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Curcumin is the active ingredient of turmeric. It is widely used as a kitchen spice and food colorant throughout India, Asia and the Western

world. Curcumin is a major constituent of curry powder, to which it imparts its characteristic yellow colour. For over 4000 years, curcumin has

been used in traditional Asian and African medicine to treat a wide variety of ailments. There is a strong current public interest in naturally

occurring plant-based remedies and dietary factors related to health and disease. Curcumin is non-toxic to human subjects at high doses.

It is a complex molecule with multiple biological targets and different cellular effects. Recently, its molecular mechanisms of action have

been extensively investigated. It has anti-inflammatory, antioxidant and anti-cancer properties. Under some circumstances its effects can be

contradictory, with uncertain implications for human treatment. While more studies are warranted to further understand these contradictions,

curcumin holds promise as a disease-modifying and chemopreventive agent. We review the evidence for the therapeutic potential of curcumin

from in vitro studies, animal models and human clinical trials.

Curcumin: Turmeric: Inflammation: Cancer

For thousands of years, humankind has used plants for
therapeutics. Recent years have seen the development of
highly targeted biological treatments and synthetic therapies,
some with serious side effects. At the same time, there is
renewed public interest in complementary therapies, naturally
occurring treatments with minimal toxicity and diets related
to health and disease.

Curcumin is a constituent of the spice turmeric, one of the
principal ingredients in curry powder. Turmeric is prepared
from the root of the Curcuma longa plant, a member of the
ginger family. It is native to India and Southeast Asia,
where fresh turmeric root is widely used in a similar way to
ginger; in the West, turmeric is much more commonly avail-
able as a dried powder. It has been used to treat a broad
range of common ailments in Indian Ayurvedic medicine for
at least 4000 years, as well as in Chinese, Arabic and other
traditional medicines. Curcumin is in modern use worldwide
as a cooking spice, flavouring agent and colorant. Dishes
traditionally made with turmeric include dahls and most
other curries, as well as pickles, relishes and chutneys. It is
widely used to colour mustards, mayonnaises and margarines
and has been designated as international food additive E100.
Because of its resemblance to saffron, curcumin is sometimes

referred to as ‘Indian saffron’ and used as a (much less
expensive) substitute.

Chemistry

The active ingredient of curcumin is diferuloylmethane, a
hydrophobic polyphenol with a characteristic yellow colour.
In chemical terms it is bis-a, b-unsaturated b-diketone,
a linear diarylheptanoid compound, where two oxy-substituted
aryl moieties are linked together through a seven carbon chain
(Fig. 1). The aryl rings may be substituted by varying numbers
of hydroxy or methoxy groups in a symmetrical or asym-
metrical fashion to produce analogues of curcumin or
curcuminoids. Curcumin is the most abundantly occurring
natural analogue at 77 %(1), followed by demethoxycurcumin
(17 %) in which one methoxy group is absent, then
bis-demethoxycurcumin (3 %) in which the methoxy group
is absent from both the aryl rings (Fig. 1).

There is no explicit evidence that correlates the molecular
or stoichiometric properties of curcumin or its analogues
with their biological effects. While several groups have
studied the differential bioactivities of these different
analogues, no single curcuminoid shows overall highest
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potency. Differential efficacy varies widely according to the
cell type, function, disease system and organism in question(1).
Thus, there is no consensus as to the most effective prep-
aration for human use. Commercially available curcumin
preparations are largely derived from natural curcumin
sources and therefore contain the three main curcuminoids
in approximately the afore mentioned proportions. Indeed,
some data suggest that such a mixture of curcuminoids have
synergistically greater activity than any of their individual
elements(2).

Dose and safety

The safety, tolerability and non-toxicity of curcumin at high
doses are well established. Oral doses up to 12 g/d are well
tolerated in human subjects(3), although dosing diet regimen
above 8 g may be difficult to achieve due to the bulky
nature of this quantity of compound(4). However, drug deliv-
ery is a problem and the bioavailability of oral curcumin is
low(5,6) due to a combination of efficient first pass metabolism,
poor gastrointestinal absorption, rapid elimination and
poor aqueous solubility. Elimination is largely via hepatic
glucuronidation and sulphation. Glucuronidation of curcumi-
noids preferentially occurs on the phenolic hydroxyl group,
when incubated with rat or human liver microsomes(7). This
produces a strong lipophilic conjugate that is less stable than
its unconjugated form and is excreted through stool. Whether
such conjugates have pharmacological activity is uncer-
tain(7 – 9). However, other, potentially active, metabolites
have been identified (Fig. 1), perhaps the most important
and intensively studied of which is tetrahydrocurcumin, a
reduction metabolite. It lacks the yellow colour and hydropho-
bicity of curcumin and does not occur in natural curcumin
sources. While it has less anti-inflammatory activity than
curcumin in terms of its ability to inhibit NF-kB(2,10), it

exhibits greater antioxidant potency than curcumin in a
number of different models(11 – 13).

