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Abstract

To study infinitesimal deformation problems with cohomology constraints, we introduce
and study cohomology jump functors for differential graded Lie algebra (DGLA) pairs.
We apply this to local systems, vector bundles, Higgs bundles, and representations
of fundamental groups. The results obtained describe the analytic germs of the
cohomology jump loci inside the corresponding moduli space, extending previous results
of Goldman–Millson, Green–Lazarsfeld, Nadel, Simpson, Dimca–Papadima, and of the
second author.

1. Introduction

1.1 Motivation and overview
Consider a representation ρ : π1(X) → GL(n,C) of the fundamental group of a topological space
X. How can one describe all the infinitesimal deformations of ρ constrained by the condition that
the degree i cohomology of the corresponding local system Lρ has dimension >k? More precisely,
fixing n, define the cohomology jump locus V ik as the set of all such representations; V ik has a
natural scheme structure when X is a finite CW-complex, and we are asking for a description of
the formal scheme V ik,(L) at the point L.

A nice answer to this question was given in certain cases. Define the resonance variety Rik
as the set consisting of ω ∈ H1(X,C) such that the degree i cohomology of the cup-product
complex (H

q
(X,C), ω ∪ .) has dimension >k; Rik also has a natural scheme structure. When X

is the complement of a complex hyperplane arrangement and ρ = 1 is the trivial rank n = 1
representation, Esnault et al. [ESV92] showed that there is an isomorphism of reduced formal
germs

(V ik)red
(1)
∼= (Rik)red

(0) . (1)

This result has been generalized further by Dimca et al. [DPS09] and recently by Dimca and
Papadima [DP12]. Their more general result identifies (V ik)red

(1) for rank n > 1 representations on

a finite CW-complex X with the reduced formal germ at the origin of a space Rik defined
by replacing the cup-product complexes with Aomoto complexes of the differential graded
Lie algebra (DGLA) A q ⊗C gl(Cr), where A q

is any commutative differential graded algebra
(CDGA) homotopy equivalent with Sullivan’s CDGA Ω

q
(X,C) of piecewise smooth C-forms. In

particular, (1) is recovered since in that case Ω
q
(X,C) is formal, that is, it is homotopy equivalent

with its cohomology.
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In this article we generalize these results further by providing a description of the formal germ

V ik,(ρ) at any representation ρ of any rank. In other words, we deal with possibly non-reduced

formal germs and with possibly non-trivial local systems.

The deformation problem with cohomology constraints can also be posed for different objects.

For addressing all deformation problems with cohomology constraints at once, we provide a

unified framework via DGLAs, in a sense which we describe next.

By a deformation problem we mean describing the formal germ M(ρ) at some object ρ in

some moduli space M. This is equivalent to describing the corresponding functor on Artinian

local algebras which we denote also by M(ρ). In fact, this functor is usually well defined even if

the moduli space is not. In practice, every deformation problem over a field of characteristic zero

is governed by a DGLA C depending on (M, ρ). This means that the functor M(ρ) is naturally

isomorphic to the deformation functor Def(C) canonically attached to C via solutions of the

Maurer–Cartan equation modulo gauge. An answer to the deformation problem is then obtained

by replacing C with a homotopy equivalent DGLA D with enough finiteness conditions to make

Def(C) = Def(D) representable by an honest space, providing a simpler description ofM(ρ) than

the original definition. A particularly nice answer to the deformation problem is achieved when

D can be taken to be the cohomology H
q
(C) of C, that is, when C is formal. For an overview of

this subject, see [Man09].

By a deformation problem with cohomology constraints we mean that we have formal germs

V ik,(ρ) ⊂M(ρ) of objects with a cohomology theory constrained by the condition that the degree

i cohomology has dimension >k. Then we would like to describe V ik,(ρ). This is equivalent to

describing the corresponding functor on Artinian local algebras which we also denote by V ik,(ρ),

and which in fact is usually well defined even if the formal germs are not. The point of this

article is to stress that, in practice, a deformation problem with cohomology constraints over a

field of characteristic zero is governed by a pair (C,M) of a DGLA together with a module over

it. Given any such pair, we will canonically define cohomology jump functors Defik(C,M). When

V ik,(ρ)
∼= Defik(C,M) as subfunctors of M(ρ)

∼= Def(C), we obtain an answer to the deformation

problem with cohomology constraints by replacing (C,M) with a homotopy equivalent pair

(D,N) with enough finiteness conditions to make Defik(C,M) ∼= Defik(D,N) representable by

an honest space (like Rik above). A particularly nice answer is achieved when (D,N) = (H
q
(C),

H
q
(M)), that is when the pair (C,M) is formal.

In this paper we consider the deformation problem with cohomology constraints for linear

representations of fundamental groups, local systems, holomorphic vector bundles, and Higgs

bundles.

The idea of using DGLA pairs is already implicit in [Man07], where a functor Defχ of

semi-trivialized deformations is attached to a DGLA map χ : C → C ′. Such a situation arises

for a DGLA pair (C,M) by setting C ′ = End
q
(M) with the induced natural DGLA structure.

It is shown in this case in [Man07] that the image of Defχ → Def(C) describes the deformation

problem with no-change-in-cohomology constraint. Therefore our Defik(C,M) can be seen as

refinements of Defχ for χ : C → End
q
(M).

A theorem due to Lurie [Lur] and Pridham [Pri10] in the framework of derived algebraic

geometry states that, with the appropriate axiomatization, every infinitesimal deformation

problem is governed by a DGLA and that a converse holds. A natural question is whether this

can be extended to an equivalence between infinitesimal deformation problems with cohomology

constraints and DGLA pairs.
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This article puts together, simplifies, and extends the previous two articles by the second
author [Wan12, Wan13a]. The DGLA pairs were introduced in the first version of [Wan13a] by
the second author to address the reduced structure of the cohomology jump loci. Since [Wan12,
Wan13a] will not be published, we will provide complete arguments, even though they may have
already appeared in [Wan12, Wan13a]. The main concept introduced in this second version is
that of cohomology jump functors of a DGLA pair. Since this refines the deformation functor,
and leads to more direct proofs of even stronger results, we feel that this approach is the closest to
a hypothetic final answer to the general problem of infinitesimal deformations with cohomology
constraints.

Let us next describe the results of this article in more detail.

