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BUTLER MODULES 
OVER VALUATION DOMAINS 

L. FUCHS AND E. MONARI-MARTINEZ 

Let R be a commutative domain with 1, Q its field of quotients, and M a torsion-free R-
module. By a balanced submodule of M is meant an 7?D-submodule TV [i.e. rN = NH rM 
for each r G R] such that, for every /?-submodule J of g, every homomorphism r/ : 7 —> 
M J N can be lifted to a homomorphism x'J—*M. This definition extends the notion 
of balancedness as introduced in abelian groups (see e.g. [10, p. 113]). The balanced-
projective /^-modules can be characterized as summands of completely decomposable 
/^-modules (i.e. summands of direct sums of submodules of Q). IfR is a valuation domain, 
then such summands are again completely decomposable; see [12, p. 275]. Recall that a 
torsion-free abelian group B of finite rank is called a Butler group [2] if it has one of the 
following equivalent properties: 

(i) B is a pure (=RD-) subgroup of a completely decomposable group; 
(ii) B is an epic image of a completely decomposable group of finite rank; 

(iii) Bext1 (#, T) = 0 holds for every torsion group T; here Bext1 (#, T) stands for the 
subgroup of Ext1 (B, T) consisting of the balanced-extensions of T by B. 

Several definitions, not all equivalent, have been proposed for Butler groups of infinite 
rank. The countable case was studied by Bican-Salce [4]. Several interesting and deep 
results have been established for uncountable Butler groups (cf. Albrecht-Hill [1], Dugas 
[5], Dugas-Rangaswamy [7], Dugas-Hill-Rangaswamy [6]), but in view of the enormous 
difficulties, their study is far from being satisfactory. 

In this paper, we investigate the analogues of Butler groups, the Butler modules, of 
finite and infinite ranks over valuation domains, with two major goals in mind: firstly, 
to learn more about balancedness, and secondly, to classify Butler modules as far as 
possible. Our task turns out to be more challenging than it looks at the first sight, since 
hardly any method developed in the study of Butler groups carries over to the valuation 
domain case without drastic change. An explanation for this might be sought for in the 
difference between the prime spectra of the underlying rings. Some of the techniques 
used here were introduced in the study of Baer and Whitehead modules; see [8], [9], and 
[3]. 

Our definition of Butler modules over valuation domains is based on the analogue of 
(iii). After settling the finite rank case, we concentrate on submodules of finite and then 
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BUTLER MODULES 49 

of countable rank in Butler modules. We prove that they ought to be completely decom­
posable [see (1.3) and (2.2)], the converse being an easy consequence of the definition. 
This is a relatively easy task compared to the case of modules of rank Hi where more 
sophisticated arguments are required to reach the same conclusion [see (3.7)]. We have 
not succeeded in obtaining a satisfactory classification for Butler modules whose rank 
exceeds Ki—this did not come to us as a surprise being aware of the difficulties in the 
abelian group case. Fortunately, at least those Butler modules could be classified whose 
projective dimension is at most 1 : they too are necessarily completely decomposable. 

Throughout R will denote a valuation domain (i.e. a commutative domain in which 
the ideals form a chain under inclusion), and Q its field of quotients. We assume Q ^ R. 

An exact sequence 0 —> A —> B—>C —+ 0 of /^-modules, C torsion-free, is called 
balanced if for any submodule J of Q, and any homomorphism rj:J —> C there is a map 
\:J —• B such that Px — r\. The extensions B of A by C which are represented by 
balanced-exact sequences form a submodule Bext^(C,A) of Ext^(C,A). 

By the rank rkC of a torsion-free /?-module C is meant dim Q(&R C as a g-vectorspace. 
The rank 1 modules are copies of submodules of Q\ direct sums of rank 1 modules are 
called completely decomposable. The completely decomposable /^-modules have the 
projective property relative to balanced-exact sequences. 

For unexplained terminology and notation we refer to [12]. 

