaves
such that g~(W) is a-bounded whenever W is an a-bounded subcomplex of Y, then
the functor defined on a-bounded subcomplexes W of Y containing a fixed «-bounded
subobject Z by sending W to the pointwise fibration p,: g~1(W) — W converges to the
map p.: X — Y, and thus satisfies condition (2) of Lemma 2.3, for f = p. ]

LEMMA 2.6. Supposethat f:C — D isa continuousfunctor between small Grothen-
dieck sites which induces a geometric mor phism Shv(D) — Shv(C). Then
(1) The functors fP: SPre(C) — SPre(D) and f*: SShv(C) — SShv(D) preserve
local weak equivalences.
(2) If p: X — Yisaglobal fibration of simplicial sheaveson D, then the direct image
f.p:f.X — f.Y is a global fibration of SShv(C). If the functor f preservesfinite
limits, then f, preservesglobal fibrations of simplicial presheaves.

ProOF. Only the statement about preservation of local weak equivalences on the
simplicial presheaf level requires proof, because the functor f* preserves cofibrationsin
general, and fP preserves cofibrations under the extra exactness condition on f.

Supposethat g: X — Y isalocal weak equivalence of SPre(C). We want to show that
f*L2g =~ L?fPgisalocal weak equivalenceof smplicial presheavesover D, for thenfPg
isalso aloca weak equivalence.

The functor f*L? preserves the Ex™ construction:

L2 EX® X o L2 Ex® f*L2X
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by the exactness of f*, and the associated sheaf functor L? takes pointwise weak equiv-
alences to local weak equivalences. It follows that f*L2g is a local weak equivalence
over D if and only if f*L2 Ex™ g is a local weak equivalence. It therefore suffices to
assumethat g: X — Y is amorphism of presheaves of Kan complexes. Then thereis a
commutative diagram

z
i/ \ T
X—>Y
9
inwhich isapointwise Kanfibration andi isright inverseto apointwisetrivial fibration
7': Z — X. Butthen m isalocal weak equivalenceand a pointwise Kan fibration between
presheaves of Kan complexes, and therefore has the local right lifting property with
respect to all inclusions 9 A" C A", as does the map 7’. The functor f*L? preservesthis
local right lifting property, by exactness, so that the maps f*L?r and f*L?7’ are local

weak equivalencesover D, asisf*L2g. "
Supposethat f: E — Shv(C) is a geometric topos morphism, and consider the com-
posite functor
SPre(C) - sShv(C) —— SE.

Then we know that the category of simplicial objectsin E is a proper closed simplicial
model category in a canonical way. Say that a map g: Z — W of simplicial presheaves
on C isanf*L2-weak equivaenceif theinduced map f*L2(g): f*L?Z — f*L?Wisalocal
weak equivalence of the category SE of simplicial objectsin the Grothendieck topos E.

THEOREM 2.7. Suppose that f:E — Shv(C) is a geometric morphism, where C
is a small site. Then the composite functor f*L%: SPre(C) — SE induces a proper
closed simplicial mode! category structure on SPre(C), for which the (f*-local) weak
equivalences are the f*L2-weak equivalences, the cofibrations are inclusions, and the
(f*-global) fibrations are defined by a right lifting property.

PROOF. This result is proved by appealing to Theorem 1.1, where the morphism
class E is the collection of f*L2-weak equivalences. We can assume that f is induced
by a continuous functor f:C — D. We know from Lemma 2.6 that the functor f*L?
preserves local weak equivalences, and therefore takes pointwise weak equivalencesto
local weak equivalences, giving E3.

The class of local trivial cofibrations of SShv(D) is closed under pushout in the
standard closed model structure for the closed model structure on D, and the functor
f*L2 is left and right exact, so axiom E4 is satisfied. Similar exactness assertions and
the closed model structure for SShv(D) together lead to axioms E5 and E6, while E1
and E2 aretrivial. It remains only to verify the bounded cofibration property E7.

Let o beaninfinite cardinal which isan upper bound for the cardinalities of the sets of
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morphismsfor the categoriesC and D, and suppose given asimplicial presheaf diagram

X

o

A —

<

onC, where Aisan a-bounded subcomplex of Y and the map i isacofibrationand ap*L2-
weak equivalence. As seen previously, we can apply the construction of Remark 2.5 to
themapi and al of theinclusionsVNX — V arising from a-bounded subcomplexesV of
Y which contain A, to obtain the pointwise Kan fibration p,: X — Y as afiltered colimit
of the pointwise fibrations p,: VN X — V, where the functor V — VN X preserves
filtered colimits, and all objects VN X are a-bounded. The image L?fPp, = f*L?p, in
Sshv(D) of the map p.: X — Y has the local right lifting property with respect to all
inclusionsd A" C A". The associated sheaf functor reflectsthis local left lifting property,
so the simplicial presheaf map fPp, also hasthe local right lifting property with respect
of al inclusionsg A" C A".

Now apply Lemma 2.3 in the case where the site-level functor isf:C — D, the
simplicial setinclusionsare the morphismsd A" C A", n > 0, the morphism f isthe map
p,: X — Y, and the functor W — fyy in that statement isidentified with the functor which
takes W to the pointwisefibration p.: WM X — W. Thisgivesan a-bounded subcomplex
B C Y with A C B such that the map fPp.:fPBN X — fPB has the local right lifting
property with respect to all inclusions 9 A" C A". Applying the associated sheaf functor
therefore shows that the map f*L2p,: f*L?B N X — f*L2B has the same local left lifting
property, and is therefore a local weak equivalence of the simplicial sheaf category on
D. The correspondinginclusion BN X «— B isthus part of acommutative diagram

BAX — BAX

T~

in which the mapsj. and p, aref*L2-weak equivalences.
Suppose that the diagram

p.

@ —

9
—_—

<— X
©

Z
W —
g
is a pullback diagram in SPre(C), where g is an f*L2-weak equivalence and p is an

f*-global fibration. Every local weak equivalence is an f*L?-weak equivalence, by
Lemma 2.6, so that every f*-global fibration is a global fibration, and hence a local
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fibration. It follows that applying the functor f*L? gives a pullback diagram

*| 2
fr2z 159 fe 2y

L |

f*L2W —— f*L2Y
f*L2g
of simplicial sheaveson D inwhich f*L2p is alocal fibration and f*L?g is alocal weak
equivalence. A Boolean localization argument (see the proof of Theorem 24 in [15])
shows that local weak equivalences are stable under pullback along local fibrations, so
f*L2g, isalocal weak equivalence. .

THEOREM 2.8. Suppose that f: E — Shv(C) is a geometric morphism, where C is
a small site. Then there is a proper closed simplicial model structure on the simplicial
sheaf category SShv(C) such that the cofibrations are the monomor phisms, and a map
g: X — Y is a weak equivalence if and only if the map f*g:f*X — f*Y is a weak
equivalence of SE. Furthermore, the associated sheaf functor preservesf*-local weak
equivalences, so thereis an induced adjoint equivalence

Hor (SPre(C)) ~ Hor (SShv(C)).