1.2 Cohomology jump loci of complexes

Let M be a finitely generated module over a Noetherian ring R. Let G
d

→ F → M → 0 be a
presentation of M by finitely generated free R-modules. Then the ideal

Jk(M) = Irank(F )−k(d)

of minors of size rank(F ) − k of a matrix representing d does not depend on the choice of
presentation. This result goes back to Alexander and Fitting. We generalize it to complexes as
follows.

Now let E
q

be a complex of R-modules, bounded above, such that H i(E
q
) is a finitely

generated R-module for every i. By a lemma of Mumford [Har77, III.12.3], there exists a complex
F

q
of finitely generated free R-modules, and a morphism of complexes g : F

q
→ E

q
which is a

quasi-isomorphism. We define the cohomology jump ideals of E
q
to be

J ik(E
q
) = Irank(F i)−k+1(di−1 ⊕ di)

where di−1 : F i−1
→ F i and di : F i → F i+1 are the differentials of the complex F

q
. We show that

J ik(E
q
) does not depend on the choice of F

q
(Definition–Proposition 2.2). This is the content of

§ 2.
We are interested in the subscheme of Spec(R) associated to such J ik(E

q
). This setup occurs

in many situations, for example when E
q
can be obtained from topology or from DGLA pairs as

below.

1.3 Cohomology jump loci of DGLA pairs
Let C = (C

q
, dC) be a DGLA over C. The deformation functor Def(C) attached to C is a functor

from the category of Artinian local algebras to the category of sets. Let M = (M
q
, dM ) be a

differential graded module over C. Then, using the arguments in § 1.2, we define and study in
§ 3 the cohomology jump functors Defik(C,M) as subfunctors of Def(C). Let us state the crucial
property next.

In general the DGLA that governs a deformation problem has infinite dimension on each
degree. The following result of Deligne–Goldman–Millson–Schlessinger–Stasheff allows one to
replace the DGLA with a finite-dimensional one within the same homotopy equivalence class,
when such a DGLA is available.

Theorem 1.1 [GM88]. The cohomology functor Def(C) only depends on the 1-homotopy type
of C. More precisely, if a morphism of DGLA f : C → D is 1-equivalent, then the induced
transformation on functors f∗ : Def(C) → Def(D) is an isomorphism.

The familiar notions of i-equivalence and i-homotopy extend easily to DGLA pairs, see § 3.
We also extend the previous theorem to DGLA pairs.
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Theorem 1.2. The cohomology jump functor Defik(C,M) depends only on the i-homotopy
type of (C,M). More precisely, if a morphism of DGLA pairs g = (g1, g2) : (C,M) → (D,N)
satisfies that g1 is 1-equivalent and g2 is i-equivalent, then the induced transformation on functors
g∗ : Defik(C,M) → Defik(D,N) is an isomorphism.

A typical application of Theorem 1.1 is when C is formal. Similarly, we define formality
for DGLA pairs and make use of it via Theorem 1.2 when we consider concrete deformation
problems as below.

In §§ 4 and 5 we address the quadratic cones, resonance varieties, and augmentations of
DGLA pairs, needed in our analysis of concrete deformation problems.

1.4 Holomorphic vector bundles
In § 6, we consider the moduli space M of stable rank n holomorphic vector bundles E with
vanishing Chern classes on a compact Kähler manifold X. These holomorphic vector bundles are
the ones that admit flat unitary connections. In M, we consider the cohomology jump loci

Vpqk (F ) = {E ∈M | dimHq(X,E ⊗OX F ⊗OX Ωp
X) > k}

with the natural scheme structure, for fixed p and fixed poly-stable bundle F with vanishing
Chern classes. We show that this deformation problem with cohomology constraints is
governed by the DGLA pair (A0, q

Dol(End(E)), Ap,
q

Dol(E⊗F )) constructed from Dolbeault complexes
(Theorem 6.4). Let

Q(E) = {η ∈ H1(X, End(E)) | η ∧ η = 0 ∈ H2(X, End(E))},
Rpqk (E;F ) = {η ∈ Q(E) | dimHq(H

q
(X,E⊗F ⊗Ωp

X), η ∧ ·) > k},

with natural scheme structures defined using the arguments in § 1.2. Formality of the DGLA
pair implies the following theorem.

Theorem 1.3. Let X be a compact Kähler manifold. Let E and F respectively be a stable and
a poly-stable holomorphic vector bundle with vanishing Chern classes on X. Then there is an
isomorphism of formal schemes

Vpqk (F )(E)
∼= Rpqk (E;F )(0).

This generalizes the result of Nadel [Nad88] and Goldman and Millson [GM88] thatM(E)
∼=

Q(E)(0), and it also generalizes a result of Green and Lazarsfeld [GL87, GL91] for rank n = 1
bundles. It also implies that if k = dimHq(X,E⊗F ⊗Ωp

X), then Vpqk (F ) has quadratic algebraic
singularities at E (Corollary 6.11), a result also shown for F ⊗Ωp

X = OX by Martinengo [Mar09]
and the second author [Wan12].

1.5 Irreducible local systems and Higgs bundles
In § 7, we consider the moduli space MB of irreducible rank n local systems L on a compact
Kähler manifold X, and we consider the cohomology jump loci

V ik(W ) = {L ∈MB | dimCH
i(X,L⊗C W ) > k}

with the natural scheme structure, for a fixed semi-simple local system W of any rank. The
DGLA pair governing this deformation problem with cohomology constraints is (A

q
DR(End(L)),

A
q

DR(L⊗W )), constructed from the de Rham complex. Parallel results and proofs similar to the
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case of holomorphic vector bundles hold. Let

Q(L) = {η ∈ H1(X, End(L)) | η ∧ η = 0 ∈ H2(X, End(L))},
Rik(L;W ) = {η ∈ Q(L) | dimH i(H

q
(X,L⊗W ), η ∧ ·) > k},

with the natural scheme structures.

Theorem 1.4. Let X be a compact Kähler manifold. Let L be an irreducible local system on
X, and let W be a semi-simple local system. The isomorphism of formal schemes

(MB)(L)
∼= Q(L)(0)

induces an isomorphism
V ik(W )(L)

∼= Rik(L;W )(0).

The proof of this result generalizes the main ‘strong linearity’ result of Popa–Schnell as stated
in [PS13, Theorem 3.7], proved there for rank one local systems E, W = CX , and X a smooth
projective complex variety, see Remark 7.7.