After oral curcumin dosing, serum concentrations peak at
1–2 h and are undetectable by 12 h(4). Some investigators report
that serum curcumin is undetectable below oral doses of about
4 g(3,4); however, others have detected curcumin not only in
serum, but also in urine, at much lower doses(14). Some studies
demonstrate the presence of curcumin in colorectal tissue at
oral doses of 3·6 g(15), so the gut may represent a promising
local clinical target for curcumin. The pharmacokinetic profile
of its major metabolites may also be relevant to the biological
effects of curcumin. Most curcumin conjugates produced by
in vivo human metabolism are glucuronides (less commonly
sulphates), and these are detectable in plasma at greater concen-
trations than free curcumin with a peak at 4 h after oral dosing(8).

Thus, the apparent discrepancies in pharmacodynamics
observed in different in vivo studies of curcumin may be
explained by its high rate of conjugation. Additionally
they may relate to the differing formulations used. Curcumin
constitutes about 5 % of turmeric root(16,17); the remainder
is made up of carbohydrates, proteins and essential oils.
Preparations used for human consumption are either naturally
produced from purified turmeric extract, which contain
varying proportions of the different curcuminoids, or are
synthetically produced, containing only pure chemically
synthesised curcumin. Strategies have also been employed to
improve bioavailability based on changes in drug formulation,
such as the use of nanoparticles to reduce particle size
delivery and micelles to counter hydrophobicity. Recently,
it has been reported that heat treatment improves the water
solubility of curcumin(18).

In human trials, only minor side effects of curcumin,
namely diarrhoea(14), have been reported, and it is considered
safe and well tolerated. As a caveat, however, these trials
have usually examined short-term outcomes. There is
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Fig. 1. Chemical structure of curcumin (diferuloylmethane), its natural analogues and principal metabolites.
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some evidence that long-term, high-dose curcumin adminis-
tration in rodents can be tumourigenic(19,20). It has also been
shown that curcumin’s predominant activity switches from
antioxidant to pro-oxidant with increasing concentration(21),
which may provide an explanation for its seeminglyopposing
biological effects in vivo. These apparent contradictory roles
of curcumin, as both anti-cancer and pro-carcinogenic agent,
are as yet unexplained, and epitomise the complexity and
paradoxical nature of the compound. Nevertheless, there is
good evidence from India, at a population level, about the
safety of lifelong curcumin ingestion up to about 100 mg/
d(22), and it is classified ‘Generally Recognised As Safe’ by
the United States Food and Drug Administration.

In vitro studies

A wide variety of cellular properties of curcumin have been
demonstrated, including antioxidant, anti-inflammatory, anti-
proliferative, pro-apoptotic, anti-bacterial and anti-cancer
activities (Table 1 and Fig. 2).

Transcription factors

NF-kB

NF-kB is one of the key transcription factors responsive
to curcumin. In human myeloid ML-1a cells, curcumin

suppresses NF-kB activation induced by TNF-a, phorbol
ester and hydrogen peroxide(23). The mechanism appears to
be via reduced IkBa phosphorylation and degradation(24),
suggesting that curcumin acts at a step above IkB kinase
(IKK) in the NF-kB activation pathway. Many of the observed
biological effects of curcumin involve processes that are
NF-kB-dependent. Therefore, examination of NF-kB signal-
ling was a natural focus and its inhibition by curcumin is a
consistent finding in a number of different models. For
example, in four different human mantle cell lymphoma
lines (an aggressive non-Hodgkin’s B cell lymphoma), curcu-
min down-regulated NF-kB, inhibited IKK and reduced IkBa
phosphorylation, leading to cell cycle arrest, apoptosis and
suppression of proliferation(25). The reproducible finding of
inhibition of IKK by curcumin suggests that curcumin acts
at or above the level of IKK in the NF-kB pathway. Investi-
gators have shown modulation by curcumin of the serine/
threonine protein kinase Akt, a ubiquitous cell signalling
molecule, which is known to activate NF-kB. Curcumin
suppresses both Akt activation and Akt–IKK association(24),
and thus its effects on NF-kB may be a downstream conse-
quence of true targets that lie higher upstream. The identi-
fication not only of NF-kB but also multiple other signalling
molecules and transcription factors which are modulated by
curcumin further suggests that an upstream direct target
(or targets) of curcumin common to these pathways may exist.