1. Butler modules of finite rank. By a uniserial module is meant a module in 
which the submodules are totally ordered by inclusion. A weakly poly serial module is 
defined as a module M which has a finite chain 0 = Mo < M\ < • • • < Mn — M of 
submodules such that all the factors M//M/__i(/ = 1,... ,n) are uniserial. In [13] it has 
been shown that every weakly polyserial module [has finite Malcev rank, and therefore 
it] contains a finitely generated essential submodule. For a weakly polyserial module we 
now prove: 

LEMMA 1.1. Let W = 0/<=/ R/ Rrt (0 / rt G R) be a pure-projective torsion module 
and M a weakly polyserial submodule ofW. Then riM — Ofor some i G /. 

PROOF. Let H be a finitely generated essential submodule of M, and F a finite subset 
of / such that H C V — ®teF R/ Rn- The projection n of W onto V fixes H elementwise, 
so 7T is monic on the essential extension M of H. Hence r^M — 0 for some i G F implies 
rtM = 0 for this /. 

The following lemma provides us with an important tool for constructing 
balanced-exact sequences; it utilizes a crucial difference between abelian groups and 
modules over valuation domains. 

LEMMA 1.2. Let ^:N —> C be a map from a torsion-free R-module N into an R-
module C such that image ip (J) of any rank 1 (pure) submodule J ofN is properly con­
tained in a uniserial submodule U of C where the elements of U have principal ideal 
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50 L. FUCHS AND E. MONARI-MARTINEZ 

annihilators. If the bottom row is a pure-exact sequence, then the top row obtained as a 
pullback is balanced-exact: 

0 —> A —> M -?-> N —> 0 

I r 
0 —• A —> B - ^ C —> 0 

PROOF. Let <j> : J —y N be a homomorphism, J torsion-free of rank 1. Ignoring the 
trivial case, we may assume J is a submodule of N and <f> is the inclusion map. By hy­
pothesis, there is a c G C such that ^(j)J <Rc. Pure-exactness guarantees the existence 
of a b G B with Ann b = Ann c and f3b — c. Let \ be the isomorphism Re —• Rb 
mapping c onto b, and set 7 = X^<j> : J —•» B. As /?7 = $X^<\> = il)<f),the pullback 
property of M implies the existence of a map 6:J-^M satisfying r]8 = </>. Thus the top 
row is balanced-exact. 

We are now ready to concentrate on our first result. By a Butler module we mean a 
torsion-free /^-module B such that 

Bextĵ OB, T) — 0 for all torsion modules T. 

Evidently, all completely decomposable modules are Butler modules. 

THEOREM 1.3. Finite rank Butler modules over valuation domains are completely 
decomposable. 

PROOF. It suffices to show that the existence of an indecomposable Butler module 
B of rank n > 1 leads to a contradiction. 

Let N be a pure submodule of rank n — 1 (> 1) in B, and set Bj N = J < Q. In 
view of our hypothesis, TV cannot be a summand of B, so J is not finitely generated, and 
moreover, every rank 1 submodule of B maps onto a proper submodule of Bj N under the 
canonical map. These properties are preserved under passage from JtoJ/R (i.e. when 
a cyclic submodule is factored out). 

Starting from a pure-projective resolution of J/ R (bottom row), and using the com­
posite map B^>B/N = J-^J/R (which will be denoted by xjj ), we form the pullback 
diagram 

0 —• T —> M —> B — > 0 

II 4̂  x ' X-

0 • T > W ^ U J/R > 0 

In view of (1.2), the top row is balanced-exact, and therefore it splits. This means 
there is a 7 : B —y W such that a 7 = V>. As epimorphic images of finite rank torsion-free 
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modules are weakly poly serial, (1.1) implies that 7 B is annihilated by some r G R such 
that Rj Rr is one of the summands of W; in other words, r~l G J. But then this r would 
annihilate the module cc^B = I/JB = Jj R\ this is impossible unless J — r~lR, i.e. J is 
finitely generated, a contradiction. 