Higgs bundles are similarly treated in § 8, via a DGLA pair arising from the Higgs complex.

1.6 Representations of the fundamental group
Also in § 7, we look at representations of the fundamental group. This case is closely related to
the case of local systems. This relation, at the level of deformations, is a particular case of the
relation between the deformation functors of an augmented DGLA pair and those of the DGLA
pair itself, see Theorem 5.3.

Let X be a smooth manifold which is of the homotopy type of a finite type CW-complex, and
let x ∈ X be a base point. The set of group homomorphisms Hom(π1(X,x),GL(n,C)) naturally
has a scheme structure. We denote this scheme by R(X,n). Every closed point ρ ∈ R(X,n)
corresponds to a rank n local system Lρ on X. Let W be a local system of any rank on X. In
R(X,n), we define the cohomology jump loci

Ṽ ik(W ) = {ρ ∈ R(X,n) | dimH i(X,Lρ ⊗C W ) > k}

with the natural scheme structure (these were denoted V ik in 1.1).
We show that an augmented DGLA pair (A

q
DR(End(Lρ)), A

q
DR(Lρ ⊗C W ); ε) governs this

deformation problem with cohomology constraints (Theorem 7.2). This generalizes the result of
Goldman and Millson [GM88] who showed that the deformation problem without cohomology
constraints is governed by the augmented DGLA (A

q
DR(End(Lρ)); ε). This also generalizes the

result of Dimca and Papadima [DP12] mentioned in 1.1. In [DP12], X is allowed to be a connected
CW-complex of finite type by replacing the de Rham complex with Sullivan’s de Rham complex,
but, for simplicity, we opted to leave out this topological refinement.

Thus, the formal scheme of Ṽ ik(CnX) at the trivial representation only depends on the
k-homotopy type of the topological space X, generalizing a result of [DP12] for the underlying
reduced germs.

Let

Q(ρ) = {η ∈ Z1(π1(X), gl(n,C)ad ρ) | η̄ ∧ η̄ = 0 ∈ H2(X, End(Lρ))},
Rik(ρ,W ) = {η ∈ Q(ρ) | dimH i(H

q
(X,Lρ ⊗C W ), η̄ ∧ ·) > k},

with the natural scheme structures, where Z1 stands for the vector space of 1-cocycles, and η̄ is
the image of η in cohomology.
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Theorem 1.5. Let X be a compact Kähler manifold, ρ ∈ R(X,n) be a semi-simple
representation, and W a semi-simple local system on X. Then

Ṽ ik(W )(ρ)
∼= Rik(ρ,W )(0).

This generalizes the result of Simpson [Sim92] that R(X,n)(ρ)
∼= Q(ρ)(0). With the same

assumptions, if in addition k = dimH i(X,Lρ), then Ṽ ik(W ) has quadratic singularities at ρ
(Corollary 7.12).

1.7 Other consequences of formality
Theorems 1.3, 1.4 and 1.5 describing the local structure of cohomology jump loci V ik in terms of
cohomology resonance loci Rik are consequences of the formality of the DGLA pair governing the
corresponding deformation problem with cohomology constraints. In § 9, we show that formality
for a DGLA pair (C,M) leads to more information about the geometry of cohomology resonance
loci and about the possible shapes of the sequence of Betti numbers dimH i(M). This puts
together and extends to DGLA pairs a method which was previously employed in different
setups by Lazarsfeld and Popa [LP10], the first author [Bud11], and Popa and Schnell [PS13].

1.8 Analytic and étale local germs
According to Artin’s approximation theorem [Art68], two analytic germs (X,x) and (Y, y)
are isomorphic if and only if the formal schemes X(x) and Y(y) are isomorphic. Furthermore,
Artin also showed in [Art69] that as étale local germs (X,x) and (Y, y) are isomorphic in the
algebraic category. Thus, our results on isomorphisms between formal schemes can be stated as
isomorphisms between analytic germs and also between algebraic étale germs.

1.9 Notation
Throughout this paper, all rings are defined over C. By an Artinian local algebra, we mean
an Artinian local algebra which is of finite type over C. Denote the category of Artinian local
algebras with local homomorphisms by ART and the category of sets by SET. Suppose F is a
functor from ART to SET. We shall say a formal scheme X consisting of only one closed point
(or a complete local ring R respectively) prorepresents the functor F, if Hom(Γ(X ,OX ),−)
(respectively Hom(R,−)) is naturally isomorphic to the functor F. By abusing notation, we will
frequently use the same letter to denote a closed point in some moduli space and the object
the closed point represents. Also by abusing notation, we will frequently use a formal scheme X
(supported at a point) to denote the functor it prorepresents, i.e., Hom(−,X ) : ART → SET.

2. Cohomology jump loci of complexes

Let R be a noetherian ring, and let E
q
be a complex of R-modules, bounded above. Suppose

H i(E
q
) is a finitely generated R-module. In this section, we define the notion of cohomology

jump ideals for the complex E
q
. Throughout this section, we assume all complexes of R-modules

are bounded above and have finitely generated cohomology.
First, we want to replace E

q
by a complex of finitely generated free R-modules. This is

achieved by a lemma of Mumford.

Lemma 2.1 [Har77, III.12.3]. Let R and E
q
be defined as above. There exists a bounded-above

complex F
q

of finitely generated free R-modules and a morphism of complexes φ : F
q
→ E

q
which is a quasi-isomorphism.
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Definition–Proposition 2.2. Under the above notation, we define the cohomology jump ideals
to be

J ik(E
q
) = Irank(F i)−k+1(di−1 ⊕ di)

where I denotes the determinantal ideal, di−1 : F i−1
→ F i and di : F i → F i+1 are the differentials

of the complex F
q
. Then J ik(E

q
) does not depend on the choice of F

q
.

Proof. This is a generalization of the proof of the Fitting Lemma from [Eis95, 20.4]. We can
assume R is local. By [Rob98, Proposition 4.4.2], F

q
has a unique minimal free resolution G

q
→

F
q
. Let ρ : G

q
→ E

q
be the composition with φ. If φ̄ : F̄

q
→ E

q
is another free resolution of E

q
with finite rank terms, then by [Rob98, Theorem 3.1.7], there exists a map β : G

q
→ F̄

q
unique

up to homotopy such that φ̄β is homotopic with ρ. Hence β is a quasi-isomorphism, and so G
q

is a minimal free resolution of F̄
q
also. Thus, it is enough to prove that J ik(E

q
) is the same if

computed with F
q
and G

q
.