PROOF. Observe that the weak equivalences of simplicial sheaveson C are exactly
those maps which are f*L?-weak equivalencesin the simplicial presheaf category, and
that the fibrations are f*-global fibrations. This result is a consegquence of Theorem 2.7
and Theorem 1.2. One uses Lemma 2.6 to show that that the associated sheaf map
1n: X — L2X isan f*L?-weak equivalence. .

REMARK 2.9. Generaly, for any geometric morphism f: E — Shv(C), the functor
f*L2:SPre(C) — SE takes local weak equivalences to local weak equivalences, by
Lemma 2.6. However, if the inverse image map f*: Shv(C) — E is also faithful, then a
simplicial presheaf map g: X — Y on C isalocal weak equivalenceif and only if f*L?gis
alocal weak equivalence of simplicial sheaves, so that the local weak equivalencesand
the f*-local weak equivalences of SPre(C) coincide. To seethis, take amap g: X — Y
and form the factorization

X
T~ _
QJ X
vy P

suchthat p, isapointwise Kanfibration andj.. isapointwiseweak equivalence, according
to the method outlined in Remark 2.5. Then the composite functor f*L? preserves local
weak equivalences and local fibrations, so that g is an f*L?-weak equivalence if and
only if the map f*L?p, has the local right lifting property with respect to all inclusions
dA" C A". Inthe casethat f* isfaithful, the composite f*L? reflects this local left lifting
property, so therefore g is an f*L.?-weak equivalence if and only if the map p, has the
local right lifting property with respect to al inclusionsd A" C A", and henceif and only
if gisalocal weak equivalence. ]

https://doi.org/10.4153/CJM-1998-051-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-051-1

1066 P. G. GOERSSAND J. F. JARDINE

3. Homology theories. Going further requires that we first back up, and see that
the conditions of Theorem 1.1 and its proof can, after minor adjustments, be used as a
template for results about presheaves of spectra.

Suppose that sE is a class of morphisms of the category Spt Pre(C) of presheaves of
spectraonasiteC. A cofibrationi: X — Y presheavesof spectraisthe standard thing [5],
[14], namely a map such that the level 0 map i%: X° — Y? is a cofibration of pointed
simplicial presheaves, asare al induced maps

S A Y Ug e XL YL,

Say that a cofibration of presheaves of spectra which is aso a member of sE is an
sE-trivia cofibration.

For any infinite cardinal «, a presheaf of spectra A is said to be a-bounded if each
of its constituent simplicial presheaves A", n > 0, is a-bounded. If « is an upper
bound for the cardinality of the set of morphisms of the underlying site C, then every
presheaf of spectra X is a filtered colimit of its a-bounded subobjects. To see this, take
some section x € X7 (U), and form the corresponding pointed simplicial presheaf map
X: (LuA™)+ — X". The simplicia presheaf (LyA™). is a-bounded by the assumption on
the size of the cardinal . Then x canonically determines amap of presheavesof spectra
Xs: Z2°(LyAM).[—n] — X, whose image is an a-bounded subobject of X which contains
the section x. Here,

* if k—n <0, and

00 m. r_nlk =
2 (LuA )+[ n Zoo(LUAm)_li—n ifk—n >0,

according to the usual indexing conventions, and > (LyA™). is the standard suspension
spectrum object for the pointed simplicial presheaf (LyA™)..
The analogue of the list of conditions E1-E7 for Theorem 1.1 is the following
collection of statements:
sE1: The class of morphisms sE is closed under retracts.
sE2: Given acomposable pair of morphisms
X—y—%.z
if any two of f, gand gf arein the class sk, then so isthe third.
sE3: Every pointwise strict equivalenceisin sE.
sE4: The class of sE-trivial cofibrationsis closed under pushout.
SE5: Suppose that v is a limit ordinal, and there is a functor X:y — Spt Pre(C) such
that for each morphismi < j of v, the induced map X(i) — X(j) is an sE-trivia
cofibration. Then the canonical maps

X(@i) —— lim X(j)
jey

are sE-trivial cofibrations.
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sE6: Suppose that the morphismsfi: X; — Y, are sE-trivial cofibrationsfori € I. Then
the morphism

VitVX—= VY
iel el i€l
isan E-trivial cofibration.
sE7: Thereisaninfinitecardinal o whichisat least aslarge asthe cardinality of the set

of morphisms of C, such that for every diagram

X

1i

A—Y

of maps of presheaves of spectrawith i asE-trivial cofibration, and A «-bounded,
thereisan a-bounded subobject B C Y suchthat A C B, and suchthat theinclusion
BN X — Bisan sE-trivial cofibration.
A pointwise strict equivalenceisamap f: X — Y of presheaves of spectra such that all
induced maps of simplicial setsf: X"(U) — Y"(U), U € C are weak equivalences. Also,
perhapsit’'s hard to believe, but the following requires proof so that the statement sE7
makes sense:

LEMMA 3.1. Supposethati: A — B isa cofibration of spectra, andthatj:V C Biis
a subcomplex of B. Then the induced map i.: VN A — V isa cofibration of spectra.

ReEMARK 3.2. When we say that j:V C B is a subobject or subcomplex of B, we
mean simply that al mapsj: V" — B" are monomorphisms. We do not mean that j is a
cofibration. ]

PrROOF OF LEMMA 3.1. We need to show that all induced maps

(S" A V™) Ugpman (VTN A™) R
are cofibrationsin the pointed simplicial set category. Given that the diagram of spectrum
maps ‘
VNA L A

d

Y, — B
induces a commutative diagram

(SHA VM) Ut urrary (V2 0 AT (22, e

J*l li
(Sl /\ Bn) U(SlAAn) An+1W Bn+1

(3.3)

it sufficesto show that the vertical map j. in (3.3) isacofibration.
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Note that any pointed map
(S AB") Ugnan AT — Y
can beidentified with apair of mapsf: A™! — Y and g: B" — QY, suchthat the diagram

AN % QAM1

| |

B”g—> QY

commutes, where o, isthe adjoint of thebondingmap o: St AA" — A™L. Inthislanguage,
suppose given acommutative diagram

/£
(Sl AV Usirvanan) (Vn+1 A A"+1) (g.,1) X

(3.4) i j J b
St A B Ugpan AT Y

(9:.1)

where p isatrivia fibration. Then thereis a map h making the diagram

Vn+1ﬁAn+l f_/> X

j*l / Jp
Ar‘l+1 —f) Y

commute, sincej is acofibration of simplicial setsand p isatrivial fibration. The maps
Qhoo,: A" — QX and g': V" — QX together induce a morphism H: V" U A" — QX
and there is acommutative diagram

viuA" 1, ox

T

— QY

g
since Qpisatrivial fibration. The map

(Ks.h): St A B Ugpan AT — X

solves the lifting problem posed by the diagram (3.4), so that j. has the left lifting
property with respect to al trivial fibrations, and is therefore a cofibration. ]

Observethat the class of cofibrations satisfies anal ogues of the axioms sE4—-sE6 (i.e.,
without the “sE-trivial” condition), becausethey are defined pointwise, and cofibrations
of ordinary spectrafit into a(strict) closed model structure—onecould also arguedirectly.