The last theorem shows that over arbitrary valuation domains Butler modules of finite 
rank can be defined in three equivalent ways, just as for abelian groups mentioned in the 
introduction. 

2. The countable rank case. Our next purpose is to characterize Butler modules 
of countable rank. We accomplish somewhat more in (2.2); this plus will be needed later 
on. 

We start off with an easy lemma. For a module M, M will denote its pure-injective 
hull. 

LEMMA 2.1. Let J be an R-module such that R < J < Q. The set of annihilator 
ideals of elements of(J/R)A is the same as the set of annihilator ideals of elements of 
J/R. 

PROOF. Note that (// R)A = JSj S where S denotes a maximal immediate extension 
of/?; see [12, p. 229]. An element of JS/ S is of the form r~l e+S with r eR,r~l G J and e 
a unit in S, thus ArmR(r~l e +S) — Rr. But this is exactly the annihilator of r~x +R G Jj R. 

The following result generalizes our earlier (1.3). 

THEOREM 2.2. Countable rank pure submodules of Butler modules are completely 
decomposable. In particular, countable rank Butler modules are completely decompos­
able. 

PROOF. Let B be a Butler module, and by way of contradiction, suppose it contains 
an indecomposable pure submodule N of finite rank n > 1. We can argue as in the 
proof of (1.3) to conclude that there is an epimorphism \^:N —• Jj R with an infinitely 
generated J (R < J < Q) such that no rank 1 submodule of N is mapped onto Jj R by 
ip. Since TV is pure in B, the homomorphism i/ip-.N —• (Jj R)A [with the canonical map 
i/:JjR-+(JjR)A] extends to a homomorphism \JJO\B—> {JjR)A. 

In order to assure that the extension fa has the same property as the one mentioned 
above for I/J , we have to choose fa more carefully. Select a maximal family { C,} of 
rank 1 pure submodules of B such that the set { N, Ct(i G /)} is purely independent (see 
[12, p. 202]). Then B* = N 0 (©C,-) is a pure-essential submodule of B, thus no rank 1 
submodule of B maps upon a non-zero pure submodule of Bj B*. If fa is chosen so as 
to act trivially on the C, but agree with if; on N, then fa will have the property needed 
to apply (1.2). (Another proof can be given by using *-maps and applying (4.2).) From 
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(1.2) we conclude that the top row in the pullback diagram 

0 > T > M > B > 0 

II 4- ^ 4-

0 y T y W - ^ (// R)A y 0 

is balanced-exact where the bottom row is chosen to be a pure-projective resolution of 
{JI R)A. As B is a Butler module, the top row splits. Thus there exists a map 7 : B —> W 
making the lower triangle commute. By (1.1), there is an r £ R such that R/ Rr is a 
summand of W and rlN = 0. By virtue of (2.1), we have r~x G J. But such an r cannot 
annihilate J/ R = xjioN — ctlN whenever J is infinitely generated. This contradiction 
shows that all finite rank pure submodules of B are completely decomposable. 

Let M be a pure submodule of countable rank in the Butler module B. We represent 
M as the union of an ascending chain M0 = 0 < M\ < • • • < Mn < • • • of pure 
submodules with Mn of rank n. What we have already proved above implies that each Mn 

is completely decomposable. Therefore, Mn-\ as a pure submodule of Mn is a summand 
of Mn (cf. [12, p. 274]), i.e. Mn = Mn-\ 0 Jn for a suitable rank 1 submodule Jn. We 
conclude that M = ®n<uJn^ as claimed. 

3. Butler modules of rank Kj. We now turn our attention to Butler modules of 
uncountable rank. Several preliminary lemmas are required for the proof of the main 
result (3.7). 

