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Minkowski proved the following (for a proof see (4)): if 4 and B arenxn
positive semi-definite hermitian matrices then

(det (A+B))'/" > (det A)'/"+(det B)!/". )

It;is known (4) that if both 4 and B are non-singular, then the equality holds in
(1) if and only if B = cA where c is a positive number.

In this note we shall investigate the cases of equality in an extension of the
result (1).

Theorem 1. For each nxn matrix X and each integer r, 1 S 1 =< n, let
d(X) denote the sum of all r-square principal subdeterminants of X. If A and B
are n-square positive semi-definite hermitian matrices and 0<q < 1, then

d}"((A+B)) 2 227 d; (A + 277 1d; " (BY). 2

If A and B both have rank at least r and if <1, then equality holds in (2) if and
onlyif A = B. Ifq = 1 and r>1, then equality holds in (2) ifand only if B = cA
for some ¢>0.

We shall deduce Theorem 1 from Theorem 2 below. In order to state
Theorem 2 we introduce some notation and definitions,

By C, we denote the set of all k-tuples of non-negative reals with at least r
positive coordinates. If fis a real valued function defined on k-tuples of reals
then we say that

(i) fis strictly C,~concave if f is concave on C, and for x and y in C, and
for 0<f<]1, the equality f(Ox+(1—-0)y) = 0f(x)+(1-0)f(y) implies
that x is a positive multiple of y, x~y;

(if) fis C,-positive means that f(x)>0 if and only if x € C,;

(iii) f is strictly C-monotone if f(x+u)>f(x) for x in C, and for u any
non-zero k-tuple of non-negative reals.

Theorem 2. Let A and B be n-square positive semi-definite hermitian matrices
with eigenvalues 0 £ A, £ ... £ 2, and 0 £ puy < ... £ p, respectively and let
0 < 0y £ ... £ 0, denote the eigenvalues of A+B. Let 1 < k £ nand assume
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that f(x) = f(xy, ..., X;) is symmetric concave and non-decreasing in each variable.
Then

2f(015 vees 1) Z f(A4, ooes 20) + S (2ptys «ves 214). 3

Assume that 1 < r < k, and that f is strictly C,-monotone, strictly C,-concave
and C,-positive. Moreover assume that A and B both have rank at least n—k+r.

Then equality can hold in (3) if and only if there exists a unitary matrix X such
that

X*(A+B)X =diag (o4, ..., 6,),
X*AX =diag (A4, ..., A) ¥4,
X*BX =cdiag (44, ..., A)+B,_, ¢>0,
Hi=clyi=1, ..k, (A,~, and B,_, are (n—k)-square matrices) and c satisfies
(A +)As o U +DA) =f(A4, -, 20)+1QcAy, ..., 2¢4)). 4

Proof. Let x,, ..., x, be orthonormal eigenvectors of 4+ B corresponding
respectively to ¢, < ... £ 6,. Then

S(o4, ..., 0) = f((A+B)xy, X1, ..., (A+B)x;, X))
= f((Ax1, x1)+(Bxy, X1), -5 (A, X;) +(Bxy, X))
_ f((2Ax1, x)+(@Bxy, x) | QA% %) +(2Bx, xk))
2 2
= 3 A((2A4xy, x1), -y 24X, %)) +£(2Bx 15 X1)s - -5 (2BXs X)) ]-

Suppose that u;, ..., ¥, are orthonormal eigenvectors of 4 corresponding to
Aty ...y A, Tespectively. Then

(Ax;, x;) = -21 |Cxis 22|22,
=

Since the vectors xy, ..., x, are also orthonormal it follows that the matrix S
whose (i,j) element is |(x;, u;)|* is doubly stochastic. Thus by a theorem of
Birkhoff (1; 2, p. 97) S is a convex combination of permutation matrices
S=Y c,P,
ceG
where G is a subset of S, the permutation group of degree n. Let 1 denote
the n-tuple (4, ..., 4,). For each permutation o let A7 denote (4,¢1), ..., Ao(n)
and for each n-tuple x = (x4, ..., x,) let x[k] = (xy, ..., x;). Then the concavity
of fimplies that
f((Axl’ x1)9 seny (Axk’ xk)) =f( ZG cald[k])

g€

2 Y, . f(A[KD.

ce G
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Since fis symmetric and non-decreasing and 4; < ... < 4,