Say that a morphism p: X — Y is an sE-fibration if it has the right lifting property
with respect to all sE-trivial cofibrations. An sE-weak equivalence is a member of the
classsE.
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If Kisasimplicial set and X is a presheaf of spectra, then the tensor object X x K is
defined in sectionsfor U € C by

(X x K)(U) = X(U) x K = (X(U) x K) /(x x K) = X(U) A K.

where K. = K LI x is a copy of K with a digoint base point attached. For presheaves
of spectra X and Y, the function complex hom(X. Y) is the simplicial set whose set of
n-simplices is defined by

hom(X.Y), = hom(X x A", Y)

where the morphism set on the right is in the category of presheaves of spectra on
C. The ordinary exponential law for spectrainduces a simplicial category structure on
Spt Pre(C).

THEOREM 3.5.

(1) Under the conditions sE1-sE7 listed above, there is a closed model structure on
Spt Pre(C) such that the cofibr ations are the (pointwise) cofibrations as described
above, the weak equivalences are the sE-weak equivalences, and fibrations (i.e.,
SE-fibrations) are defined by a right lifting property.

(2) Suppose further that, given an inclusion i: K — L of finite simplicial sets and a
cofibration j: X < Y, then the induced map

XX LUk YX K=Y XL

is an sE-trivial cofibration if either i is a weak equivalence of simplicial sets or
j is an sE-weak equivalence of presheaves of spectra. Then Spt Pre(C) has the
structure of a closed simplicial model category.

PROOF. Suppose that « is an infinite cardinal which is an upper bound for the
cardinality of the set of morphisms of the site C.

The proof is analogous to the argument for Theorem 1.1, except that we need
Lemma 3.1 for the proof of the factorization axiom CM5. One further shows, via
the techniquesin the proof of Theorem 1.1, that amap hastheright lifting property with
respect to all cofibrationsif and only if it hasthe right lifting property with respect to all
a-bounded cofibrations. Then a transfinite small object argument is used to show that
every map f: X — Y of presheavesof spectra has afactorization

X —— Y

A/

wherej isacofibration, and g hastheright lifting property with respect to all cofibrations.
In particular, the maps g: W™ — Y™ have the right lifting property with respect to all
cofibrations 9 A" C A", since the induced maps of presheavesof spectra

T2(Lyd A" — T2°(LyA"):
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are cofibrations. It follows that the maps g: W™ — Y™ are pointwise weak equivalences,
sothat g: W — Y isapointwise stable equivalence and therefore an sE-weak equivalence
aswell as an sE-fibration, by sE3. ]

REMARK 3.6. The proof of Theorem 3.5 does not assume the standard closed model
structure for presheaves of spectra. This structure appears as a consequence of Theo-
rem 3.5 in Theorem 3.7 below.

Supposethat X and Y are pointed simplicial sets, and that K is an arbitrary simplicia
set. The canonical isomorphism

hom(K., X) x hom(K.Y) —— hom(K. X x Y)
induces amap

hom(K. X) A hom(K., Y) —=— hom(K. X A Y)
whichisnatura in K, X and Y. It follows that the maps

hom(sd" A™, X) A hom(sd” A™, Y) —~— hom(sd" A™, X A Y)
induce a pointed simplicial set map
EX X A EX® Y —— EX°(XAY)
whichisnatural in X and Y. In particular, any pointed simplicial set map
SAX—2-Y
induces a composite pointed map

S A B X L5 xS A B X —2 o Ex(SE A X) 2L Ex,

which will be denoted by 7. Here, v isa special case of Kan's natural weak equivalence
v.:Z— Ex*Z

It follows that, if X is a spectrum with bonding maps o: St A X" — X™1, then there
is a spectrum Ex>° X consisting of the pointed spaces Ex> X", and with bonding maps
given by the induced maps5: St A Ex>® X" — Ex™ X™1. The spectrum Ex* X is strictly
fibrant (i.e., consists of Kan complexes) and that the maps v: X" — Ex> X" define a
strict weak equivalence of spectrav: X — Ex> X.

Suppose, generally, that Z is a presheaf of spectrasuch that each of the objectsZ" isa
presheaf of Kan complexes. Then Z has sheaves of stable homotopy groups ;Z, defined
fori € Z, where 7 Z is the colimit in the sheaf category of the system of maps

+i +i+
7_(_in'II_>7_[_i+lZnI l_>“_

of sheaves of ordinary homotopy groups. The homotopy group sheaf mZ™ is, by def-
inition, the sheaf associated to the presheaf U — (Z™(U). ), where  denotes the
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implicit global choice of base point. We say that a map f: X — Y is a local stable

equivalenceif f induces sheaf isomorphisms 7 EX*° X >~ 7 Ex* Yfor al i € Z.
Suppose again that Z is a presheaf of spectra which consists of presheaves of Kan

complexes. The presheaf of spectraQZ has spaceat level n defined by thefiltered colimit

z" Ox an+l Qo QZZn+2 Q% .

with bonding map o: QZ" — QQZ™? induced by the maps QKo: Qkzmk — Qk+lzmk+1
A cofinality argument impliesthat all bonding mapso: QZ" — QQZ™! areisomorphisms
of simplicial presheaves, and that the canonical map Z — QZ inducesan isomorphism of
presheaves of stable homotopy groups, and henceis a local stable equivalence. Finally,

the canonical map

mQZ" — m-iQZ
isanisomorphismforall n > 0andi > 0, sothatamapf: X — Y of presheavesof spectra
isalocal stableequivalenceif and only if all induced mapsf,: 7iQ Ex> X" — miQEX> Y"
of sheavesof (ordinary) homotopy groups are isomorphisms.
In particular, all the morphisms f,: Q Ex>* X" — QEX>* Y" are local weak equiva-
lences. This is proved with a Boolean localization argument: if p: Shv(B) — Shv(C) is
aBoolean localization, then each of induced map

p'f.: p*L2Q Ex*® X"(b) — p*L2QEx™ Y"(b)

in sectionsisamap of Kan complexeswhich are also loop spaces, and this map preserves
the loop space structure. Furthermore, this map induces an isomorphism

mip L2 QEX™ X(b) 2 mp L2QEX> X"(b).

for i > 0, since Boolean localization commutes with the formation of all sheaves of
homotopy groups (see[15]), and so the ambient H-space structures can be used to show
that it is aweak equivalence, in all sections.

Conversely, or at least partially so, if f: X — Y is a map of presheaves of spectra
such that each of the mapsf: X" — Y" is a local weak equivalence, then f induces an
isomorphism in sheaves of stable homotopy groups.

The following result was first proved in [13]. We give here a new “one step” proof
which is based on Theorem 3.5. The proof of this result specializes to an alternative
demonstration of the existence of the Bousfield-Friedlander stable closed model structure
for ordinary spectra [5]. Note, however, that we still require the strict closed model
structure for ordinary spectra to take care of some of the standard assertions about
cofibrations. The existence of the strict structureis just an exercise.

THEOREM 3.7. Say that a map f: X — Y of presheaves of spectra on a small site
C is alocal stable equivalence if it induces an isomorphismin all sheaves of stable
homotopy groups, and that a map is a global fibration if it has the right lifting property
with respect to all mapswhich are cofibrationsand local stable equivalences. Then with
these definitions, the category Spt Pre(C) of presheaves of spectra on a Grothendieck
site C satisfiesthe axioms for a proper closed simplicial model category.
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PrOOF. We verify the conditions of Theorem 3.5 to show that the category of
presheaves of spectraon C is a closed simplicial model category where, in the notation
of that result, sE stands for the class of local stable equivalences.