LEMMA 3.1. Let 0 —• Tv —• Mv -^Av —• 0 (V < K) be a direct system of balanced-
exact sequences where the Av are reduced torsion-free modules. Assume that the con­
necting maps <j>vyL \AV —y A^ (for allv <[i < K) are monomorphisms with Im <$>V[i pure 
in A^. Then the direct limit of the system, 

0->T-+M^A-^0, 

is likewise a balanced-exact sequence. 

PROOF. Let J be an /^-module, R <J < g, and rj:J —• A. 
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Here pv, </v stand for the canonical maps. Given 0 ^ x G 7, there is a v < K such 
that <j>„xu = 7]x for some xv £ Au. As Im (j>u has to be pure in A, the correspon­
dence x*—>xv extends to a homomorphism T}V\J —+ Av. Evidently, </>̂ r/̂  = 77. By the 
balanced-exactness of the top row, there is a map \v :J —> Mv such that av\v — j]v. Thus 
<\>vUvXv = <?W = 77. Now p^Xi/i /--* M satisfies a(pvXv) = («pI/)xI/ = (&v<*v)Xv = 
<j>vf]v — ??, as desired. 

LEMMA 3.2. Ler M be a torsion-free module of rank K,K a regular cardinal. For any 
homomorphism 77: M —• ©,C/, Imr; w contained in a direct sum 0/max{ «;, No} many 

PROOF. If /c is a finite cardinal, then M is a poly serial module and the claim is known 
(see e.g. [11]). If « is infinite, then M is the set union of K finite rank submodules Mj, 
M = UjejMj where |7| = n. The assertion follows from I1T177 = U/Im'M/ and from 
what has been said about the finite rank case. 

a (3 

LEMMA 3.3. Let 0 —> A—>B—>C —> 0 be an exact sequence of torsion free R-
modules with a A pure-essential in B. Then there is an induced exact sequence 

Horn*(A, T) —• ExtJ^C, T) —> Bext^(fi, T) —> Bextj^A, T) 

for every R-module T. 

PROOF. If a A is pure-essential in B, then for every rank 1 submodule J of £, (3 J is 
properly contained in a rank 1 submodule of C. Therefore, if 0 —> T —y M —y C —• 0 
represents an element of Ext*(C, 7), then being pure-exact (C is torsion-free !) implies 
that the induced sequence in Ext1 (5, T) is balanced-exact, as is clear from (1.2). 

It remains to show that under the map Ext^Z?,T) —-y Ext1 (A, 7) induced by a , 
Bext1 (B,T) is mapped into Bext*(A, T). Let the bottom row represent an element of 
Bext1 (#, T) and M * be defined via pullback in the commutative diagram 

0 —> T —• M* -^-» A —• 0 

0 • T y M - ^ B • 0. 

For every submodule J of Q and every homomorphism 77: / —> A, there is a \\ J —y M 
such that px — arj. The pullback property of M* guarantees the existence of a map 
£ : J —y M* satisfying <r£ = 77. This proves the balancedness of the top row. 

A submodule A of an /^-module B is said to have the Torsion Extension Property if, 
for each torsion /^-module T, the map Hom(#, T) —» Hom(A, T) induced by the inclusion 
A —y B is surjective. In this case, we say that A is a TEP-submodule of B. This property 
was introduced by Dugas-Rangaswamy [7] in investigating Butler groups. 

The following is the analogue of a result by Dugas-Hill-Rangaswamy [6]; even their 
proof carries over to our case. 
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LEMMA 3.4. Bj A is a Butler module for every pure TEP-submodule A of a Butler 
module B. 

PROOF. Hypothesis implies that the induced map (j) : Extl(B/ A, T) —» Ext^Z?, T) is 
monic for any torsion module T. The map Bext1^/A, T) —• Bext!(#, T) is a restriction 
of <j>, so it is injective. Hence Bj A is a Butler module. 

A simple technical lemma is the following. 

LEMMA 3.5. Let Abe a pure TEP-submodule of the Butler module B such that Bj A 
is of rank 1. Then A is a summand ofB. 