JOTKD 2 f(Ay, o 4).
Thus f((4Axy, x4), ..., (AX, X)) = f(A4, oovs A). Similarly it follows that

S((Bxy, X1), vy (BXgs Xx)) Z flt15 +oes ).

f(ala Rt ] 0',‘) g ‘}.[f(z}‘l’ et 2/1k)+f(2”13 sees 2ﬂk)]'

This proves the inequality. Suppose that equality holds in (3), f satisfies the
given conditions, and 4 and B have rank at least n—k+r. Then at least » of
the inner products (4x;, x;), i = 1, ..., k, must be positive and similarly at
least r of the inner products (Bx;, x;), { = 1, ..., k, must be positive. Now in
(3) we proved the following result: let H = (h;;) be an n-square positive semi-
definite hermitian matrix with eigenvalues0 < y; £ ... Sy letl1 S r <k <n
and suppose that fis a real valued function defined on the set of k-tuples of
non-negative reals which is symmetric, concave and non-decreasing in each
variable. Then for any set of k orthonormal vectors xy, ..., x;

f((Hxla xl)a At (kaa xk)) Zf()’n cery Vk);

if f is strictly C,-monotone, strictly C,-concave and C,-positive and if at least
r of the inner products (Hx;, x;), j = 1, ..., k are positive then the preceding
inequality is equality if and only if

Hx; =yy5%; j=1,..,k
for some permutation ¢ on {1, ..., k}, i.e., x;, ..., X is an orthonormal set of
eigenvectors corresponding to yy, ..., ¥, in some order. In view of this result
and the strict C,-concavity of f we can conclude that

Ax; =A%y J=1,..0,k, PES,

Hence

ij = Ug(iHXjs j=1,.., k, fe Si

and
cA[K]® = u[k}’, ¢>0, )
where 2 = (A4, ..., 4), 0 = (uy, ..., ). Lett = 061 so that (5) becomes
lut(i) = C/li, i= 1, ey k. (6)

Since 4; £ ... £ A and gy £ ... £y we conclude from (6) that p, = pu,,
i=1,..,kie,cd;=p,i=1,..k Butthen

20
= Hg(i)
or
Moy = Moy E=1, .. k.
However

o; = ((A+ B)x;, x;) = (Ax;, X)) +(Bx;, X;) = Ay + Moy
= Ayt oy = Ao+ oy = (L+ gy, I=1, ., k.
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From o, < ... £ 0, it follows that 1,,, =4,,i = 1, ..., k, and hence
#9(!') = #i = C},‘-’ i = 1, seey k.
Thus o; = (14+¢c)A;, i = 1, ..., k, and equality holds if and only if (4) holds.

Corollary. Let A, B, and f satisfy the conditions of Theorem 2 and let k = n.
If f is homogeneous of degree q # O then
f(al, vy O',,) g 2q—lf(j'l’ vy A’n)+2q_lf(ula sors I"n)' (7)
If A and B both have rank at least r then (7) is equality if and only if B = cA,
¢>0. Ifq # 1 then equality can hold if and only if B = A.
Proof. According to Theorem 2 there exists a unitary X such that
X*AX =diag (4, ..., 4,),
X*BX = cdiag (44, ..., 4,), ¢>0,
and (from (4))
(14+¢)1=21"1(1 +¢9). 8)

It is easy to check that for ¢ # 1, ¢ = 1 is the only positive solution to (8).
This completes the proof of the Corollary.

In (3) we show that if E(y,, ..., ¥,) denotes the rth elementary symmetric
function of yy, ..., y, and if f(x,, ..., x,) = E}"(x4, ..., x?) with 0<gq < 1, then
for r>1, or r = 1 and g<1, f is strictly C,-concave. With this choice of f,
Theorem 1 now follows from the Corollary.
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