By [Rob98, Proposition 4.4.2], F
q
is a direct sum of G

q
with a direct sum of shifts of the

trivial complex

0 → R
1

→R → 0.

It is enough, by induction, to assume that only one such shifted trivial complex is added to G
q
to

obtain F
q
. Fix i. There are four shifts of the trivial complex that can be added to Gi−1

→ Gi →

Gi+1. Let r be the rank of Gi and M the matrix of di−1
G ⊕ diG. The ideals Irank(F i)−k(d

i−1
F ⊕ diF )

for each of the four possible cases are

Ir−k
(
M 0

)
, Ir+1−k

(
M 0 0
0 1 0

)
, Ir+1−k

M 0
0 0
0 1

 , Ir−k

(
M
0

)
,

and all are equal to Ir−k(M) as we wanted to show. 2

Corollary 2.3. If E
q
is quasi-isomorphic to E′

q
, then J ik(E

q
) = J ik(E

′ q).
Corollary 2.4. Let R and E

q
be defined as above, and let S be a noetherian R-algebra.

Moreover, suppose E
q
is a complex of flat R-modules. Then J ik(E

q
)⊗R S = J ik(E

q⊗R S), where
we regard E

q⊗R S as a complex of S modules.

Proof. By Lemma 2.1, there is a quasi-isomorphism F
q
→ E

q
, where F

q
is a bounded-above

complex of finitely generated free R-modules. Since E
q
is bounded above and flat, F

q⊗R S is
quasi-isomorphic to E

q⊗R S. Thus, J ik(E
q⊗R S) can be computed as determinantal ideals of

F
q⊗R S. Hence, the corollary follows from the fact that taking determinantal ideals commutes

with taking tensor product. 2

When R is a field, by definition J ik(E
q
) = 0 if dimH i(E

q
) > k and J ik(E

q
) = R if dimH i(E

q
)<

k. Thus, we have the following.

Corollary 2.5. Suppose E
q
is a complex of flat R-modules. Then for any maximal ideal m of

R, J ik(E
q
) ⊂ m if and only if dimR/mH

i(E
q⊗R R/m) > k.

Next, we address a partial generalization of Corollary 2.3.

Definition 2.6. A morphism of complexes is q-equivalent if it induces an isomorphism on
cohomology up to degree q and a monomorphism at degree q + 1. For example, ∞-equivalent
means quasi-isomorphic.
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Proposition 2.7. Let (R,m) be a noetherian local ring and let f : E
q
→ E′

q
be a q-equivalence

between two bounded-above complexes of free R-modules with finitely generated cohomology. If
f ⊗ idR/m : E

q⊗R R/m → E′
q⊗R R/m is also a q-equivalence, then J ik(E

q
) = J ik(E

′ q) for i 6 q.

Proof. Let φ : F
q
→ E

q
and φ′ : F ′

q
→ E′

q
be the minimal free resolutions of E

q
and E′

q
respectively. Since F

q
is a complex of free R-modules, we can lift the composition f ◦φ : F

q
→ E′

q
via φ′ to g : F → F ′. Thus, we obtain the diagram

F
q g //

φ
��

F ′
q
φ′

��
E

q f // E′
q

where φ and φ′ are ∞-equivalent, and f is q-equivalent. Since the diagram commutes, g is also
q-equivalent. Taking the tensor product of the above diagram with R/m over R gives us the
diagram

F
q⊗R R/m ḡ //

φ̄
��

F ′
q⊗R R/m

φ̄′

��
E

q⊗R R/m f̄ // E′
q⊗R R/m

where f̄ is q-equivalent by assumption. Since E
q
, E′

q
, F

q
and F ′

q
are complexes of free, hence

flat, R-modules, φ̄ and φ̄′ are ∞-equivalent. Therefore, ḡ is also q-equivalent.
Since F and F ′ are minimal, the differentials in F

q⊗R R/m and F ′
q⊗R R/m are all zero.

Therefore, ḡ : F
q⊗R R/m → F ′

q⊗R R/m being q-equivalent means

ḡi : F i ⊗R R/m → F ′i ⊗R R/m
is an isomorphism for i6 q and a monomorphism for i= q+1. In particular, rank(F i) = rank(F ′i)
for i 6 q.

By definition, J ik(E
q
) = J ik(F

q
) and J ik(E

′ q) = J ik(F
′ q). Hence we only need to show J ik(F

q
) =

J ik(F
′ q) for i 6 q. Recall that J ik(F

q
) = Irank(F i)−k+1(di−1 ⊕ di), where di−1 and di are the

differentials in F
q
. Notice that

Irank(F i)−k+1(di−1 ⊕ di) =
∑

06j6rank(F i)−k+1

Ij(d
i−1) · Irank(F i)−k+1−j(d

i).

Since rank(F i) = rank(F ′i) for i 6 q, to show J ik(F
q
) = J ik(F

′ q) for i 6 q, it suffices to show
Ij(d

i) = Ij(d
′i) for any j ∈ N and i 6 q, where d′i is the differential in F ′

q
. This follows from the

following two statements, which will be proved in the next two lemmas:

(i) gi : F i → F ′i is an isomorphism for i 6 q;

(ii) gq+1 : F q+1
→ F ′q+1 is injective and its image is a direct summand of F ′q+1. 2

Lemma 2.8. Let (R,m) be a noetherian local ring. Let h : M → M ′ be a morphism between
finite free R-modules. Suppose h⊗ idR/m : M ⊗R R/m → M ′⊗R R/m is an isomorphism. Then
h is an isomorphism.

Proof. The composition M
h
→ M ′ → M ′ ⊗R R/m is surjective. By Nakayama’s lemma, h is

surjective. Since M ′ is free, we have a short exact sequence

0 → Ker(h)⊗R R/m → M ⊗R R/m → M ′ ⊗R R/m → 0.