PROOF. If A is not a summand of B, then A is not balanced in B, so it is pure-essential 
in B. In view of (3.3), for every torsion module T we have an exact sequence 

Hom(£, T) -> Hom(A, T) -> Extl(B/A, T) -> Bext1^, T) = 0. 

By hypothesis, the first map in this sequence is surjective; thus Ext1 (B/ A, T) = 0 for 
all torsion modules 7\ In other words, Bj A is a Baer module; so it is free (see [8]). This 
contradicts the hypothesis that A is not a summand. 

We have come to our key lemma. This is a modified version of a lemma employed in 
[8]; the same idea occurs in [6]. 

LEMMA 3.6. Let K be an uncountable regular cardinal and Mo = 0 < M\ < • • < 
Ma < • • • (a < K) a well-ordered continuous ascending chain of submodules of M 
such that 

(i) M — Ua<K Ma is torsion-free; 
(ii) Ma is a pure in Ma+\ for all a < K; 

(Hi) Ma is a Butler module of rank < K for each a < K. 

If M is a Butler module, then the set 

£ = { a < / c | 3 / 3 > a such that Ma is not TEP in Mp } 

is not stationary in K. 

PROOF. Without loss of generality we may assume that in the definition of E, /3 — 
a + 1. 

For each a G E, choose a torsion module Ta and a homomorphism r/a : Ma —• Ta 

which cannot be extended to Ma+\ —+ Ta. For a G K \ E, let Ta = 0 and rja — 0. 
Setting Sa — © 7 < a r 7 , form the commutative diagram 

0 > Sa > Sa®Ma - ^ M„ > 0 

0 y Sa+\ > Sa+x 0 Ma+{ • Ma+\ > 0 
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where both exact sequences split with </>a, (j)a+\ as projections; the extremal vertical 
arrows are the obvious embeddings. Define x a : 5 a ® Ma —> Sa+i 0 Afa+i via 

Xo:fo ,w a )M(5 Œ + r]ama,ma). 

Note that because of (3.1) and (iii), the splitting exact sequence at a limit ordinal a < K 
will be the direct limit of the splitting exact sequences for (3 < a. 

4> Let 0 —• S —• X—>M —• 0 be the direct l imit of the split exac t s equences wi th the 
indicated maps, for a < K. In view of (3.1), this sequence is balanced-exact. Therefore, 
since M is a Butler module, there is a splitting map xj; : M —* X. Because of (iii) and (3.2), 
tp maps Ma into the direct sum of Ma and a set of less than n many T7 's. We infer that 
the set 

C = {a < K | V>M« < ^ 0 M a } 

is a club (closed and unbounded) in K . We have commutative diagrams 

0 • Sa —• Sa®Ma -^ Ma —• 0 (aeC) 

1 1- 1 
0 y S — y X = S®M -^-> M — > 0 

</> 

where the vertical maps are the canonical inclusions in the direct limits and 

ipa = il>\Ma. Evidently, since Xa\Sa is the identity map, \ a must act like this: 
ma G Ma where £a: Ma —> S is such that 

£«(m«) is the projection of — x<*(0, raa) on 5. The choice of a G C implies Im £a < Sa. 
Since x« = Xa+iX«, 

5« - £araa = s« + r)ama - £a+\ma (ma G Ma) 

whence r\ama = £a+iraa — £araa in 5. Both sides belong to Sa+\ = Sa 0 r a . If 
TTa-Sa+i —> Ta denotes the obvious projection, then r]ama = 7ra£a+i>Wa (ma G Ma) 
follows. This shows that r)a is the restriction of 7ra £a+i : Ma+\ —• Ta. Therefore, a £ E, 
and so C D £ = 0, i.e. E is not stationary. 

We can now prove: 

THEOREM 3.7. Over a valuation domain, Butler modules of rank < Kj are complete­
ly decomposable. 