Table 1. Molecular targets of curcumin in cell line studies

Biological activity Molecular mechanism Cell line (human unless otherwise stated)

Anti-inflammatory # NF-kB Myeloid leukaemia(23,24), B non-Hodgkin’s lymphoma (NHL)(25,29),
embryonic kidney (HEK)(24), mouse macrophage(128)

# Cyclo-oxygenase-2 Intestinal microvascular endothelial(38), colonic epithelial(56), microglial(129),
mouse macrophage(128)

# IL-1b, IL-6, IL-8 Oesophageal epithelial(52), head and neck cancer(53), mouse macrophage(128)

# TNF-a Mouse macrophage(128)

# Intercellular adhesion molecule-1 Epithelial/umbilical vein endothelial (HUEVC) hybridoma(130)

# p300 acetyltransferase Tracheal smooth muscle(63), cervical cancer(64), HEK(64), lymphoblastic
T lymphoma(64), Burkitt’s lymphoma(73)

" PPARg Colon cancer(36), rat hepatic stellate(35)

Antioxidant # NO synthase Mouse macrophage(128)

" Glutathione Lymphocytes(131)

" Haem oxygenase-1 Epithelial/HUEVC hybridoma(130), porcine renal epithelial(132)

" Superoxide dismutase Lymphocytes(131)

" Reactive oxygen species Promyelocytic leukaemia (PML)(133)

Pro-apoptotic # Bcl-2 B NHL(29), colon cancer(45,134)

# Survivin Colon cancer(134)

# Akt T leukaemia(135)

# c-myc B NHL(29)

# Ornithine decarboxylase(122) PML(133)

" Bax Colon cancer(45,134)

" Caspases PML(133), colon cancer(45,134)

l c-Jun N-terminal kinase T lymphocyte #(39), breast cancer #(39), HEK #(39), colon cancer "(40)

Anti-cancer # Cyclin D1 Colon cancer(36)

# Matrix metalloproteinase HUEVC(50), melanoma(50), fibrosarcoma(50,59), breast cancer(50), blood
mononuclear(60), intestinal epithelial(61)

# Epidermal growth factor Hepatocellular carcinoma (HCC)(49)

# Signal transducer and activator
of transcription

Multiple myeloma(27), Hodgkin’s lymphoma(28)

# Hypoxia-inducible factor-1a HCC(49)

# Protein kinase C Mouse embryonic fibroblast(136)

# Early growth response factor (egr)-1 B NHL(29), HUEVC(137), lung fibroblast(137)

# Activator protein-1 HEK(129), microglial(129)

l p38 Mitogen-activated protein kinase Intestinal microvascular endothelial #(38), neutrophils "(41)

l p53 B NHL #(29), colon cancer #(45), colon cancer #(42), thymocytes #(43),
myeloid leukaemia #(43), breast cancer "(44)
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Signal transducer and activator of transcription

Signal transducer and activator of transcription (STAT)3
is a transcriptional activator with a ubiquitous role in
tumourigenesis. It is involved in dysregulation of cell
growth, invasion, angiogenesis, metastasis and resistance to
apoptosis(26). Aberrant STAT3 signalling is an important
process in the development and progression of cancer, thus
agents that block its activation have therapeutic potential.
Curcumin reversibly inhibits STAT3 activation in human
multiple myeloma cells and by this mechanism suppresses
IL-6-induced cell proliferation(27). It also inhibits STAT3
activation in five different human Hodgkin and Reed-
Sternberg lymphoma cell lines(28). The down-regulation by
curcumin of proteins involved in cell cycling and apoptosis
such as cyclin D1 and bcl-XL

(27,29) may be secondary mani-
festations of curcumin’s inhibitory effects upon STAT3 and
NF-kB, which are known to regulate expression of both of
these genes(30,31).

PPAR-g

PPAR-g is a nuclear receptor and transcription factor involved
in cell cycle control, proliferation and differentiation, exerting
anti-inflammatory, anti-cancer and insulin-sensitising actions.
It is highly expressed in adipose tissue and colonic mucosa,
where tight control of proliferation, differentiation and
apoptosis is vital for homeostasis and prevention of oncogen-
esis, and here PPAR-g may have tumour suppressor
functions(32). It is activated by PG products of the eicosanoid
cascade(33,34) and possibly by dietary components such as
linolenic and linoleic acids. Curcumin induces and activates
PPAR-g in rat hepatic stellate cells, a liver cell type
responsible for fibrosis in liver injury, which contributes

to chronic liver damage and cirrhosis. PPAR-g inhibited the
proliferation of stellate cells, and curcumin greatly enhanced
this effect(35).