1506

https://doi.org/10.1112/S0010437X14007970 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007970


Cohomology jump loci of DGLA

Since M ⊗RR/m → M ′⊗RR/m is an isomorphism, Ker(h)⊗RR/m = 0. Hence, Ker(h) = 0 by
Nakayama’s lemma. 2

Lemma 2.9. Let (R,m) be a noetherian local ring. Let h : M → M ′ be a morphism between
finite free R-modules. Suppose h⊗ idR/m : M ⊗R R/m → M ′ ⊗R R/m is injective. Then h is
injective, and the cokernel of h is a free R-module.

Proof. Denote the kernel, image and cokernel of h by Ker(h), Im(h) and Coker(h) respectively.
Then we have two short exact sequences,

0 → Ker(h) → M → Im(h) → 0 (2)

and
0 → Im(h) → M ′ → Coker(h) → 0. (3)

Since M and M ′ are free R-modules, by taking tensor with R/m we have the exact sequences

0 → Tor1(Im(h), R/m) → Ker(h)⊗R/m → M ⊗R/m → Im(h)⊗R/m → 0

and

0 → Tor1(Coker(h), R/m) → Im(h)⊗R/m → M ′⊗R/m → Coker(h)⊗R/m → 0

where all the tensor and Tor are over R.
Notice that the morphism h⊗ idR/m : M ⊗R R/m → M ′ ⊗R R/m factors as M ⊗R R/m →

Im(h)⊗R/m → M ′⊗R/m. Since h⊗R idR/m is injective and since M ⊗RR/m → Im(h)⊗R/m
is obviously surjective, Im(h)⊗R/m → M ′⊗R/m must be injective. Therefore, we have the
vanishing Tor1(Coker(h), R/m) = 0. Over a noetherian local ring, this means Coker(h) is free.
By short exact sequences (3) and (2), we can conclude Im(h) and Ker(h) are both free. Thus, M
splits as a direct sum of free R-modules Ker(h) and Im(h). Now, since h⊗ idR/m : M⊗RR/m →

M ′ ⊗R R/m is injective, clearly Ker(h) = 0. 2

Remark 2.10. The assertion of Proposition 2.7 is not necessarily true with only the assumption
that E

q
and E′

q
are q-equivalent. This can be seen by taking a zero-complex and a free resolution

of a non-free R-module.

3. Cohomology jump loci of DGLA pairs

In this section we recall the definition of the deformation functor of a DGLA, we define DGLA
pairs and their cohomology jump functors, and we prove Theorem 1.2 on the invariance of the
cohomology jump functors under a change of the DGLA pair.

Firstly, recall the definition of a DGLA over C, for example from [GM88].

Definition 3.1. A DGLA consists of the following set of data:

(i) a graded vector space C =
⊕

i∈NC
i over C;

(ii) a Lie bracket which is bilinear, graded skew-commutative, and satisfies the graded Jacobi
identity, i.e., for any α ∈ Ci, β ∈ Cj and γ ∈ Ck,

[α, β] + (−1)ij [β, α] = 0

and
(−1)ki[α, [β, γ]] + (−1)ij [β, [γ, α]] + (−1)jk[γ, [α, β]] = 0;
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(iii) a family of linear maps, called the differential maps, di : Ci → Ci+1, satisfying di+1di = 0
and the Leibniz rule, i.e., for α ∈ Ci and β ∈ C

d[α, β] = [dα, β] + (−1)i[α, dβ]

where d =
∑
di : C → C.

A homomorphism of DGLAs is a linear map which preserves the grading, Lie bracket, and the
differential maps.

We denote this DGLA by (C, d), or C when there is no risk of confusion.

Definition 3.2. Given a DGLA (C, dC), we define a module over (C, dC) to be the following
set of data.

(i) A graded vector space M =
⊕

i∈NM
i together with a bilinear multiplication map C ×

M → M , (a, ξ) 7→ aξ, such that for any α ∈ Ci and ξ ∈ M j , αξ ∈ M i+j . And furthermore, for
any α ∈ Ci, β ∈ Cj and ζ ∈M , we require

[α, β]ζ = α(βζ)− (−1)ijβ(αζ).

(ii) A family of linear maps diM : M i
→ M i+1 (write dM =

∑
i∈Z d

i
M : M → M), satisfying

di+1
M diM = 0. And we require it to be compatible with the differential on C, i.e., for any α ∈ Ci,

dM (αξ) = (dCα)ξ + (−1)iα(dMξ).

We will call such a module a (C, dC)-module or simply a C-module.

Definition 3.3. A homomorphism of (C, dC)-modules f : (M,dM ) → (N, dN ) is a linear map
f : M → N which satisfies:

(i) f preserves the grading, i.e., f(M i) ⊂ N i;

(ii) f is compatible with multiplication by elements in C, i.e., f(αξ) = αf(ξ), for any α ∈ C
and ξ ∈M ;

(iii) f is compatible with the differentials, i.e., f(dMα) = dNf(α).

Fixing a DGLA (C, dC), the category of C-modules is an abelian category.

Definition 3.4. A DGLA pair is a DGLA (C, dC) together with a (C, dC)-module (M,dM ).
Usually, we write such a pair simply by (C,M). A homomorphism of DGLA pairs g : (C,M) →

(D,N) consists of a map g1 : C → D of DGLA and a C-module homomorphism g2 : M → N ,
considering N as a C-module induced by g1. For q ∈ N ∪ {∞}, we call g a q-equivalence if g1

is 1-equivalent and g2 is q-equivalent. Moreover, we define two DGLA pairs to be of the same
q-homotopy type, if they can be connected by a zig-zag of q-equivalences. Two DGLA pairs have
the same homotopy type if they have the same ∞-homotopy type.

Definition 3.5. Let (C,M) be a DGLA pair. Then (H
q
(C), 0), the cohomology of C with zero

differentials, is a DGLA, and (H
q
(M), 0), the cohomology of M with zero differentials, is an

H
q
(C)-module. We call the DGLA pair (H

q
(C), H

q
(M)) the cohomology DGLA pair of (C,M).

Assumption. From now, for a DGLA pair (C,M) we always assume that M is bounded above
as a complex and Hj(M) is a finite-dimensional C-vector space for every j ∈ Z.

Definition 3.6. We say the DGLA pair (C,M) is q-formal if (C,M) is of the same q-homotopy
type as (H

q
(C), H

q
(M)). A pair is formal if it is ∞-formal.
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Given a DGLA pair, we can abstractly define the space of flat connections and the cohomology
jump loci as functors from ART to SET. We will be mainly interested in the case when these
functors are prorepresentable.