PROOF. Let M — \]a<Ux Ma be a filtration of the Butler module M of rank Hi with 
Ma pure and of countable rank. (2.2) implies that Ma is a Butler module. By virtue of 
(3.6), there is a club C in uj\ such that for each a G C, Ma is a TEP-submodule in M^ 
for every /3 > a. Keeping only the Ma with a G C and renaming them by the ordinals 
< uj\, we may assume that every Ma is TEP in Ma+\. 
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From (3.4) we infer that each MJMa is a Butler module. Therefore, from (2.2) it 
follows that, for each a , M a + i / M a is completely decomposable. (2.2) and (3.5) show 
that Ma is a summand in N for every rank 1 summand N/ Ma of Ma+\/ Ma for each 
a < wj.Bya well-known Kaplansky lemma, Ma is a summand of Ma+\. Hence M = 
0(M a+i/M a) is completely decomposable, in fact. 

4. *-maps and balanced extensions. In our study of Butler modules of large ranks, 
we require the notion of *-homomorphism. The concept of /z-map introduced by Dugas-
Hill-Rangaswamy [6] suggested the study of this notion and its connection with balanced 
extensions. 

A homomorphism (j>\A —• B between torsion-free /^-modules A, B is called a *-
homomorphism if, for each rank one pure submodule J of A, either (j)J = 0 or <\>J is 
not pure in B. In other words, <\>J is always properly contained in a cyclic submodule of 
B. 

LEMMA 4.1. The *-homomorphisms A —» Bfor torsion-free R-modules A, B form a 
submodule Hom*R(A,B) ofHomR(A,B). 

PROOF. If </>\, fa: A —• B are *-homomorphisms, then for a rank 1 pure submodule 
J of A, <f>iJ < Rbi for suitable bt G B. Pick any 0 / a E i; there are r, G R such 
that (f>id = r[bi (i = 1,2). If r\\r2 in R, then (0i + §j)a — r\{b\ + ^r f 1 /^) implies 
(</>! + </>2)7 < R(b\ + r2r^lb) (observe that r\ does not divide a in J). Hence (j>\ + <j>2 
is likewise a * -homomorphism. That r<j>\ is also a *-homomorphism for each r G /? is 
obvious. 

LEMMA 4.2. Lef A and B be torsion-free R-modules and C a pure-essential submod­
ule of A. A homomorphism <j>\A —> B is a *-map if and only if its restriction <j>\c'-C —> B 
is a *-map. 

PROOF. It suffices to verify the 'if part. Let 0 | c be a *-homomorphism, and assume, 
by way of contradiction, that there is a rank 1 pure submodule 7 of A such that <j> J is pure 
in B. Clearly, J H C = 0, so by pure-essentialness, for any 0 / x G J (which we keep 
fixed), there exist c G C, a G A and r G R such that ra = JC + c, but r divides neither JC 
nor c. From the purity of C and J in A we conclude that, for every divisor s of r, s divides 
either both x and c, or none of them. <j> \ç being a *-map implies there is a r G /? which 
does not divide c in C but divides <j> \ c in B; there is no loss of generality in choosing t 
among the divisors of r. Thus t does not divide <f>x, contradicting </> x = r<\> a — <j> c in B. 

From [12, p. 245] we know that every /^-module M has a cotorsion hull M* which is 
unique up to isomorphism over M. We shall need the following simple observation. 

LEMMA 4.3. For a torsion R-module T, T is pure-essential in T°. 

PROOF. By the definition of cotorsion hull, for a submodule / / o f T , / / D T = 0 
and T*I (H +T) torsion-free imply H = 0. As T* / T is torsion-free, T*/ (H +T) being 
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torsion-free is equivalent to (H + T)/ T being pure (= RD) in T*/ T. Hence the claim is 
evident. 