PPAR-g activity in Moser cells (a human colon cancer cell
line) is also enhanced by curcumin, interrupting the cell cycle
through reduced expression of cyclin D1 and inhibition of
epidermal growth factor signalling(36). Both of these effects
were PPAR-g-dependent. However, the anti-cancer effect of
curcumin occurs through multiple mechanisms, and this is
supported by the finding that a different human colon cancer
cell line, HT-29 cells, despite being more sensitive to curcu-
min-induced growth suppression, is less responsive to specific
PPAR-g antagonism than Moser cells(36). These data reflect
both that PPAR-g function is one of the many mechanisms
involved in the generation of cancer, and that curcumin
exerts its anti-cancer effects through multiple pathways.

Mitogen-activated protein kinase signalling pathways

The mitogen-activated protein kinase (MAPK) cascade is
activated by a large number of different types of receptor,
including cytokine, growth and toll-like receptors and
receptors sensitive to environmental stressors. The precise
mechanisms of activation are incompletely understood(37).
Curcumin modulates MAPK signalling in several different
in vitro models, although the data are somewhat contradictory.
Under some circumstances, curcumin inhibits MAPK
activation, as in a recent study in primary human intestinal
microvascular endothelial cells, where curcumin inhibited
p38 MAPK activation in response to vascular endothelial
growth factor, as well as cyclo-oxygenase (COX)-2 and
PGE2 production(38). These anti-angiogenic properties of
curcumin are of potential clinical benefit in gut inflammation
and cancer. Further evidence that curcumin inhibits MAPK
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pathways includes its inhibition of c-Jun N-terminal kinase
activation by a number of different agonists in Jurkat T cells
(a human T cell line)(39). Here the investigators provide
evidence that the target of inhibition lies proximally within
the pathway, at the level of MAPK kinase kinase or above.
Other investigators paradoxically show activation of MAPK
by curcumin, for example c-Jun N-terminal kinase in
HCT116 cells, a human colon cancer cell line(40) and p38
MAPK in primary human neutrophils(41).

Is it feasible that curcumin can both activate and inhibit
MAPK signalling? Where MAPK is activated, the biological
consequence seen is apoptosis; where MAPK is inhibited,
the consequences are anti-inflammatory and anti-angiogenic.
The mechanism for the opposing actions of curcumin on
MAPK is unexplained, and in both cases its final effects
are demonstrably anti-neoplastic and anti-inflammatory.
Assuming the primary molecular targets of curcumin lie
elsewhere, the MAPK signals observed experimentally
may merely represent intermediary pathways by which its
ultimate biological effects are mediated. Alternatively,
where MAPK activation is seen, it is possible that this has
been due to ubiquitous experimental contaminants such as
lipopolysaccharide masking the true inhibitory effect of
curcumin. In support of this explanation, curcumin-mediated
apoptosis (suggested to occur via p38 MAPK activation)
was not abrogated by the specific p38 MAPK inhibitor,
SB203580(40).

Tumour suppressor gene p53

Mutation of the tumour suppressor p53 plays an important role
in the evolution of many different human cancers. Once again,
the role of curcumin is complex. In an early study of the
effects of curcumin on BKS-2 and WEHI-231 cells (both
immature B cell lymphoma mouse cell lines), proliferation
was inhibited(29). Interestingly, and with obvious potential
clinical benefit in cancer chemotherapy, this inhibitory effect
was much less marked on normal B cells. The investigators
demonstrated (unexpected) inhibition of expression of p53
by curcumin, as well as inhibition of various other genes
involved in growth, proliferation and transcriptional
activation, including early growth response factor (egr)-1,
the proto-oncogene c-myc and the transmembrane anti-
apoptotic bcl- XL. The finding of reduced p53 activity was
confirmed in RKO cells (a colon cancer cell line), where cur-
cumin impairs the post-translational folding of p53 required
for its function(42), and in myeloid leukaemic cells, where it
induces p53 degradation(43).

Conversely, other experiments show induction of p53 by
curcumin, for example in human epithelial breast cancer,
prostate cancer and B cell lymphoma cell lines(44) and in
HT-29 cells (a human colon adenocarcinoma cell line),
where it induced apoptosis(45). In the former work, once
again the authors show differential sensitivity of cancer cells
compared with healthy cells to curcumin. While some investi-
gators have shown anti-proliferative effects despite inhibition
of the tumour suppressor p53(29), established precedents
exist where an agent that is cancer-preventative in one
system can be carcinogenic in another, for example tamoxifen
(therapeutic in breast; pro-neoplastic in uterus)(46). Curcumin
may be a clinically useful chemopreventive agent, and this

might relate specifically to certain types of cancer and not
others. Alternatively, it may confer cancer risk that is insepar-
able from its benefits. These cautions must be borne in mind
when considering its human use.