The stable homotopy group functor preserves filtered colimits and takes wedges to
direct sums, so the only axiom having any content is sSE7. Supposethat « is an infinite
cardina which is a strict upper bound for the cardinality of the set of morphisms of the
underlying site, and suppose given adiagram

X

I

A—Y

where A is an a-bounded subobject of Y and i is a cofibration which is a local stable
equivalence. This means in particular that the presheaves of stable homotopy groups
7Y /X are locally trivial in the sense that any section x € 7Y /X(U) maps to 0 along
some covering sieve R C hom( , U) in the sensethat ¢*(x) = 0 for all ¢:V — U in R
The presheaf of spectra Y is afiltered colimit of its a-bounded subobjects, so it follows
that any x € 72(A/AN X)(U) mapsto 0in 72(As /A N X) for some a-bounded A; with
A C A; C Y. Continue inductively, to produce a sequence of a-bounded subobjects

A=A CALCAC---
of Y such that the induced maps
(A ANX) = T2(As1 /At N X)

of presheaves of stable homotopy groups are all 0-maps. Let B = Ui>oAi. Then Bis an
a-bounded subobject of Y containing A such that 72(B /BN X) = 0, so that the cofibration
BN X — Bisalocal stable equivalence.

The class of maps which are both cofibrations and local stable equivalencesis closed
under pushout, by a standard long exact sequence argument. Supposethat i: K < L is
an inclusion of finite simplicial sets and that j: X — Y is a cofibration of presheaves of
spectra. Then the induced cofibration

(3.8) XX LUk YXKe—YxL

is a local stable equivalence if either i is a weak equivalence or j is a local stable
equivalence. If i isaweak equivalence, thenthe maps X x i and Y x i are strict and hence
local stable equivalences, asis the pushout map

Y i K X L Uk Y K.

For the other case, if i: X — Y isalocal stable equivalence, then the maps

i*Z\/X—>\/Y

oeKp oeKp
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are local stable equivalences, so that the map i: X x K — Y x K is a local stable
equivalence, by a spectral sequence argument (see [14, 4.3]). This holds for every
simplicial set K, and in particular for L.

Every global fibration p: X — Y isastrict fibration, in the sensethat all mapsp: X" —
Y" are global fibrations of simplicial presheaves, since the functors U — >>°U.[—n]
take trivial cofibrations of simplicial presheavesto cofibrations of presheavesof spectra
which are local stable equivalences. Suppose that the diagram

z 2. x
b
W Y

R
R
g

isapullback inthe category of presheavesof spectra, wherepisaglobal fibrationandgis
alocal stable equivalence. We want to show that the map g, isalocal stable equivalence.
Each induced diagram

QEx>®Z" QEX*g. QEX® X"

J =

QEX®*W'" —— QEx>®Y"
QEx*g

isapullback diagram of simplicial presheavesin which all the objects are presheaves of
Kan complexes, the map Q Ex™ g isalocal weak equivalence, and the map QEx* pis
alocal fibration. We saw in the proof of Theorem 2.7 that local weak equivalences are
stableunder pullback along local fibrations, so that Q Ex> g, isalocal weak equivalence,
and so themap g, isalocal stable equivalence.

One showsthat local stable equivalencesare preserved by pushing out along cofibra-
tions by comparing long exact sequencesfor cofibrations. ]

THEOREM 3.9. Suppose that F:C — D is a continuous functor between small
Grothendieck sites which induces a geometric morphism Shv(D) — Shv(C), and that
E is a presheaf of spectra on D. Say that a map g: X — Y of simplicial presheaves
on C is an E,-weak equivalence if the induced map g,:E A FPX, — EAFPY, isa
local stable equivalence of presheaves of spectra on D. Say that a map p:Z — W is
an E,-global fibration if p has the right lifting property with respect to all cofibrations
which are E,-weak equivalences. Then the classes of cofibrations, E,.-weak equivalences
and E,-global fibrations give the category SPre(C) the structure of a closed simplicial
model category.

ProoF. The functor X — E A FPX, takes values in the category of presheaves of
spectra on the site D, which is a closed simplicial model category by the main result
of [13], or Theorem 3.7. The notation FPX,, as usual, denotes FPX with a digjoint base
point attached. We shall prove this result by invoking Theorem 1.1, wherethe classE is
the collection of E.-weak equivalences.
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We can assume that the presheaf of spectra E is cofibrant, because otherwise there is
atrivial strict fibration 7: B — E, where E’ is cofibrant, and the induced map

© AL E AFPX, — EAFPX,

isastrict and hence local stable weak equivalencefor all X, sothat amap g: X — Y of
simplicial presheaveson C is an E.-weak equivalence if and only if it is an E/-weak
equivalence.

If i: A— Bis acofibration of SPre(C), then the induced map FP(i): FPA. — FPB.
is canonically locally weakly equivalent to a natural choice of cofibration, namely the
L2FP(i): L’FPA, — L?FPB,. In particular, if the diagram

is a pushout diagram of simplicial presheaves on the site C, where i is an E,-trivial
cofibration, then the pushout diagram

L2FPA — L2FPC
L2FP(i) l J L2FP(i,)
L2FPB — L2FPD

of simplicial sheaveson D contains a cofibration L?FP(i) which induces a local stable
equivalence

E A L2FP(i).: E A L2FPA, — E A L?FPB,.

Cofibrations of SPre(D) which induce alocal stable equivalence after smashing with E
are stable under pushout, and so the same is true for cofibrations of simplicial sheaves
on D, since the associated sheaf functor preserves pushouts. It follows that the class of
E.-trivial cofibrations of SPre(C) is closed under pushout.

We used a piece of Lemma 2.6 implicitly in this last argument: if f: X — Y isa
pointwise weak equivalence, then the simplicial presheaf map f.: FPX, — FPY, on D
is alocal weak equivalence. It follows that the induced map f.: E A FPX, — E A FPY,
isastrict and hence local stable equivalence, so that every pointwise equivalenceis an
E.-weak equivalence, giving E3.

With the exception of E7, the remaining axioms have trivial proofs. It remains to
verify the bounded cofibration condition.

Let o be an infinite cardinal which is an upper bound on the cardinalities of the
morphisms set of C, the morphism set of D, and all sets of sections of all simplicia
presheaves E", n > 0 making up the presheaf of spectra E. Suppose that we are given a
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diagram of simplicial presheaf maps

X

1i

A—Y

on C, where i is a cofibration which is an E,-equivalence, and A is an «-bounded
subobject of Y. The assertion that i is an E,-equivalence means exactly that al stable
homotopy group presheaves w{’(E ANEP(Y/ X)) arelocally trivial in the sensethat every
section X € Tl'ip(E A FP(Y/X))(U) maps to 0 aong al maps in some covering sieve
R C hom( , U), and for all objects U of the site D. The presheaves of stable homotopy
groups 7’ ( EAF p(A / (Aﬁx))) are a-bounded, by the choice of the size of the cardinal «.
Thefunctor B — 7 (EAFPB) preservesfiltered colimitsin pointed simplicial presheaves
BonC, and Y is afiltered colimit of its a-bounded subobjects. It follows that there is
an «-bounded subobject A; of Y such that A C A, and such that the induced map of
presheaves of stable homotopy groups

P(EAFP(A/(ANX))) — P (EAFP(AL/ (A1)

isthezero mapin all sections, and for all i. Repeating this construction inductively gives
a sequence of inclusions
A=A CA L CA C---

of a-bounded subobjects of Y such that all induced maps

P(EAFP(A /(A NX)) ) — P (EAFP(Au /(A X))

of presheaves of stable homotopy groups are 0. Let B = U;Aj: then B is an a-bounded
subobject of Y containing A such that (E AFP(B/(BN X))) = Ofor all i, so that the
inclusion BN X — Bisan E.-equivalence.