Given a DGLA (C, d) over C together with an Artinian local algebra A, a groupoid C(C,A)
is defined in [GM88]. We recall this definition: C ⊗C A is naturally a DGLA by letting [α⊗ a,
β⊗ b] = [α, β]⊗ ab and d(α⊗ a) = dα⊗ a. Let m be the maximal ideal in A. Then under the
same formula, C⊗Cm is also a DGLA. Since (C⊗Cm)0 = C0⊗Cm is a nilpotent Lie algebra, the
Campbell–Hausdorff multiplication defines a nilpotent Lie group structure on the space C0⊗m.
We denote this Lie group by exp(C0⊗m). Now, an element λ ∈ C0⊗m acts on C1⊗m by

exp(λ) : α 7→ exp(adλ)α+
1− exp(adλ)

adλ
(dλ)

in terms of power series. This is a group action for the group exp(C0⊗m) on C1⊗m.

Definition 3.7. Category C (C;A) is defined to be the category with objects

Obj C (C;A) = {ω ∈ C1 ⊗C m | dω + 1
2 [ω, ω] = 0},

and with the morphisms between two elements ω1, ω2

Morph(ω1, ω2) = {λ ∈ C0⊗m | exp(λ)ω1 = ω2}.

Define the deformation functor to be the functor

Def(C) : A 7→ Iso C (C;A)

from ART to SET. Here we denote the set of isomorphism classes of a category by Iso.

Definition 3.8. Given any ω ∈ Obj C (C;A) and a C-module M , we can associate an Aomoto
complex to it:

(M ⊗C A, dω) (4)

with

dω := d⊗ idA + ω.

The condition dω + 1
2 [ω, ω] = 0 implies dω ◦ dω = 0.

Lemma 3.9. The Aomoto complex (M ⊗C A, dω) has finitely generated cohomology over A.

Proof. The finite decreasing filtration M ⊗Cm
s of M ⊗C A is compatible with dω. Consider the

associated spectral sequence

Es,t1 = Hs+t(M ⊗C m
s/ms+1, dω)⇒ Hs+t(M ⊗C A, dω),

which degenerates after finitely many pages. It is enough to show that Es,t1 are finitely generated.
However, this follows from the fact that dω = d⊗ idA on M ⊗ms/ms+1, together with our
assumption that (M,d) has finitely generated cohomology. 2

Proposition 3.10. Given any λ ∈ C0⊗m, the morphism exp(λ) : ω1 → ω2 in C (C;A) induces
functorially a morphism between complexes (M ⊗A, dω1) → (M ⊗A, dω2).
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Proof. We need to show the commutativity of the following diagram.

M i⊗A
dω1= dM ⊗ idA + ω1 //

exp(λ)
��

M i+1⊗A
exp(λ)
��

M i⊗A
dω2= dM ⊗ idA + exp(λ)(ω1)

//M i+1⊗A
A direct computation reduces the commutativity to the following lemma. 2

Lemma 3.11. Under the above notation, for any ξ ∈M ⊗A, the following equations hold:

exp(λ)(ω1ξ) = (exp(adλ)ω1) exp(λ)ξ (5)

exp(λ) dξ = d(exp(λ)ξ) +

(
1− exp(adλ)

adλ
dλ

)
exp(λ)ξ. (6)

Proof of Lemma. The equation (5) is equivalent with the usual relation eλ ◦ ω1 ◦ e−λ = e[λ,−]ω1.
Let us recall the proof. We expand the right-hand side of (5) and calculate the coefficient of term
λpω1λ

qξ. It is equal to

q∑
i=0

(−1)q−i
1

i!

1

(p+ q − i)!

(
p+ q − i

p

)
=

q∑
i=0

(−1)q−i
1

i!p!(q − i)!

= (−1)q
1

p!q!

q∑
i=0

(
(−1)i

(
p

i

))
.

The last sum is zero unless q = 0, and in this case, the coefficient is 1/p!. This is exactly the
coefficient of λpω1ξ on the left-hand side of the equation.

To show (6), by comparing the coefficients of the term λp(dλ)λqξ, we are led to show the
following equality,

1

(p+ q + 1)!
=

q∑
i=0

(−1)p−i

i!(p+ q − i+ 1)!

(
p+ q − i

p

)
and this is equivalent to

p!q!

(p+ q + 1)!
=

q∑
i=0

(−1)q−i

p+ 1 + q − i

(
q

i

)
.

Now, the right-hand side is equal to
∫ 1

0 (1− t)qtp dt. And by induction on q, we can easily show
the integration is equal to p!q!/(p+ q + 1)!.

Definition 3.12. Let (C,M) be a DGLA pair. We define C i
k(C,M ;A) to be the full subcategory

of C (C;A) consisting of the objects ω ∈ Obj C (C;A) such that J ik(M ⊗CA, dω) = 0. This is well
defined since (M ⊗CA, dω) is a bounded-above complex with finitely generated cohomology by
Lemma 3.9.

Corollary 3.13. Under the notation of the previous definition, if C i
k(C,M ;A) contains an

object ω of C (C;A), then C i
k(C,M ;A) contains the isomorphism class of ω in C (C;A). In other

words, if ω ∈ Obj C i
k(C,M ;A), then exp(λ)(ω) ∈ Obj C i

k(C,M ;A) for any λ ∈ exp(C0⊗ m).

Proof. Since exp(λ) has an inverse exp(−λ), Proposition 3.10 implies that (M ⊗A, dω) is
isomorphic to (M ⊗A, dω′), where ω′ = exp(λ)(ω). Thus, for any λ ∈ exp(C0⊗m), ω ∈Obj C i

k(C,
M ;A) is equivalent to exp(λ)(ω) ∈ Obj C i

k(C,M ;A). 2
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Lemma 3.14. Let (C,M) be a DGLA pair, and let p : A → A′ be a local ring homomorphism
of Artinian local algebras. For any ω ∈ Obj C i

k(C,M ;A), the image of ω under p∗ : C (C;A) →

C (C;A′) is contained in Obj C i
k(C,M ;A′).

Proof. Denote by ω′ the image of ω under p∗. Since ω ∈ Obj C i
k(C,M ;A), J ik(M ⊗CA, dω) = 0.