Angiogenesis

There is strong evidence that curcumin is anti-angiogenic.
Angiogenesis (the growth of new blood vessels) is required
for the development of both inflammation and cancer, where
it is crucial for the survival of tumours beyond a certain
size. It is also integral to the generation of diabetic eye
disease, which is characterised by growth of abnormal vessels
across the retina, a major cause of blindness worldwide. In an
early study in both primary bovine and immortalised mouse
endothelial cells, curcumin inhibited endothelial cell prolifer-
ation(47). Curcumin inhibits angiogenesis in response to
vascular endothelial growth factor in the human intestinal
microvascular endothelium(38) and inhibits the angiogenic
differentiation of human umbilical vein endothelial
cells(48,49). Also in human umbilical vein endothelial cells,
curcumin binds to and irreversibly inhibits aminopeptidase
N(50), a membrane-bound matrix metalloproteinase (MMP),
which increases tumour invasiveness and is involved in
retinal neovascularisation and tumour angiogenesis(51).
Finally, curcumin decreases hypoxia-inducible factor-1a, an
angiogenic transcriptional activator, in human hepatocellular
carcinoma cells(49). In this work, curcumin also inhibited
the transcriptional action of hypoxia-inducible factor-1a,
down-regulating the expression of vascular endothelial
growth factor, a potent hypoxia-induced angiogenic factor.

Inflammatory cytokines

Several studies demonstrate the suppression of downstream
pro-inflammatory and pro-neoplastic mediators by curcumin.
Recent examples include reduced expression of IL-6 and
IL-8 in response to acid exposure in a human oesophageal
epithelial cell line(52) and reduced spontaneous expression of
IL-6 and IL-8 in four different head and neck squamous
carcinoma cell lines(53). These observations may be secondary
to the suppression by curcumin of intermediary signalling
pathways such as NF-kB, and some investigators provide
evidence to this effect(53). Even if curcumin-mediated cyto-
kine suppression is a later consequence of proximal event(s),
this remains a potentially useful clinical application, and the
one which is consistently reproduced in pre-clinical models.

Cyclo-oxygenase

COX2 is an inducible form of PGH synthase. It is an early
response gene induced by cytokines, growth factors and
toxins. COX2 mediates inflammation through production of
PG and plays an important role in colon cancer. Over-
expression of COX2 in colonic epithelium appears to promote
tumour development(54) and non-steroidal anti-inflammatory
drugs that inhibit COX2, reduce the risk of colon cancer(55).
Curcumin inhibits COX2 production in a primary human
intestinal microvascular endothelial cell line(38) and inhibits
COX2 induction in human colonic epithelial cells(56). In this
latter work, the authors note that the COX2 gene promoter
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contains two NF-kB binding sites and show evidence that the
effect of curcumin on COX2 is due to inhibition of NF-kB
binding. In agreement with other investigators(24), the level
of impact of curcumin upon the NF-kB pathway appears to
be at or above IKK. Inhibition of COX2 by curcumin, which
lacks the adverse effects of chronic aspirin or non-steroidal
anti-inflammatory drugs ingestion, holds considerable promise
for long-term bowel cancer prevention in human subjects.

Matrix metalloproteinases

In health, fibroblasts produce low levels of MMP that remain
largely in latent form and mediate physiological extracellular
matrix turnover. In inflammatory disease, MMP are over-
expressed and become activated in cascades causing
unchecked tissue destruction, fibrosis and further increasing
immune cell activation and homing(57). MMP also play a
key role in tumour progression, since matrix dissolution is
an important step in the conversion of a pre-malignant cell
into a frankly malignant one, as well as in tumour growth,
invasion, metastasis and angiogenesis(58). There are over
twenty different types of MMP, which are sub-classified
according to the primary stromal substrate upon which they
act. Curcumin down-regulates MMP production in various
cell types. In human fibrosarcoma cells, it decreases invasion,
migration and production of MMP-2 and MMP-9(59), and in
human and rabbit peripheral blood mononuclear cells, it
reduces MMP-9(60). Recently, it has been shown to reduce
MMP-9 in human intestinal epithelial cells(61), and our
group has shown dose-dependent inhibition of MMP-3 pro-
duction by curcumin in primary human colonic myofibroblasts
from patients with inflammatory bowel disease (IBD)(62).
Thus, inhibition of MMP by curcumin is a consistent finding
under a range of different cellular conditions. The clinical
implications for prevention and treatment of inflammation
and cancer are wide ranging.

