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Abstract: We have constructed a simple parametrized mean field dynamo 
model that includes the dynamical interaction between the magnetic field 
and differential rotation. This system of seven coupled nonlinear or­
dinary differential equations has finite amplitude oscillatory solutions 
(corresponding to Parker's dynamo waves) when the dynamo number D>1. We 
have studied two regimes. In the first, the velocity shear is reduced 
by the Lorentz force and there are stable periodic solutions for all D>1. 
In the second there is a transition from strictly periodic oscillations 
to aperiodic (chaotic) behaviour as D is increased. This simple example 
shows that nonlinear hydromagnetic dynamos can produce aperiodic cycles, 
with Maunder minima, as observed in the sun and other late-type stars. 

The solar cycle provides a convincing example of a strange attractor 
(Ruzmaikin 1981). There are several routes from regularity to chaos 
(Eckmann 1981) and in order to discover which is relevant to the sun it 
is natural to investigate the simplest model that captures the essential 
physics of a nonlinear stellar dynamo. We have therefore constructed a 
system of equations that describes a parametrized aco-dynamo in one space 
dimension, including the dynamical effect of the Lorentz force, which 
acts to reduce differential rotation. The solutions are nonlinear dynamo 
waves (Parker 1979). 

This seventh order system is given, in dimensionless form, by the 
equations 

A = 2DB - A (1) 
B = i(l+co0)A - iiA*o) - B, (2) 
<L0 = £i(A*B-AB*) - v0oa0, (3) 
0) = - i A B - vco. (4) 

The poloidal flux function A and the toroidal field B are complex, so 
that R=B1+iR2 etc., and the change in the velocity shear is separated 
into a real, spatially uniform component 0)o and a complex component 
with twice the spatial frequency of A and B; v and v0 are real constants. 
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Figure 1: Nonlinear dynamo waves: the toroidal field B as a function 
of time for the sixth order system with V=0.5. (a) Doubly periodic 
behaviour for D=3.0. (b) Triply periodic motion for D=3.5. 

Figure 2: Chaotic behaviour with episodes of reduced activity. 
Fig.l but with D=16. 
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The dynamo number D is a stability parameter for this problem and there 
is a Hopf bifurcation from the trivial solution A=B=a)=0 at D=l(Parker 1979). 

We have studied two cases. In the limit V-*», oo-K) equations (l)-(3) 
yield a fifth order system with an exact periodic solution: A and B vary 
sinusoidally and U)0 is a (negative) constant. This solution is stable 
for all D. Thus the Lorentz force reduces the velocity shear, giving a 
lower effective dynamo number, as in Gilman's (1982) numerical experiments. 

When V0-x»,a)0-> 0, equations (1),(2) and (4) give rise to a sixth 
order system which exhibits more interesting behaviour (cf. Jones 1982). 
Again there is an exact periodic solution for D>1, with A,B,a) varying 
sinusoidally in time. We have located successive bifurcations from this 
solution as D is increased for V=0.5. The exact solution loses stability 
at D*2.07 and Fig.1(a) shows Bx(t) for a doubly periodic solution at D= 
3.0. The next bifurcation leads to triply periodic solutions, shown in 
Fig.1(b) for D=3.5. There follows a transition to chaotic behaviour 
around D**3.84. Fig.2 shows a typical solution for D=16. The cycles are 
aperiodic and are separated by intervals of stasis, with drastically re­
duced activity. (This pattern is typical of all runs made for D£4.) 
Mathematically, there is a bifurcation to a 2-torus at D»2.07, followed 
by a bifurcation to quasiperiodic motion on a 3-torus at D»3.47. Two of 
the three frequencies subsequently lock and, after a cascade of period 
doubling bifurcations, the flow eventually becomes chaotic. 

The variable ca describes variations in differential rotation with 
twice the frequency, in space and in time, of the mean magnetic fields. 
Corresponding behaviour has been found by Howard and LaBonte (1980,1982) 
on the sun. Dynamical coupling with 0) is sufficient to produce recurrent 
episodes of reduced activity (Maunder minima) even in our simple model. 
We expect that similar behaviour can be found in a variety of models (cf. 
Childress and Spiegel 1981) and also in computations like those of 
Gilman (1982). Provided that the initial bifurcation leads to an oscil­
latory magnetic field (as in ota)-dynamos) and that the dynamics are 
sufficiently complex to allow the development of a chaotic regime, this 
pattern of behaviour is likely to occur. Thus Maunder minima are a 
characteristic feature of a wide class of nonlinear dynamos. 
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D I S C U S S I O N 

OILMAN: (1) I am confused as to the role of torsional oscillation in your model. (2) Could 
you simulate bifurcations and strange at tractor behaviour with respect to magnetic field 
symmetry? My own model calculations show examples of symmetry persistence over several 
cycles, followed by occasional switchovers to the opposite symmetry. 

WEISS: (1) In our model the torsional oscillations are driven by the Lorentz force, and 
the variations in differential rotat ion then affect the generation of the toroidal magnetic 
field. This feedback is sufficient to produce chaotic behaviour (though the amplitude of 
the torsional oscillations is then embarrassingly large). (2) We have not yet a t tempted to 
model bifurcations leading to spatial asymmetry, but it is certainly possible to do so. 

ROSNER: I would like to reemphasize that , in my view, so-called ad hoc non-linear dynamo 
models are perfectly appropriate for exploring dynamo behaviour, with appropriate ap­
proximations (viz. truncations), which retain the essentials of some physical process in 
question. However, I argue tha t it is not meaningful to ask such models to quantitatively 
account for observed correlations between, for example, activity diagnostics and rotation. 

WEISS: Of course it is also important that the qualitative predictions of such models 
should be checked by comparison with further calculations, like those that Oilman has 
described. 

SPRUIT: Are your aperiodic solutions always of the Maunder-minimum type, and what 
features of the model are responsible for producing tha t particular form of aperiodicity? 

WEISS: No, we have obviously looked for chaotic behaviour, and we only found it for the 
sixth-order system in a restricted parameter range (y < 1). However, once the solutions 
become chaotic they exhibit Maunder minima. Wha t is needed for this pat tern is irregular 
behaviour such tha t trajectories in phase space approach the neighbourhood of the origin 
and are at t racted towards the stable manifold of the origin before being flung out on its 
unstable manifold. This is likely to be found in a wide variety of models. 

GIOVANELLI: (1) Are the Maunder-minimum type solutions fairly periodic, e.g. do they 
have similar periods between successive minima, and similar harmonics? (2) Can you give 
any idea as to the way the Maunder-minimum type solutions may vary with solar or stellar 
evolution? 

WEISS: (1) Between the "Maunder minima" the model exhibits oscillations tha t are fairly 
regular but nevertheless aperiodic. The average period is well defined, at least in the limit 
of large dynamo number, bu t the phase is not preserved through the "Maunder minima". 
(2) As a star evolves it is spun down, and the dynamo number D decreases. In the model, this 
leads to more regular behaviour, eventually becoming periodic as D approaches unity. One 
might expect a rapidly ro ta t ing star to vary in a more chaotic manner , but I doubt whether 
the model can explain the lack of cyclic behaviour in younger, more rapidly rotating stars. 

https://doi.org/10.1017/S007418090002996X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090002996X