By definition,
(M ⊗CA

′, dω′) = (M ⊗CA, dω)⊗A A′.
Since (M ⊗CA, dω) is a complex of flat A-modules, by Corollary 2.4

J ik((M ⊗CA, dω)⊗A A′) = J ik(M ⊗CA, dω)⊗A A′

and hence
J ik(M ⊗CA

′, dω′) = J ik(M ⊗CA, dω)⊗A A′ = 0.

Therefore, ω′ ∈ Obj C i
k(C,M ;A′) 2

Definition 3.15. The cohomology jump functor associated to a DGLA pair (C,M) is defined
to be the functor

Defik(C,M) : A 7→ Iso C i
k(C,M ;A)

from ART to SET. By the previous lemma, Defik(C,M) is a subfunctor of Def(C).

Theorem 3.16 (Theorem 1.2). The cohomology jump functor Defik(C,M) only depends on the
i-homotopy type of (C,M). More precisely, if a morphism of DGLA pairs g : (C,M) → (D,N)
is an i-equivalence, then we have that the induced transformation on functors g∗ : Defik(C,
M) → Defik(D,N) is an isomorphism.

Proof. Given Artinian local algebra A, we need to show the following two conditions are
equivalent for any ω ∈ Obj C (C;A):

(i) ω ∈ Obj C i
k(C,M ;A);

(ii) g1∗(ω) ∈ Obj C i
k(D,N ;A);

where g = (g1, g2). According to Proposition 2.7, it is sufficient to show that the two complexes
(M⊗CA, dω) and (N⊗CA, dg1(ω)) are i-equivalent. Now this follows from the argument of [DP12,
Theorem 3.7]: our hypothesis onH

q
(g2) implies that the map between the E1 terms of the spectral

sequences of the two complexes formed as in the proof of Lemma 3.9 is an isomorphism for q6 i
and a monomorphism for q = i+ 1, and this suffices. 2

4. Resonance varieties of DGLA pairs

Let (C,M) be a DGLA pair. In this section we consider a nice description of Def(C) and
Defik(C,M) in terms of the space of flat connections and the resonance varieties which can be
defined when (C,M) satisfies some finiteness conditions.

Definition 4.1. The space of flat connections of C is

F(C) = Obj C (C;C) = {ω ∈ C1 | dω + 1
2 [ω, ω] = 0}.

When dimC1 <∞, F(C) is an affine scheme of finite type over C. The space of flat connections
of H

q
(C) is called the quadratic cone of C,

Q(C) = {η ∈ H1(C) | [η, η] = 0}.
Since by assumption dimH1(C) <∞, Q(C) is an affine scheme of finite type over C.
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Suppose [C0, C1] = 0, i.e., [α, β] = 0 for any α ∈ C0 and β ∈ C1. Then by definition, the
action of C0 on C1 via exp is trivial. Thus, we have the following lemma.

Lemma 4.2. Let C be a DGLA with [C0, C1] = 0 and dimC1 < ∞. Then Def(C) is
prorepresented by F(C)(0).

Corollary 4.3. Let C be a DGLA with [H0(C), H1(C)] = 0. If C is 1-formal, then Def(C) is
prorepresented by Q(C)(0).

Proof. By Theorem 1.1, Def(C) is naturally isomorphic to Def(H
q
(C)). The last functor is

prorepresented by F(H
q
(C))(0) = Q(C)(0). 2

Definition 4.4. Let (C,M) be a DGLA pair with dimC1 <∞. There is a tautological section
ζ = ζF(C) of the sheaf F(C)⊗COF(C). Hence there is a universal complex on F(C),

(M ⊗COF(C), dζ = dM ⊗ idOF(C)
+ ζ),

which interpolates point-wise all the complexes as in (4) with A = C. Define the resonance
variety Rik(C,M) to be a closed subscheme of F(C) of finite type over C defined by the
ideal J ik(M ⊗COF(C), dζ). This is well defined as long as the complex (M ⊗COF(C), dζ) has
finitely generated cohomology, so, in particular, when M i are finite-dimensional. The cohomology
resonance variety hRik(C,M) = Rik(H

q
(C), H

q
(M)) is always well defined, and admits a

presentation in terms of linear algebra: it is the subscheme of Q(C) defined by the cohomology
jump ideal J ik of the complex (H

q
(M)⊗COQ(C), ζQ(C)), where ζQ(C) is the tautological section

of Q(C)⊗COQ(C).

By Corollary 2.5, we have the following lemma.

Lemma 4.5. Set-theoretically,

Rik(C,M) = {ω ∈ F(C) | dimH i(M,dω = dM + ω) > k}

when well defined, and

hRik(C,M) = {η ∈ Q(C) | dimH i(H
q
(M), η) > k}.

By Lemma 4.2 and the definitions, we have the following lemma.

Lemma 4.6. Let (C,M) be a DGLA pair with [C0, C1] = 0, dimC1 <∞, and dimM i <∞ for
i 6 q for some q > 1. Then Defik(C,M) is prorepresented by Rik(C,M)(0) for i 6 q.

Hence, together with Corollary 4.3 and by definitions we have the following corollary.

Corollary 4.7. Let (C,M) be a q-formal DGLA pair with [H0(C), H1(C)] = 0, q > 1. Then
Defik(C,M) is prorepresented by hRik(C,M)(0) for i 6 q.

5. Augmented DGLA pairs

Definition 5.1. Let C be a DGLA, and let g be a Lie Algebra. We can regard g as a
DGLA concentrating on degree zero. An augmentation map is a DGLA map ε : C → g. The
augmentation ideal of ε is defined to be the kernel of ε, which is clearly a DGLA too. Denote
the augmentation ideal of ε by C0. Moreover, suppose M is a C-module. Then naturally, M is
also a C0-module. Define the deformation functor of the augmented DGLA (C; ε) by

Def(C; ε)
def
= Def(C0),

1512

https://doi.org/10.1112/S0010437X14007970 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007970


Cohomology jump loci of DGLA

and the deformation functor of the augmented DGLA pair (C,M ; ε) by

Def(C,M ; ε)
def
= Def(C0,M).

Theorem 5.2 [GM88, Theorem 3.5]. Under the above notations, suppose C is 1-formal, and
suppose the degree zero part of ε, ε0 : C0

→ g is surjective. Moreover, suppose the restriction
of ε0 to H0(C) is injective. Then Def(C; ε) is prorepresented by the formal scheme of Q(C) ×
g/ε(H0(C)) at the origin.