p300 Acetyl transferase

Lastly, curcumin is a known inhibitor of acetylation, acting on
the enzyme p300 acetyl transferase(63,64). Acetylation modifies
proteins when an acetyl group binds to a lysine residue, alter-
ing the protein’s shape, charge and biological fate in the cell.
Traditionally the study of acetylation has examined how the
acetylation of histones changes their conformation, loosens
their interactions with DNA and thus opens out the nucleo-
some, exposing DNA for gene transcription(65,66). However,
recent work shows that other (non-histone) regulatory proteins
within the cell are also subjected to acetylation, initiating
separate cellular events that regulate for example transforming
growth factor-b signalling(67) and insulin-like growth factor
binding protein-3 expression(68,69). Such events are important
in inflammation and cellular proliferation. Another important
such non-histone example is the tumour suppressor gene p53
whose capacity to activate transcription and therefore DNA
repair is altered by p300 status(70,71), and indeed mutations
in p300 have been found in several different types of cancer
specimen, particularly in gut cancers(72).

p300 Acetyl transferase, as a potent catalyst of acetylation,
plays a role in a wide variety of gene transcription and other
cellular events. Several effects of curcumin resulting from

its p300 inhibitor activity are documented, including inhibition
of inflammatory responses in human tracheal smooth
muscle cells(63), suppression of HIV proliferation(64) and inhi-
bition of proliferation of Raji cells (a non-Hodgkin’s B cell
lymphoma line)(73), reflecting once again a broad spectrum
of potential clinical applications that might be developed.

Animal models: inflammatory bowel disease

While curcumin has shown benefits in a number of different
models of inflammatory disease, particular interest has
focused on its use in the gut. IBD (Crohn’s disease (CD)
and ulcerative colitis (UC)) is a source of considerable
morbidity, and its incidence is increasing worldwide.
Currently available treatments such as steroids, 5-aminosa-
licylic acids and immunomodulators do not offer cure, but
CD responds well to polymeric or elemental feed that brings
about remission in 80 % of paediatric patients(74,75). IBD is
less common in developing countries than in the industrialised
world(76), and individuals emigrating from East to West take
on the Western disease risk(76,77). This holds further relevance
to the importance of diet in IBD, and there is keen interest to
develop nutritional therapies.

Several studies in various rodent disease models provide
strong pre-clinical evidence for the benefit of curcumin(78 – 81).
For example, in multidrug resistance gene-deficient mice,
which spontaneously develop colitis, the addition of curcumin
to their diet significantly reduced intestinal inflammation(80).
Other investigators used 2,4-dinitrochlorobenzene-induced
colitis in rats and showed a dose-dependent improvement in
disease activity parameters with dietary curcumin of equal
potency to sulfasalazine treatment(81). Curcumin treatment
was associated with a reduction in colonic NF-kB, inducible
NO synthase and various measures of oxidative stress, for
example myeloperoxidase and lipid peroxidation.

The efficacy of curcumin in IBD may differ according to
inflammatory circumstances and dose. For example, trinitro-
benzene sulphonic acid colitis in NKT-deficient SJL/J mice
exhibits a classic T helper cell (Th)1-type response, while
BALB/c mice with trinitrobenzene sulphonic acid colitis
exhibit a mixed Th1/Th2 profile(82). Curcumin caused
improvement in all disease activity parameters only in the
BALB/c mice. In simple terms, Th1-type inflammation relates
more closely to CD and Th2 to UC, although in real terms the
situation is probably more complex with a degree of overlap.
The reason for the differential efficacy of curcumin in these
two models is unclear. The IL-10 knockout mouse develops
spontaneous Th1-type inflammation in large and small
bowel, which is dependent on gut bacteria, making it a good
model of CD. The protective effect of curcumin in this
model (by colon morphology and colonic interferon g and
IL-12/23p40 mRNA) was modest, and paradoxically occurred
only at the lowest dietary concentration of 0·1 %(83). In vivo
NF-kB activation in the gut was unaffected by curcumin at
any concentration, but curcumin acted synergistically with
IL-10 on epithelial cells to decrease NF-kB activity. These
data raise once again the suggestion that curcumin can have
paradoxically opposing effects at different concentrations,
and when clinical studies take place, a wide range of dosages
are warranted.
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Animal models: cancer