The natural simplicial set isomorphism

K+|><Lg(KXL)+

implies that the functor X — E A FPX, isasimplicial functor which preserves tensors,
along with pushouts and cofibrations. It follows that if i: X <— Y is a cofibration of
simplicial presheaveson C and j:K < L is an inclusion of finite simplicial sets, then
the induced cofibration

(XXL)U(XxK)(YX K)—YxL

isan E.-weak equivalenceif either i isan E,-weak equivalenceor j isatrivial cofibration
of simplicial sets. ]
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We say that the closed model structure arising from the presheaf of spectra E and
the functor F:C — D is the E,-theory. An E,-fibrant model X — LgX is an E,-weak
equivalencesuchthat LeX is E,-fibrant. Such things always exist, and any two E,-fibrant
modelsfor X are non-canonically homotopy equivalent, by the Whitehead Theorem. An
E.-fibrant model for X is also said to be an E,-localization of X.

Recall from [14] that a bispectrum X can be defined to be a spectrum object in the
category of spectra, in the sensethat X consistsof spectra X", n > 0, and mapsof spectra
o: X" A St — X", The maps o are usually called bonding maps. A morphismi: X — Y
of bispectrais a cofibration if the map i%: X° — YO at level 0 is a cofibration of ordinary
spectra, along with all induced maps

(Yn A Sl) U(X”/\Sl) Xn+l — Yn+1.

The spectra Y" themselves consist of spaces Y™, k > 0, and there is adiagonal spectrum
d(Y) associated to the bispectrum Y, such that d(Y)¥ = Y", d(Y)**? = Y"1 and such
that the bonding maps are given by the pointed simplicial set maps

SN

and the composites
Sl/\ Yr.r+1 T Yr.r+1 A Sl N Yr+1.r+1

arising fromthe spectrum structurefor Y and the bispectrum structurefor Y, respectively.
A map f: X — Y of bispectra is said to be a stable equivalence if the induced map
f.: d(X) — d(Y) isastable equivalence of ordinary spectra.

These definitions generalize quite naturally to presheavesof bispectra. A mapf: X —
Y of presheaves of bispectraissaid to beacofibration if each of themapsf: X(U) — Y(U),
U € C, insectionsof ordinary bispectrais acofibrationin the sense described above. The
map f: X — Yissaid to bealocal stable equivalenceif theinduced mapf,: d(X) — d(Y)
of diagonal presheaves of spectra is a local stable equivalence. Write Spt? Pre(C) for
the category of presheavesof bispectraon the site C. We shall use the result, proved in
[14, 2.1], that the category Spt? Pre(C) has a proper closed simplicial model structure
for which the weak equivalences are the local stable equivalences and the cofibrations
are as above.

THEOREM 3.10. Suppose that F:C — D is a continuous functor between small
Grothendieck sites which induces a geometric morphism Shv(D) — Shv(C), and that
E is a presheaf of spectra on D. Say that a map f: X — Y of presheaves of spectra
on C isan E,-weak equivalenceif the induced map f,: FPX A E — FPY A Eisalocal
stable equivalence of presheaves of bispectra on D. Say that a map p:Z — W is an
E.-global fibrationif p hastheright lifting property with respect to all cofibrationswhich
are E,-weak equivalences. Then the classes of cofibrations, E.-weak equivalences and
E.-global fibrations give the category Spt Pre(C) the structure of a closed simplicial
model category.
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PROOF. We can assume that the spectrum E is cofibrant, by replacing it up to strict
weak equivalence by a cofibrant object. Axioms sE1 and sE2 are trivial.

If the map g:Z — W of presheaves of spectra on C is a pointwise strict weak
equivalence, then each level map g: Z" — W" is alocal weak equivalence of simplicial
presheaves, so that each map FP(g): FPZ" — FPW" is a local weak equivalence of
simplicial presheaveson D . But then each of theinduced maps FPZ" AE™ — FPWM AE™
isalocal weak equivalenceof simplicial presheaveson D, sothat g.: FPZAE — FPWAE
isalocal stable equivalence of presheavesof bispectraon D, giving SE3.

Suppose given a pushout diagram

l

O———0O

—

w— >

of presheavesof spectraon the site C for which the map i is acofibration and an E,-weak
equivalence. In order to prove sE4, it suffices to show that the map i, is an E,-weak
equivalence. Thereis an induced pushout diagram

FPA — FPC

Fp(i)l lF”(ix)

FPB — FPD

of presheaves of spectraon D. The map FP(i) may not be a cofibration, but it induces
amap L?FP(i): L°’FPA — L?FPB which is a level cofibration [14, Ch. 2] in the sense
that all maps L?FP(i): L’FPA" — L?FPB" are cofibrations of simplicial (pre-) sheaves,
after applying the associated sheaf functor, by exactness of the inverse image functor
F*:shv(C) — shv(D). Furthermore, the induced map E A L?2FPA — E A L?FPB is
alocal stable equivalence of presheaves of bispectra on D, since it is strictly locally
weakly equivalent to the map E A FPA — E A FPB. The collection of level cofibrations
of presheaves of spectraon D which induce a local stable equivalence of presheaves
of bispectra after smashing with E is closed under pushout, by a standard long exact
sequence argument. It follows that the map i, induces local stable equivalences E A
L2FPC — EAL?FPD and EA FPC — E A FPD.

Axioms sE5 and sE6 are easily verified. The proof of the bounded cofibration ax-
iom SE7 proceedsjust asin the proof of Theorem 3.9. ]

Note the use of sheaves of spectrain the proof of Theorem 3.10. In general, a sheaf
of spectraY is a presheaf of spectrasuch that all of the objects Y", n > 0, are simplicial
sheaves.

If X isapointed simplicial presheaf onasite C and K isapointed simplicial set, there
isanatura canonical map

N K A L2X — L2(K A X)
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which respects the associated sheaf maps i: X — L?X and n: K A X — L?(K A X) in the
obvious way. It follows that, given a presheaf of spectra Z, there is an associated sheaf
of spectra L?Z having bonding maps given by the composites
s L2(0)
St AL L 128 A 2N —2 122,

This construction is functorial in Z, and there is a natural map of presheaves of spectra
1. Z — L2Z which consists of the associated sheaf map 1: Z" — L2Z" in all levels. This
map 7 isastrict local weak equivalence.

