v

above; i.e. for a, &, ¢, d we take 15, 25, 35, 45, and fora’, b’, ¢’, d’ we
take 2345, 1345, 1245, 1235; so that a, b/, ¢,” d are now orthogonal to
145, and so on. We have therefore a circle orthogonal to 2345, 1345,
1245, 1235, 1234; this we denote by 12345.

At the next step we adjoin a new symbol 6, in addition to the 5
already adjoined, and use the same proof as before. The chain can
in this way be extended without limit:

Theorem VIII. An unending chain of circles can be defined, such
that each circle can be named by a finite number of different symbols, and
such that any two circles are orthogonal to each other if the name of one
can be got from that of the other by simply cutting out or adding one
symbol. The chain starts from a single circle, whose symbol for the
purposes of this statement is to be considered a blank ; and there is a
circle in the chain corresponding to every combination of different
symbols.

Alternative Forms of Expression for Hermite’s Determinant.
By Sir Tromas MUIR.

(1) Apparently it was in 1854 that Hermite first drew attention
to the special determinant which now bears his name. It may be
defined as being such that every two of its elements that are
conjugate in position are conjugate-complex in form: and as a con-
sequence its matrix is the sum of two matrices one of which is
axisymmetric and the other zero-axial skew.

(2) Although Hermite had clear evidence that the determinant
was Jdmaginary only in appearance, he does not seem to have made
any effort to obtain an expression for it free of 4/ — 1. Such an
expression is first met with, almost casually, in a paper of Clebsch’s
of 1859, in which he has occasion to consider the latent roots of a
Hermitant. His result we may formulate for ourselves thus: Any
Hermitant of the third order is expressible as the difference of a deter-
minant and a ternary quadric, the former being the determinant of the
axisymmetric portion of the matrix and the latter having for its dis-
criminant the same determinant: for example:—

_afy
a h+ye g—pB lahyg ahgla
h—ye b frac|=|hbf RbflB
g+Be f—av ¢ g fec gfcly.
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(3) The corresponding expression for the case of the 4th and
higher orders, which was not obtained until 1897,! is not at all so
simple: indeed, it soon dawns on one who investigates it that the
new expression is really an expansion-in-series, the number of term-
groups being n» — 1 when the Hermitant is of the nth order. All that
is known regarding it is still to be found in the concluding eleven
pages of the memoir of 1897: the only later writing on the subject,
though going no farther than the 4th order, is useful as a corroboration.

(4) The other mode of expression to which we wish to call
attention is a contrast in every way. Not only is it unequivocally
an alternative form suitable for everyday use, but it is in one or two
respects a preferable form to the original. Strange to say, too, it is
the long-familiar Pfaffian, and to pass from the Hermitant to the
equivalent Pfaffian we literally have only to strike out the imagin-
aries and rearrange the variables: for example

| a h+ye :l'y koalj,
| h—y. b b h
-7
| e htye g+Bol =y B g kb ai,
h—ye b f+acu a f b k|
‘g_/sL foar ¢ | ¢ f g
—a -8
-7
| a ht+ye g+Be v+ 8| =]y B ( r g h al,
Jh—'yc b fH+ar g4 et a € ¢qg f b h
g—PB¢ f—at c p+3: 8 p ¢ f g
‘T_ZL q—EL ZJWSL d d ¥4 q r
—8 —e —(
—a —B
-7

where, in the third example, the reader would do well to note how
the horizontally-running elements
a h, g, 7, 0, B,y
of the Pfaffian are got from the first row of the determinant exactly
as the vertically-running
a, k, g, r _Ca ‘_’B, — Y
are got from the first column : how, similarly, the elements
b, f, q, €, a and b, fig, —e¢, —a

1 Pransac. R. Soc. Edinburgh, xxxix., pp. 209-230,
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are got from the first row and first column of the complementary
minor of @ in the determinant: how

¢, p, 8 and ¢, p, — 3

are got from the complementary minor of ab in the determinant: and
how, finally the d of the Pfaffian is got from the complementary
minor of abc.

This could doubtless be proved directly by taking Zehfuss’ de-
terminant which equals the square of the determinant on the left and
then transforming it into Cayley’s determinant which equals the
square of the Pfaffian on the right. Tt will, however, be better to
prove a more general theorem and then draw the requisite deduction.