Chemoprevention

The molecular targets of curcumin include many pathways
and processes involved in the generation and propagation
of cancer. The observation that many common cancers (includ-
ing colon, breast, prostate and lung) are commoner in the
Western world than in countries such as India, where there is
high natural dietary curcumin consumption(22), while not
indicative of cause and effect, is intriguing. Curcumin has
been investigated as both chemotherapeutic and chemopreven-
tive agent in many different animal (largely rodent) models of
carcinogenesis. Its chemopreventive efficacy for colon cancer
is particularly well established(84,85). Other gastrointestinal
cancers against which curcumin has shown protective effects
include oesophageal(86), stomach(87), liver(88) and oral(89); all
in rodent models. Curcumin also shows chemopreventive
properties in rodent models of various extra-intestinal cancers,
including breast(90), lung(91), kidney(92), bladder(93), blood(90)

and skin(94) (Table 2).

Chemotherapy

Curcumin inhibits tumour growth and metastasis, and has
chemosensitising and radiosensitising properties. One of
the earliest examples of the ability of curcumin to inhibit
tumour growth is that of lymphoma cells in a mouse
ascites model, when it was administered intraperitoneally at
50 mg/kg(95). Curcumin also has anti-tumour efficacy against
human melanoma cell xenografts if given intraperitoneally(96).
Also in xenograft models, sub-cutaneous delivery of curcumin
suppresses growth of head and neck squamous carcinoma
cells(97), and when given orally it inhibits proliferation and
angiogenesis and induces apoptosis in prostate cancer cells(98).

Curcumin also suppresses proliferation and angiogenesis
and enhances apoptosis in pancreatic cancer; both when
given orally in combination with gemcitabine in an orthotopic
model(99), and in a xenograft model when given intravenously
in a liposomal formulation(100). The same group have also used
an intravenous liposomal curcumin preparation in luminal
gastrointestinal cancers, where it has chemosensitising proper-
ties against colorectal cancer in a mouse xenograft model(101).
In this work, tumour growth and angiogenesis were inhibited
and apoptosis enhanced in combination with oxaliplatin.
In an orthotopic implantation model of hepatocellular carci-
noma, curcumin also prevented intrahepatic metastasis(102).

Finally, in recent work, oral curcumin has shown efficacy
in preventing breast cancer metastasis to lung in orthotopic
models, both as chemosensitiser in conjunction with
paclitaxel(103) and in the prevention of its haematogenous
spread in immunodeficient mice(104). Curcumin given intraper-
itoneally in combination with docetaxel inhibits tumour
growth and angiogenesis in an orthotopic nude mouse model
of ovarian cancer(105).

Human trials

The wealth of in vitro and pre-clinical data has provided a
strong basis from which to progress to the trialling of curcu-
min in human subjects. Many of the molecular efficacies of
curcumin demonstrated in cell culture systems and animal
models are comparable to those seen in human subjects
(Fig. 3). The anti-inflammatory targets of curcumin including
reduction of NF-kB, COX2 and pro-inflammatory cytokines
such as IL-1, IL-6 and TNF-a, translate into clinical
anti-inflammatory efficacy with improvement of rheumatoid
arthritis(106,107), psoriasis(108), post-operative inflam-
mation(109), chronic anterior uveitis(110) and orbital inflamma-
tory pseudo-tumours(111). Concordant with the finding that
high concentrations of curcumin are achievable in gastrointes-
tinal tissue, curcumin shows clinical benefit in irritable bowel
syndrome(112), tropical pancreatitis(113), gall bladder and
biliary motility(114 – 116), gastric ulceration(117) and familial
adenomatous polyposis coli(118). The in vitro findings of
enhanced PPAR-g expression and modulation of NOS, gluta-
thione and other antioxidant activities are supported by the
clinical potency of curcumin to lower serum cholesterol(119)

and improve endothelial function in type 2 diabetes melli-
tus(120). Curcumin also enhances early post-transplant renal
graft function(121), presumably through multiple mechanisms.

Consistent with the strong pre-clinical evidence of benefit in
animal models of IBD, curcumin is showing early promise as
a treatment for CD and UC in human subjects. In a small
open-label study of five patients with CD and five with
ulcerative proctitis, improvements in clinical and laboratory
parameters with reduction in need for concomitant medi-
cations were observed in nine out of ten cases(122). Further
encouraging results came from a larger multicentre, random-
ised, double-blind, controlled trial of eighty-nine patients
with quiescent UC, in which two out of forty-three patients
(5 %) taking oral curcumin had relapsed by 6 months
compared with eight out of thirty-nine (21 %) in the placebo
group(123). The investigators also showed significant clinical
and endoscopic improvements in the curcumin-treated group.