REMARK 3.11. There is a stable proper closed simplicial model structure for the
category Spt Shv(C), for which the weak equivalences are those maps which are local
stable equivalencesin the simplicial presheaf category. The cofibrations, however, are
different in that they need to be defined within the category of simplicial sheaves.
Explicitly, amap i: X — Y is a cofibration of sheaves of spectraif the following two
conditions hold:

(1) themapi: X° — Y isacofibration of simplicial sheaves, and
(2) for eachn > 0the map

L2((S" A YM) Ugiaxe X™H) = Y™

is acofibration of simplicial sheaves.

Observe that every map of sheaves of spectra which is a cofibration of presheaves of
spectra is also a cofibration of sheaves of spectra. The stable proper closed simplicia
model structurefor Spt Shv(C) follows from the existence of the corresponding structure
for the category Spt Pre(C) of presheavesof spectraon C (Theorem 3.7), inthe sameway
that Theorem 1.2 followsfrom Theorem 1.1. Furthermore, the natural map 1: Z — L%Zis
astrict local equivalence, so the stable closed model structures for presheaves of spectra
and sheaves of spectra have equivalent associated homotopy categories.

The level cofibration L?FP(i): L2FPA — L2FPB of presheaves of spectra which ap-
pears in the proof of Theorem 3.10 is actually a cofibration of sheaves of spectra, and
the proof of that result can be rewritten on this basis.

REMARK 3.12. Theorem 3.10 specializes to a closed model structure for ordinary
spectra, where E is any spectrum, and the weak equivalences are those maps which
induce stable equivalences after smashing with E.

4. Localization with respect to a map. Let S be the category of simplicial sets
and f:A — B a cofibration. A great deal of thought has gone into the notion of an
f-localization. We refer the reader especially to the work of Dror-Farjoun ([6], [7]),
Hirschhorn [10], and Bousfield [4]. All of these contain further references and applica-
tions. We begin this section by presenting a synopsis of the theory.

A simplicial set Xisf-local if it isfibrant and if the fibration

f*:hom(B, X) — hom(A, X)
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is a weak equivalence. An f-localization of Y € SisamorphismY — Xin Sto an
f-local object which isinitial among all such morphisms; that is, givenamap Y — Z to
af-local object thereis a unique homotopy class of maps X — Z making the following
triangle commute in the homotopy category:

Y — X

L~

z

One of the main results of the work cited above is that localizations exist and induce a
functor L;: Ho(S) — Ho(S) which is augmented in the sense that there is a natural map
nx: X — LsX and idempotent in the sense that the two natural maps

Lenx, 1ex: LeX — (L)X

are equal and isomorphismsin Ho(S).
The functor Ls: Ho(S) — Ho(S) isinduced by afunctor L = Ls: S— S. To describe
L, consider the set C of cofibrations with elements

AX A"Upxyan BXx 0A" =B x A", n>0.

Since C is a set, there is an infinite cardinal o so that the source and target of all
morphismsin C are a-bounded.
The space L X is defined by afiltered colimit

LX =limEgX,
s<n

where k is some fixed cardinal with k > 2%, and EgX is defined by transfinite induction.
EoX is a functorial choice of fibrant model for X—it is most convenient here to write
EoX = Ex* X. If sisalimit ordinal Es = ILm E;, and for successor ordinals s+ 1, there
is a push-out square =

| |G x hom(Ci, EsX) — EgX

C

J l

| |Di x hom(Cj, EsX) — Esu1X,
C

and then Egi1X = Ex® Egi X is a fibrant model for Eg:1X. We shall say that « is the
defining cardinal for the functor L.

The slightly expanded definition of the stages in the factorization (using function
spacesrather than merely sets of maps) isrequired for theresulting object to be continuous
in the sense of L7 below.

The canonical map nx: X — L X is a cofibration and induces a weak equivalence

nx: hom(LX, Z) — hom(X, 2)
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for al f-local objects Z, by construction. Furthermore, L X isf-local: it is clearly fibrant
and any map C; — L X factorsthrough some EsX, for otherwise C; would havetoo many
subobjects.
The functor L also satisfies the following properties.

L1: L preservesweak equivalences.

L2: L preserves cofibrations.

L3: Let 3 beany cardinal with 3 > «. Let {X;} be the filtered system of sub-objects

of X which are 3-bounded. Then the map

limL (%) — L(X)
i
is an isomorphism.

L4: Lety bean ordinal number of cardinality strictly greater than 2. Let X: v — Sbe
adiagram of cofibrations so that for all limit ordinals s < v the induced map

lim X(t) — X(s)
t<s
isanisomorphism. Thenlim  L(X(t)) =~ L(lim X(t)).
<y <y
L5: Supposethat A = 2%, where & is the defining cardinal for the functor L. If X is

A-bounded, then L (X) is A-bounded.
L6: LetY, Z betwo subobjectsof X. Then

Li)NL@ =L(YNn2)

in L(X).
L7: Thefunctor L iscontinuous; that is, it extendsto a natural morphism of simplicial
Sets
L:hom(X,Y) — hom(LX,LY)

compatible with composition.
The ideaof proof for L 1isto show inductively that any weak equivalenceg: X — Y
induces weak equivalences g.: EsX — EgY. Thisis a patching lemma argument, given
that g induces aweak equivalence

0«: hom(C;, EsX) — hom(C;, EsY)

since EgX and EsY are fibrant.
For L2, one shows inductively that if X — Y is a cofibration, then EsX — EgY isa
cofibration and, for successor ordinals,

ES(Y) L-JES(X) Es+1(x) - E5+1(Y)
isacofibration. Thislast ultimately relies on the fact that for all C; — D; in C, the map

Ci x hom(C;, EsY) Uc, xhom(c; Exx) Di x hom(C;, EsX) — D; x hom(C;, EsY)
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is an inclusion, hence a cofibration. In particular, one needs that
hom(C;i, EsX) — hom(C;, EsY)

isaninclusion. Note further that Kan’s Ex> construction preserves cofibrations.

The statement L 3 is again verified by proving the corresponding statement for each
of the functors Es. Suppose that g: C; x A" — EgX is a map, and take a simplex (x, 6)
of Ci x A". Then g(x, 6) liesin some EsY such that Y is a 3-bounded subcomplex of X
by the inductive assumption. But then all images f(x, 6) lie in some EsW where W is a
B3-bounded subcomplex of X, since |C; x A"| < «, and the collection of all 3-bounded
subcomplexesof X is closed under unions of size at most 3. We have therefore seen that

limhom(C;i, EsX;) — hom(Ci, EsX)
j

isanisomorphism for all C; — D; in C. Therest of the verification is formal, since the
Ex> functor preservesfiltered colimits.
The statement L4 hasa similar but easier argument: there is an isomorphism

lim hom(Ci. EsX(t)) = hom(C;. | im EsX(t)).

<y <y

since otherwise C; would have too many subobjects.
For L5, one showsthat Eg(X) is A-bounded, and uses the observation that

A=2">Kr>2>a.
The fact that Es.1(X) is A-bounded ultimately relies on the fact that
|D; x hom(C;, ESX)| <a-ANza-(2)=a-209= )\

Note that if Y is A-bounded, then Ex™ Y is A-bounded, since X isinfinite.

