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Abstract. The study of astrophysical maser formation provides a useful probe of the chemical
composition and physical conditions of the sources they are observed in. This exploration re-
quires continuously solving the SE equations for the populations of the energy levels in search of
conditions that will produce an inversion. After evaluation of available implementations ap-
plying the Escape Probability approximation, the masers solver was developed to provide
an efficient and robust matrix inversion calculation. This open source package is hosted at
https://bitbucket.org/ruby van rooyen/masers.
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1. Introduction
In order to understand the pumping mechanisms of masers, suitable models must solve

the rate equations for non-LTE statistical equilibrium (SE). A realistic model for a line-
emitting system must contain a sufficiently large number of levels and take into account
all processes describing population exchange (Sobolev & Gray 2012). These SE equations
must be solved simultaneously over all levels using robust iterative solvers.

The Escape Probability approximation simplifies the coupling between radiative trans-
fer and the SE equations by pre-applying some assumption based on photon propagation
through various mediums. In addition, it also uses adjustable variable selection to com-
putationally approximate the physical environment, which allows easy manipulation of
parameter space under investigation to inspect pumping mechanisms. The main disad-
vantage with the use of adjustable, empirical parameters, is that with a departure from
their optimum values, very slow convergence and even divergence may occur.

The most efficient way of solving for a large number of level populations is to ex-
press the rate equations as a matrix of coefficients acting on a vector of populations.
In this form, the level populations can be obtained by a number of standard numerical
methods, with the only prerequisite for a successful solution being a reasonable initial
guess. Matrix computation requires memory to store big matrices for the rate equations
of molecules with a large number of levels. Calculations of pseudo-inversion can lead
to destructive numerical instabilities if the implementation does not properly represent
the mathematical nature of the equations and variables. Plus, numerical procedures are
strongly convergent if the starting solution is not too far from the final solution, but fails
to converge in typical non-LTE conditions.

The masers package is developed in Python, provides a reasonably fast, stable al-
gorithm that deals with the solution method’s inherent numerical sensitivities; allows
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different maser geometries for calculation; includes the contribution of interacting back-
ground radiation fields, as well as other sources of opacity such as line overlap.

2. Non-equilibrium inversion
Applying the escape probability to the rate equations, the level populations calculation

can be expressed as presented in Equation 2.7.1 from Elitzur (1992).

dni

dt = −
∑
j<i

{
Aijβij [ni + Wℵij (ni − nj )] + Cij

[
ni − nj exp

(
−hνi j

kT

)]}
+

∑
j>i

gj

gi

{
Ajiβji [nj + Wℵj i(nj − ni)] + Cji

[
nj − ni exp

(
−hνj i

kT

)]} (2.1)

As a parametric model Equation 2.1 capture all its information within the following
parameters: the rate coefficients Aij and Cji ; the number density of level i, Ni = gini ,
where gi is the statistical weight; the information related to the maser environment such
as the dilution factor W and ℵij , the photon occupancy number at transition frequency
νij ; as well as, geometry and kinematics of the masing region in βij .

Expressed as a matrix equation it becomes

Qx = b

where b = [0, · · · , 0, 1]T , xi = ni

nm o l
is the normalised fractional population density, with

nmol the total population density of the molecule and Q = R + C̃.

Rij =

⎧⎪⎪⎨⎪⎪⎩
Ajiβji(1 + Xji) i < j

Aijβij

(
gi

gj

)
Xij j > i

−
∑
i �=j

Rji j = i
and C̃ij =

{
Cji j > i
−

∑
i �=j

Cij j = i

where R is the radiative and C̃ the collisional components, and X = ℵbb + [ℵ(T�d) +
wdℵ(Txd)](1 − e−τd ) + wH IIℵ(Te)(1 − e−τH I I ) is the radiative contribution of the back-
ground.

Numerical limitation and instabilities. Iterative methods are sensitive to divergence
and oscillation (multiple valid solutions) since the initial estimate for the next iteration
is simply the solution of the previous iteration and the process is repeated until calculated
solution satisfies some convergence criteria.

Badly chosen convergence criteria can also contribute to numerical instabilities. The
natural choice of excitation temperature calculation as convergence criteria showed sen-
sitivity to divergence, caused by catastrophic cancellation due to the difference in small
numbers in the denominator of the excitation temperature calculation, Tex ∝ [ln(xlgu )−
ln(xugl)]−1 . More reliable convergence is obtained by directly comparing level popula-
tions with xn and xn−1 , the level populations calculated during the current and previous
evaluation.