Table 2. Animal models in which curcumin has chemopreventive
efficacy

Cancer Animal model Reference

Gastrointestinal system
Colon Mouse (84,85,138,139)

Rat (140–149)

Small intestine Mouse (138)

Stomach Mouse (150–152)

Rat (87)

Oesophagus Rat (86)

Liver Rat (88)

Pancreas Mouse (153)

Mouth Rat (154)

Hamster (89,173)

Breast Mouse (90,155)

Rat (142,156–160)

Lung Mouse (91)

Skin Mouse (94,150,152,161–167)

Blood cancers
Leukaemia Mouse (90,168)

Multiple myeloma Mouse (169)

Urinary tract
Kidney Mouse (92,170)

Bladder Mouse (93)

Brain Mouse (171)

Prostate Mouse (172)
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There is a strong foundation of evidence from both in vitro
and animal models that curcumin has anti-cancer actions,
including its pro-apoptotic and anti-angiogenic effects and
its modulation of the cell cycle, growth factor expression
and signal transduction pathways. Building upon this foun-
dation, curcumin appears to prevent and treat cancer in
human subjects. Results from a trial of twenty-five patients
with various different pre-malignant or high-risk lesions
suggested that oral curcumin may have chemopreventive
effects in progression of these lesions(4). While two of the
twenty-five patients progressed to frank cancer, seven
regressed; a remarkably high proportion considering the
high-grade nature of the lesions (bladder cancer, oral leukopla-
kia, gastric intestinal metaplasia, cervical intraepithelial
metaplasia and Bowen’s disease). In another uncontrolled
study of fifteen patients with advanced colorectal cancer
refractory to standard treatments, the lymphocytic biomarker
glutathione S transferase showed a 59 % reduction in activity
with low-dose (440 mg daily) oral curcuma extract, and
five patients maintained radiologically stable disease over
the 2- to 4-month study period(124). Once again there is a
suggestion here that curcumin exhibits paradoxical efficacy
at low v. high dose, since this effect was not observed at
higher doses. In an interesting, but also uncontrolled, study
of sixty-two patients with oral cancerous lesions, topical
curcumin application reduced symptoms in the majority
(70 %) and caused tumour shrinkage in 10 %(125). Of twenty-
one patients with advanced, normally rapidly fatal, pancreatic
cancer treated with high-dose oral curcumin, encouragingly
four showed disease stability or regression(126).

These preliminary data hold promise, and interest in
curcumin as a therapeutic agent continues to grow. There
are several clinical trials currently ongoing, some involving

larger numbers of patients and with a more rigorous, random-
ised, controlled design. A search on clinicaltrials.gov currently
reveals thirty-one human trials using curcumin, of which
fourteen are investigating its chemopreventive or chemothera-
peutic potential in cancer or pre-malignant conditions. As in
the data already reviewed, there is a preponderance of gut
cancers; six are in colorectal cancer, two in familial adenoma-
tous polyposis coli, one in UC and three in pancreatic cancer.
A novel area of interest is in Alzheimer’s disease and cogni-
tive impairment. The first clinical trial failed to show benefit,
but this may have been due to an unexpected lack of cognitive
decline in the placebo group(127). Three current ongoing trials
of curcumin are further assessing its efficacy in age-related
cognitive impairment. Interest also continues in systemic
inflammatory conditions, and there are two ongoing trials of
curcumin in arthritis and one in psoriasis.

Summary and conclusions

Since ancient times, curcumin has been used in a wide range
of inflammatory, neoplastic and other conditions. In recent
years, the molecular basis for its efficacy has been extensively
investigated. Many cellular and molecular targets have been
identified and many questions still remain. In complex
multifactorial illnesses such as systemic inflammatory diseases
and cancer, an agent that acts at a number of different cellular
levels offers perhaps a better chance of effective prophylaxis
or treatment. Its non-toxicity and good tolerability in human
subjects, in combination with strong promising results from
cell line, animal and early human clinical studies, support
the ongoing research and development of curcumin as a
preventive and disease-modifying agent.

Curcumin (127)

(106)
(107)
(108)
(110)
(111)

(112)
(114)
(115)
(116) (122)

(123)

(121)
(111)

(119)
(120)

(113)
(117)

(14, 15)
(118, 124)
(125, 126)

Rheumatoid arthritis
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Inflammatory eye
disease

Raised serum
cholesterol
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Renal graft
function

Post-operative
inflammation
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Gastric ulcers

Familial
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Fig. 3. Clinical effects of curcumin: results from human trials (with references).
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