Note that by L2 we may assume we have L(Y) N L(Z) € L(YnZ) C L(X). One
showsthat E¢(Y) N Es(Z) = Es(YN Z). Thelimit ordinal case follows from the successor
ordinal case because filtered colimits commute with pullbacks. The successor ordinal
case follows from fact that, degreewise, Es+1 X, hasthe form

Es1Xn = (|| (Di — Gi) x hom(Ci. EsX)n) LI EsXn.
C
and the image of the inclusion EsY,, — EgX, associated to any subcomplex Y C X has
the form

(LI (Di — G)) x hom(Ci, EsY)n) LI EsYn.
Cc

The Ex> functor preserves pullbacks, giving L 6.
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The statement L7 is equivalent to asserting that for all X,K € S, thereis a natural
map L (X) x K — L(X x K) so that the following triangle commutes

X x K 24 LX) x K

S

L(X x K)
subject to the requirements that L(X) x A® o~ L (X x A?), and the following two maps
agree:
LX) x (Kx L) — L(Xx (Kx L)) =L((XxK)xL)
and

LX) x (K x L) — (L(X) x K) x L— L(X x K) x L — L((X x K) x L).

Again, one shows the result holds for all Es. The limit ordinal case follows from the
successor ordinal case, which in turn follows by induction and the fact that, for sets, the
push-out of

Bx K XS Aaxk 2 cxk
is isomorphic to (B Ua C) x K. Note as well that the Ex> functor is continuous in the
same sense.

Suppose now that f:A — B is a cofibration of simplicial presheaves on a small
Grothendieck site C, and say that asimplicial presheaf Z on C isf-local if Z is globally
fibrant and if the map Z — x hastheright lifting property with respect to all simplicial
presheaf cofibrations

)«
B x Y Uy A x LuA" % B o LA

arising jointly fromf: A— Bandinclusionsj: Y C LyA".

REMARK 4.1. The presheaf theoretic definition of f-local object seemsto differ from
the corresponding definition for simplicial sets, but it doesn’t. The ordinary function
complex hom(X, Y) for simplicial sets X and Y is the internal complex for the simpli-
cial set category, and a completely analogous definition of f-local object for simplicial
presheaves would require the internal function complex for that setting. We have cho-
sen not to involve that concept in this discussion; the equivalent adjoint formulation of
f-local object is easier to write down.

If Zisf-local, then it has the right lifting property with respect of all inclusions

4.2) B x CUncc Ax D 2 B x D.

The class of all maps| such that Z — * has the right lifting property with respect to
(f,])« is saturated, and contains the set of mapsY C LyA". It follows in particular that
the induced map

f*:hom(B, Z) — hom(A. 2)
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isatrivial Kanfibration if Zisan f-local object. More generaly, all maps
(f x 1x)*:hom(B x X, Z) — hom(A x X, Z)
aretrivial fibrationsif Z isf-local, and so the canonical map

hom(B x D. 2) " hom(A x D.Z) xnomaxc.z) hom(B x C. 2)
isatrivial Kan fibration if Zisf-local.

We construct a functor L = L;: SPre(C) — SPre(C) by starting with an infinite
cardinal o which isan upper bound for the cardinality of the set of morphisms of C and
that of all sets of sections of B. The method of constructing the functor L is analogous
to the simplicial set construction, starting with the set C of cofibrations having elements

A X LuAn Uaxy B XY — B x LuAn,

indexed over the set of all cofibrationsY C LyA".

The construction of L for simplicial sets depends on the existence of a continuous
functorial fibrant model construction. For simplicial presheaves, we require a continu-
ous functorial globally fibrant model jx: X — GX in order to carry out the analogous
argument. The Ex> functor does not produce globally fibrant models for simplicial
presheaves, so we have to do something more interesting:

LEMMA 4.3. Supposethat theinfinitecardinal o isan upper bound for thecardinality
of the set of morphisms of a small Grothendieck site C . Then thereis a functorial natural
map jx: X — GX such that the map jx isatrivial cofibration, GX is globally fibrant, and
the following properties hold:

G1: G preservesweak equivalences.

G2: G preservescofibrations.

G3: Let 8 beany cardinal with 3 > «. Let {X;} be the filtered system of sub-objects of
X which are 3-bounded. Then the map

limGX; — GX
i

is an isomor phism.

G4: Let v be an ordinal number of cardinality strictly greater than 2*. Let X:v —
SPre(C) be a diagram of cofibrations so that for all limit ordinals s < 7 the
induced map

lim X(t) — X(s)
t<s
isanisomorphism. Thenlim  GX(t)  G(lim  X(t)).
<y <y

G5: Supposethat A = 27, where « is the defining cardinal for the functor G. If X is

A-bounded, then GX is A-bounded.
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G6: LetY and Z be two subobjectsof X. Then
GY)NG(2Z) =G(YNZ)
in G(X).
G7: Thefunctor G extendsto a natural morphismof simplicial sets
G: hom(X,Y) — hom(GX, GY)
compatible with composition.

PROCF. As before, the defining cardinal « for the functor G is a cardinal k > 2“.
We begin by writing C; — D; for the set of trivia cofibrations Y c LyA", where U
varies through the set of objects of C. Note that there are at most 2* trivial cofibrations
Y C LyA", and that each such Y is a-bounded. Then GX = lim  GgX where GgX =

lim GiXatlimit ordinast < x, and Gs1 X is constructed fromséh;X by requiring that
—t<
the fosllowi ng diagram is a pushout

| |G x hom(Ci.GeX) — GeX

] |

|_|Di X hom(Ci,GSX) — Gg1 X
i
Each of the maps
|_| G x hom(Ci. GSX) — |_| D; x hom(Ci. GSX)
i i

isatrivial cofibration of simplicial presheaves, so that the canonical map jx: X — GX
isatrivia cofibration. GX is globally fibrant, since any map C; — GX factors through

some GsX with s < k. In particular, G1 is atriviality. The statements G2—G7 are proved
by analogy with L 2—L 7 above. ]

To construct LX for a simplicial presheaf X, take x to be a cardinal greater than
2%, and let EgX = GX. Define ExX = G(Ilm EtX) at limit ordinals s < &, where

G is the globally fibrant model consxructlon of Lemma 4.3. At successor ordinals,
Es+1X = G(Es+1X), where Es.1 X is defined by the pushout

|_|Ci X hOITI(Ci. ESX) — EgX

T |

|_|Di X hom(Ci. ESX) — ES+1X.
C

The notation C; — D; refersto all simplicial presheaf morphisms

A X Luﬂn Uaxy BX Y — B x Luﬂn.
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Finally,
LX =limEsX.
s<n
Note that LX is globally fibrant: any map Y — LX must factor through some EsX
sincer > 2% andall EsX are globally fibrant by construction. A similar argument shows
that LX isf-local. In the presence of Lemma 4.3, arguments for the simplicial presheaf
analogues of statements L 1-L 7 go through just as before. In particular, we have proved

THEOREM 4.4. Letf: A — B bea cofibration in SPre(C), and suppose that « is an
infinite cardinal which is an upper bound for the cardinalities of both B and the set of
morphisms of C. Then thereis a functor L = L;: SPre(C) — SPre(C) and a natural
map nx: X — L(X) so that L(X) is f-local and nx is a cofibration which induces weak
equivalences

nx:hom(L(X). Z) — hom(X. 2)

for all f-local simplicial presheavesZ.