Oscillating behaviour is only pronounced at lower transition levels and the solutions
were found to become more stable if the next iteration is given some “memory” of the
previous solutions. This was done using a running average calculation, xn = c1×xn +c2×
xn−1 where c1 � 1 and c2 � 1 are some weighting coefficients with c1 +c2 = 1. The larger
the coefficient for the previous solution the “longer” the memory of the next solution. For
masers this “memory” was found to be fairly large with xn = 0.05 × xn + 0.95 × xn−1 .
It should be noted that a “long memory”, c2 → 1, requires a more stringent convergence
limit, |xn − xn−1 |/xn−1 < 10−7 .
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Lastly, all numerical implementations must carry some awareness of precision limits
and computer number formats. To take extremely small rate coefficients into account a
larger number representation and small number calculation libraries must be used. Such
specialised libraries use more memory and computation takes longer. In order ensure
consistent calculations, the masers calculator limits A-coefficients to be � 10−13 . This
limit can be imposed safely since the Einstein-A coefficients describe the transition prob-
ability per unit time that an atom currently in the upper level will go to the lower level,
which is unlikely if the Einstein A coefficient is extremely small.

Results. The masers software was used to investigate the pumping of the H2CO maser
in G37.55+0.20, using the formaldehyde molecular data, Wiesenfeld & Faure (2013), and
comparing the output with results published in Van der Walt (2014). Implementing
the environments described in Section 3 of Van der Walt (2014), masers successfully
recreates stimulated inversions of the 110–111 (4.8 GHz) transition. Good agreement was
obtained with the published inversion results for collisionally, as well as radiatively excited
dust and free-free continuum emission.

False positives. A parametric model captures all its information within its parameters
with no reference to actual data, making these methods very reliant on intelligent input
by the user to accurately describe the physical environment. A proper understanding
of the model inputs, implementation and assumptions are essential. Even then the user
should always evaluate the outcome against expectation to guard against false positives.

This behaviour can be simulated for formaldehyde masers with the following environ-
ment parameters: Calculate the optical depth over the molecular column density range
NH 2C O = 1013 − 1018 cm−2 for total density nH 2 = 103, 104, 105 cm−3 and kinetic tem-
perature Tkin = 10, 20, 30K. To investigate radiative pumping by thermal dust emission,
apply a dust background radiation contribution of 50K. If the dust temperature is applied
as a flat temperature, Tbb = 50K, the model will calculate the background continuum
contribution for a black body emitter, which will result in inversions over the column den-
sity range. However, when applying it as a dust temperature, Td = 50K there will be no
inversions, as expected, since the dust grey body continuum contribution model is used.

3. Line overlap
A detailed model of the escape probability representation of the rate equations with

line overlap is given in Elitzur & Netzer (1985), which can be generalised to obtain:
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where line a is the transition line being evaluated and β̂a = [1 − (1 − fa)(1 − βa)].
Note, only the radiative emission is affected by line overlap, thus Equation 2.1 is

rewritten separating non-overlap and overlap, without explicitly including the collisional
contributions in Equation 3.1. As with Equation 2.1 this grouping can be represented with
a matrix equation (R + C̃)n = 0, where the radiative matrix now has three components

R = Ra − RT + O ,

with Ra the non-overlap radiation matrix of line a, RT the overlap region of line a and
O all contribution of overlapping lines to line a matrices as follows:

Ra
ij =

⎧⎪⎪⎨⎪⎪⎩
Ajiβ̂a(1 + Xji) i < j

Aij β̂a

(
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gj

)
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−
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and RT

ij =
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with β̂T = fa(1 − βT ).

Oij =

⎧⎨⎩
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and αij [au ] =
∑
αul

α �= a

fαu l
Aαu l

where αij is a row vector with elements for the upper, u, and lower, l, indices of all lines
overlapping line a.

4. Summary
Fundamental to the study of astrophysical masers is the calculation of level populations

for various physical conditions under which a population inversion can occur. The well-
known escape probability method provides a powerful numerical algorithm for solving
these non-linear multi-level problems within reasonable computational time.

Given the ease of implementation of the escape probability method, it is the de-facto
choice of many level population calculator codes available, such as RADEX (Van der Tak
et al.2007). However, care should be taken since the conditions under which population
inversion occurs often causes instabilities during the calculation of the inevitable matrix
inversion, making the results unreliable.

For this reason the masers Python package was developed to provide stable solutions
for the investigation of maser pumping in particular and level population calculations in
general. This paper described the development and implementation details of this open
source package, as well as some preliminary results for formaldehyde maser pumping
mechanisms.
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