Let 0 —• r —> M —> Z? —• be an exact sequence where T is torsion and B is torsion-
free. For every homomorphism 77 : B —> T9/ T there is a commutative diagram 

0 — > T —• M -?-* B —• 0 

0 > T —> T -ÎU r/T • 0. 

In fact, the induced exact sequence Hom(B,r*) —• Hom(B,T*/T) —• Ext1 (5,7) 
—> Ext^Z?, r*) = 0 shows that every extension of T by B comes from a homomorphism 
77:2? —• 7*/ 7. Thus x'.M^T* must exist. 

We can now verify: 

THEOREM 4.4. Let T be a torsion and B a torsion-free module. The top row in (1) is 
balanced-exact if and only if there is a ^-homomorphism rjofB into T*/ T making the 
diagram commute. 

PROOF. Suppose that such an 77 exists. By (4.3), in the bottom row T is pure-essential 
in T*. Because of (1.2) the top row in (1) is balanced-exact. 

Conversely, suppose that the top row in (1) is balanced-exact. The induced exact se­
quence Hom/?(M, 7*) —> Hom#(r, T*)—> Extl

R(B, T*) — 0 shows that the natural embed­
ding T —+T* extends to a homomorphism \ ' M —-*• T9. This induces a map 77 : B —• T*/ T 
making (1) commute. Let J be a rank 1 submodule of B and 6 : J —• B the inclusion map. 
By balancedness, there is a 7: / —> M such tha (5l = è. Visibly, a\l = rç/37 = rj8 
maps J into T*/ T. If Im r]8 ̂  0, then Im r]8 cannot be RD in T*/ T as is clear from (4.3). 
Thus 77 is a *-homomorphism. 

From (4.3) it follows that every homomorphism B —> T* / T which lifts to a homo­
morphism B —• r* must be a *-map. Hence we arrive at an exact sequence 

(2) HomR(B, T) - • Hom£(fl, r/T)-+ Bextl
R(B, T) -> 0. 

5. Butler modules of projective dimension <1. Though we have been unable to 
classify Butler modules in general, we can give a full characterization of those whose 
projective dimension is at most 1; see (5.4) below. 

Recall that a submodule A of an /^-module C of projective dimension < 1 is called 
tight if p.d. Cj A < 1 (and hence p.d. A < 1 as well). The following easy result will be 
needed. 

LEMMA 5.1. For a torsion-free R-module C of projective dimension 7, there is a 
continuous well-ordered ascending chain of pure submodules: 

(3) 0 = Co < Ci < • • • < CT = C 
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for some ordinal r such that for each v < r , both rkCu+i/ Cv < 1 and p.d. 

Cu+\/ Cv < 1. 

PROOF. If rk C < No, then C is countably generated, and so are its finite rank pure 

submodules (see [12, p. 80]). Representing C as the union of an ascending chain of finite 

rank pure submodules of ranks n— 1 ,2, . . . , this chain is as desired. 

If rk C > Ho, then the existence of a chain like (3) with rk Cu+\ / Cv < Ko and p.d. 

CV+i/ Cv < 1 follows at once from the existence of tight systems (see [12, p. 84]). Such 

a chain can be refined by inserting submodules between consecutive members in the way 

described in the preceding paragraph, so as to have always rank 1 factors. 

The following lemma is crucial in the proof of (5.3). 

LEMMA 5.2. Let N he an epic image of a cotorsion R-module and 0 —• A —• 

£—>C —> 0 an exact sequence with C torsion-free of p.d. < 1. Every homomorphis-

m rj:A —> N extends to a homomorphism \\B —• N. Ifr\ is a *-homomorphism, \ can 

also be chosen as a ^-homomorphism. 

PROOF. Let rf.M —> N be an epimorphism with cotorsion M. The induced ex­

act sequence 0 = Extx
R(C,M) —» Ext]

R(C,N) —• Ext^(C, Kerry) = 0 shows that 

Ext^(C,A0 = 0 for all torsion-free C of p.d. 1. There is another induced sequence, viz. 