As above, thisyields alocalization on the homotopy category.
We now use Theorem 1.1 to produce the f-local category structure on SPre(C). The
following result allows usto identify the class E of f-local equivalences.

LEMMA 4.5. Letg: X — Y bea morphismof simplicial pre-sheavesin SPre(C). The
following statements are equivalent.
(1) Lg:LX— LY isaweak equivalence
(2) g*:hom(Y.Z) — hom(X,2) is a weak equivalence for all f-local objects Z in
SPre(C).
(3 [Y,Z] — [X, Z] isanisomorphismfor all f-local Z in SPre(C).

ProOOF. Examine the following diagram:

hom(LY.Z) —— hom(Y.2)

| s

hom(LX,2) — hom(X, 2).
U]

Since njx induces atrivial Kan fibration n%: hom(LX, Z) — hom(X, 2) for all X and all
f-local Z, the horizontal maps labelled 1* are weak equivalences. Thusif Lg: LX — LY
isaweak equivalence, soisg*. Thus(1) implies (2). We havethat (2) implies (3) because
any f-local object is globally fibrant. For (3) implies (1) notethat for all X and all f-local
Zl

[X.Z] 2 [LX.Z]

since L induces the localization functor L; on the homotopy category. Thus (3) says
[LY,Z] — [LX,Z] is an isomorphism for all f-local Z. Since LX and LY are f-local,
this implies that Lg: LX — LY is an isomorphism in the homotopy category; Lg is
therefore aweak equivalence. ]
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We now define E, the class of f-local equivalences, by the three equivalent conditions
of Lemma 4.3. We next want to show E satisfies the seven axioms required by Theo-
rem 1.1. Axioms E1-E3 are obvious, while Lemmas 4.6 and 4.7 handle axioms E4-E6
and E7, respectively.

LEMMA 4.6. Theclassof f-local trivial cofibrationsis closed under cobase change,
colimits over ordinal numbers, and coproducts.

PrROOF. Use (2) of Lemma 4.5, and the fact that trivial fibrationsin simplicial sets
are closed under base change, limits over ordinal nhumbers, and products. ]

LEMMA 4.7. Let A = 2%, where  is the defining cardinal for the functor L (and
rk > 2%). Then the class of f-local trivial cofibrations satisfies the bounded cofibration
condition for the cardinal .

PrOOF. Let X — Y be an f-local equivalence and a cofibration, and let A C Y
be a A-bounded sub-object. We inductively define a chain of A-bounded sub-objects
A=Ay C A CA C--- CYover )\, andachain of sub-objects

L(A)=L(A0) SX1 CL(A) C X CL(A) C---L(W.
also over A, with the property that
L(X) N Xs — Xs
isaweak equivalence. Thenwe set B = ILmKH As and, by L6,

L(xNB)=L()NL(B)=limLX)NXs
— limX, =~ L(S)H

S<w

isaweak equivalence as required.

The As and X are defined recursively. Suppose s+ 1 is a successor ordinal and As
has been defined. Then, since As is A-bounded, L As is A-bounded by L 5. Hence thereis
a \-bounded sub-object Xs11 C L(Y) sothat L(As) C Xer1 and L(X) N X1 — Xer1 iS
aweak equivalence (see the proof of Theorem 2.7 with f the identity functor, or argue
directly). Since L(Y) = lim L(Y;) where Y; C Y runs over the A-bounded sub-objects

|

of Y, thereis a A-bounded sub-object AL,; so that Xs+1 C L(AL,;). Let Ass = AUAL,,.
Finally, suppose sisalimit ordinal. Thenset Xs = lim  L(A) =~ lim X The object
—t<s —t<s

Xs is A-bounded and L (X) N Xs — Xs is aweak equivalence. Choose A, C Y so that AL
is \-bounded and Xs C L(A)) and set As = lim A UAL "
—t<s

THEOREM 4.8. The category SPre(C) acquires the structure of a simplicial model
category with ordinary simplicial presheaf cofibrationsand f-local eguivalences.
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ProoF. First of all, if Z € SPre(C) isf-local andK € S, then XX isf-local. To see
this, recall that Z — * hastheright lifting property with respect to all cofibrations(f, j)*
asin (4.2); wecanin particular assumethat j hastheformY x K — LyA" x K, and then
use adjointness.

Let K — L beacofibration in S and C — D a cofibration in SPre(C). Consider the
cofibrationin SPre(C)

(4.9) DxKUcxk Cx L—D x L.
Let Z bef-local and apply hom(:, Z). Then thereis an augmented pull-back squarein S

hom(D x L,Z) — hom(D x KUcxk C x L,Z) — hom(C x L, 2)

| l

hom(D x K,Z) ———— hom(C x K, 2).

Now, there is anatural isomorphism of this diagram to

hom(D, Z+) —— hom(D, Z%) Xpom(c.2¢) hom(C, Z) —— hom(C, Z")

| |

hom(D.ZX) —— hom(C. ZX).
Now suppose C — D isanf-local equivalence. Then by Lemma4.3(2),
hom(D. ZK) — hom(C. Z¥)
istrivial fibration, and so q isatrivial fibration. Since
hom(D. Z") — hom(C, Z")

is aweak equivalence, (4.9) is an f-local equivalence. Similarly, if K — L is a weak
equivalence, hom(C, Z-) — hom(C, ZK) is aweak-equivalence, since Z isfibrant. Then
i isaweak equivalence and the result follows. ]

One final remark. While the fibrations in the f-local model category structure of
SPre(C) are cloaked in mystery, we do have the following congruence.

PROPOSITION 4.10. An object X € SPre(C) is fibrant in the f-local model category
structureif and only if it isf-local.

PrROOF. First supposethat X is fibrant. We know that the map
(fj)* B X Y Uaxy A X LuAn — B x LuAn
is acofibration and an f-local equivalence, so that the induced map

(f.j)*:hom(B x LyA", X) — hom(B x Y Uaxy A x LyA", X)
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isatrivial Kan fibration. But then X — x hastheright lifting property with respect to all
maps (f,j)., and so X isf-local.
Now suppose X isf-local. Consider alifting problem

C—X

Ed
s
s
3
s

D

where C — D isaf-local trivial cofibration. Since X isf-local thereisamap L(C) — X
making the following diagram commute

C—X

|~

L(C)
Since L(C) — L (D) isatrivial cofibration, thereis amap L (D) — X making

C— L) —X

L7

D — L(D)
commute. This solvesthe original lifting problem. ]

REMARK 4.11. Suppose that S is a Noetherian scheme of finite dimension, and
let (Sm/S)nis denote the site of smooth schemes over S, equipped with the Nisnevich
topology. Theaffineline A' over Srepresentsasheaf of the samenameon (Sm / nis- The
Morel-Voevodsky Al-local theory [17], [18] isthe closed model structure on the category
of simplicia presheaves on (Sm/S)nis which arises from Theorem 4.8 by localizing at
a cofibration associated to the constant simplicial presheaf map A — *. Note that the
same theory arises from localizing at any rational point x — A of the affineline.
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