(5) Any axisymmetric Pfaffian of 2m frame-lines is expressible as
an m-line determinant.

Taking as typical the case where m is 3 and the axisymmetric

Pfaffian is
e d ¢ b a;, or ff say,
hog f b
kg c‘
hod
e
we have from Cayley
= .. e d ¢ baj=(—1 . e d ¢ b a
—e . b g f b —e . hg f b
—d -k . k g ¢ —d —h .k g ¢
—c —g —k h d c g k . —h —d
—b —f —g —h e b f g h -e
—a —b —¢ —d —e . a b cd e
=(—1) a e+b d4+c ¢c+d b-+te a
—e+b f h+g g+ b I b—e
—d+c¢c —h+yg k k g—h c—d
c g k . —h —d
b f g h . —e
a b c d e
= (— 1) a et+b d-rec
—e+b f h+g¢g
—d4+c¢c —h+yg k . .
c g k —k —h—g —d—c
b S g h—yg —f —e—b
b c d—c e—b —a
= a b+e c+d!?
b—e f g+h ;
c—d g—~»h ko
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whence, as desired,

;edcba = a b+e ¢c+d .
o hog fb b—e f gth)
kg o c—d g—h k|
hod
€

(6) Changing e, d, h in the foregoing into er/—1, dy/—1, h\/j,
we obtain

‘ a b+e. ¢c+die| =1ec de ¢ b a

b—e. f g-+h he g f b

c—di g—h ko kg ¢

he du

et

= . ee i c b a 1= . e c b all
e« . kg F b, l—e . hg F b
—de —ht . k g ¢ : i —d —h .k g c
—c —g —k . he do c—¢ —g —k . —h —d
—b —f —g —h . e —b ~f —g b . —e
—a —b —¢ —di —e 1 L—a —b —c d e

b a |, as foretold in §4,

g ¢
—h —d
—e

the alteration in the first six-line determinant here being due to
multiplying the last three rows by . and dividing the first three
columns by the same.

(7) As an example of evaluation of the new form let us take
the second Pfaffian of the three here, the result in this case having
the advantage of being comparable with Clebsch’s. Using the so-
called ‘“ mixed ”’ expansion at the start we obtain

ly Bg kb al=yjc f g|-Bif b hitalg k a|-—
a f b h —a —fB —a —PB —a —fB
¢ f g Y - —y
—a —B
—y ' =y(—cy+fB—9a) -B(—fy+bp—ta)

ta(—gy+hf—aa)+ |a h g

hobof

g [ ¢

= —(ea®+bB +cy’ — 2haf — 2f By + 29 ya) +

which is seen to be identical with the expression in § 2.
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Another very interesting example is the third Pfaffian of the
three when ¢ =0 = ¢ =d = 0, that is to say, the zero-axial 4-line
Hermitant. This, if we write

F_( l, m, n for P4-m?+n?—2mn—2nl—2lm
lr, —y 7 +(x—y +2)°

+2

-

[
m —
n

N R

is found equal to
[t ge B8 F | Ph a9, tf}
-+ )
| ra, — g, py | | y8, —Be al

a result which at the same time is the solution of a problem
{(No. 16494) proposed without effect in the Educational Times over
twenty years ago.

(8) In conclusion we note as being closely connected with the
foregoing the following theorem in so-called ¢ block” determinants:
If 4, 8 be n-line square arrays, A axisymmetric and S zero-axial skew,

[ 4

then
| S | _ S’ A
] ’ A ’ _A Sl 3

a curious feature of the identity being that one member is axisymmetric
and the other skew.

n

For example, taking

a h g . 2 y,

h b f i for A, -z .z, for 8,

g f ¢ —y —z .|

we have
a h g . z oy .o—z —y a h g
h b f —=z .o 2 . o—z h b S
q I ¢ -~y —x . Y z . g Vi c
—z —y a h g —a —h —g . —z —y

z .-z h b f —h —b —f =z .o
y = -9 f ¢ -9 —f —cy «z

Another identity having the same feature attracted a little unusual
attention in the Educational T'imes for 1914. (See Math. from Educ.
Times, (2) xxvi., pp. 69-71.)
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