Hom/?(£, AO —• Hom/?(A, N) —> Extl
R(C,N) = 0 which establishes the first claim. 

Let the sequence (3) be chosen as stated in (5.1), and set Bv — fi~xCu. If 77 is a *-

homomorphism, we will extend it stepwise to *-homomorphisms xv.Bv —> N such that 

X — Ui/</x Xv will be a *-homomorphism B —* N. Start with Xo = V- Let \i <r and 

suppose that *-maps Xv'Bu —> Nhave already been defined for each v < /i such that 

X\ C Xv if A < v. 

If \i is a limit ordinal, then define x» — U/<T Xv'- Bv —• N. If /i — 1 exists, then we 

distinguish two cases. If # M - i i s balanced in B^, then B^ — #M_i 0 7M for some rank 1 

submodule J^ ofB^, and we can extend X/i-i by choosing an arbitrary *-homomorphism 

J^ —* N (e.g. the zero map). If B^-\ is not balanced in B^, then it is pure-essential in B^, 

and (4.2) guarantees that any extension Xn' B» ~* N °f X/i-i wiU be a *-map. 

Our final preparatory result is the most relevant. 

LEMMA 5.3. A pure tight submodule of a Butler module of projective dimension 1 is 

again a Butler module. 

PROOF. Let A be a pure tight submodule of the Butler module B of p.d. 1. Suppose 

0 —> T —y M —y A —> 0 is a balanced-exact sequence with T a torsion module. In view 

of (4.4) there is a commutative diagram 

0 — > T — > M • A • 0 

11 1 i-
0 — • T —> r - ^ r/T — • o 
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with a *-homomorphism 77. By making use of (5.2), we infer that 77 extends to a *-
homomorphism \\B —* T*/T. Now (2) implies the existence of a homomorphism 
Ç.B —+ T* satisfying 7 C — X • The restriction of £ to A yields a map A —• T* whose 
existence assures the splitting of the given balanced-exact sequence. 

We have come to the main result of this section which reads as follows. 

THEOREM 5.4. Butler modules of projective dimension < 1 are completely decom­
posable. 

PROOF. By induction on the rank. Suppose B is a Butler module of p.d. 1 and of rank 

If K < Ko, then (2.2) implies the claim. Thus assume K, > Ho and the assertion holds 
for Butler modules of rank < K . 

Case 1. K is a regular cardinal. Let 

0 = B0 < Bx < • • • < Ba < • • • (a < K) [UBa = B] 

be a filtration of B such that all the Ba 's are pure and tight submodules of rank < /c ; such 
a filtration exists because B has a tight system as shown in [12, p. 88]. Observe that by 
(5.3) each Ba is a Butler module. (3.6) implies that we can drop to a club in /€, such that, 
for a < [3, Ba is a TEP-submodule of Bp. Relabeling the Ba, we may assume that, for 
a < K, Ba is TEP in Ba+\. An appeal to (3.4) shows that all the factors Ba+\/ Ba are 
Butler modules. As they are of p.d. < 1, induction hypothesis implies that all the factors 
Ba+\/ Ba are completely decomposable. Application of (3,5), along with a well-known 
Kaplansky lemma, leads us to the conclusion that for each a, Ba is a summand of Ba+\, 
# a + i = Ba 0C« where Ca is completely decomposable. Hence B = 0 C a is completely 
decomposable. 

Case 2. K is a singular cardinal. We need a strengthened version of Shelah's Singular 
Compactness Theorem which applies also to cardinals below the cardinality of R. In or­
der to avoid lengthy quotations of definitions and results, as well as long proofs, let us just 
refer to Theorem 10 in [9] and to the second example following it which applies to the 
class of direct sums of countably generated modules. The Butler modules under consid­
eration belong to this class, hence [9, Theorem 10] along with our induction hypothesis 
implies that Butler modules of p.d. 1 and of cardinality K are completely decomposable. 
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