We will generalize the theorem to DGLA pairs.

Theorem 5.3. Let (C,M) be a DGLA pair, and let ε : C → g be an augmentation map. Suppose
all the assumptions in the previous theorem hold, and moreover (C,M) is q-formal, q > 1. Then
for i 6 q, Defik(C,M ; ε) is prorepresented by the formal scheme of hRik(C,M)× g/ε(H0(C)) at
the origin. Furthermore, we have the following commutative diagram of natural transformations
of functors from ART to SET.

Defik(C,M ; ε) //

��

(hRik(C,M)× g/ε(H0(C)))(0)

��
Def(C; ε) // (Q(C)× g/ε(H0(C)))(0)

(7)

Proof. This essentially follows from the previous theorem of Goldman–Millson and Theorem 1.2.
According to [GM88, 3.9], Def(C; ε) associates to every Artinian local algebra A the isomorphism
classes of the transformation groupoid C (C;A) ./ exp(g⊗m), where m is the maximal ideal of A.
Recall that in Definition 3.7, we defined C (C;A) to be the transformation groupoid with objects

Obj C (C;A) = {ω ∈ C1 ⊗C m | dω + 1
2 [ω, ω] = 0},

and the morphisms are defined by the action of the nilpotent group exp(C0⊗m). The
augmentation map induces a map of Lie groups exp(C0⊗m) → exp(g⊗m). The objects in
C (C;A) ./ exp(g⊗m) are defined to be the Cartesian product of sets Obj C (C;A)×exp(g⊗m),
and the morphisms are defined by the diagonal group action of exp(C0⊗m).

By definition, Defik(C,M ; ε) is the subfunctor which associates to an Artinian local algebra
A the isomorphism classes of the transformation groupoid C i

k(C,M ;A) ./ exp(g⊗m). Now,
by [GM88, Lemma 3.8], we have an equivalence of groupoids

C i
k(C,M ;A) ./ exp(g⊗m) ' C i

k(H
q
(C), H

q
(M);A) ./ exp(g⊗m).

One can easily check that the functor A 7→ Iso C i
k(H

q
(C), H

q
(M);A) ./ exp(g⊗m) from ART to

SET is prorepresented by the formal scheme (hRik(C,M)× g/ε(H0(C)))(0), and the diagram (7)
commutes. 2

6. Holomorphic vector bundles

In this and the next few sections we study concrete deformation problems with cohomology
constraints. To a fixed setup consisting of a moduli space M with a fixed object ρ and
cohomology-defined strata V ik for all i and k, we attach a DGLA pair (C,M) such that the
formal germs (M(ρ), (V ik)(ρ)) prorepresent (Def(C),Defik(C,M)) for all i and k. We also try to
find when the right-hand side admits further simplifications via formality, allowing a description
of the left-hand side in terms of linear algebra.
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Let X be a compact Kähler manifold. Fix n and p. Fix a poly-stable holomorphic vector
bundle, i.e. locally free OX -module, F on X of any rank with vanishing Chern classes. We
consider the following deformation problem with cohomology constraints:

(M, ρ,Vqk) = (M(X,n), E,Vpqk (F )),

whereM =M(X,n) is the moduli space of rank n stable holomorphic vector bundles on X with
vanishing Chern classes, and inM one defines point-wise the Hodge cohomology jump loci with
respect to F to be

Vpqk (F ) = {E ∈M | dimHq(X,E ⊗OX F ⊗OX Ωp
X) > k}. (8)

Here, M is an analytic scheme [LO87]. The scheme structure of Vpqk (F ) is defined locally as
follows. Over a small open subset U of M, there is a vector bundle E on X ×U which is locally
the Kuranishi family of vector bundles. Denote by p1 and p2 the projections from X × U to its
first and second factor.

Definition 6.1. Locally, as a subscheme of U , Vpqk (F ) is defined by the ideal

Jqk(Γ(U,Rp2∗(E ⊗p−1
1 OX

p−1
1 (F ⊗OX Ωp

X)))).

Since locally two Kuranishi families are isomorphic to each other, the subschemes patch
together, and hence Vpqk (F ) is a well-defined closed subscheme of M. By base change and the
property of determinantal ideals, one can easily check that the closed points of Vpqk satisfy (8).

Definition 6.2. For a locally free sheaf F on X, denote the Dolbeault complex of sheaves of
F ⊗OX Ωp

X by

(Ap, qDol(F), ∂̄)
def
= (F ⊗OX Ωp,•

X , ∂̄).

The corresponding complex of global sections on X, which we will call the Dolbeault complex of
F ⊗OX Ωp

X , will be denoted by

(Ap,
q

Dol(F), ∂̄)
def
= (Γ(X,F ⊗OX Ωp,•

X ), ∂̄).

Remark 6.3. It is a standard fact (cf. [GM88], [Man09]) that the DGLA (A0, q
Dol(End(E)), ∂̄)

controls the deformation theory of M at E. It means that the deformation functor
Def(A0, q

Dol(End(E))) is prorepresented by the formal scheme M(E). This is a particular case
of a more general result of [FIM12] which states that for any complex manifold or complex
algebraic variety X, the infinitesimal deformations of an OX -coherent sheaf E are controlled
by the DGLA of global sections Γ(X,A q

(End
q
(Ẽ

q
))) of any acyclic resolution A q

of the sheaf of
DGLAs End

q
(Ẽ

q
) of a locally free resolution Ẽ

q
of E. If X is smooth, then A q

can be chosen to
be the Dolbeault resolution. Note that for this type of statement it does not matter if a moduli
space can be constructed. Note also that to have a meaningful infinitesimal deformation problem
with cohomology constraints as in (8), we must ask for X to be a compact manifold or a proper
algebraic variety.

Suppose E ∈ Vpqk (F ). Then the DGLA pair

(A0, q
Dol(End(E)), Ap,

q
Dol(E⊗F ))

controls the deformation theory of Vpqk (F ) at E, where the DGLA pair structure comes from the
usual map End(E)⊗E → E.
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Theorem 6.4. Let X be a compact Kähler manifold. For any E ∈M, the natural isomorphism
of functors from ART to SET

M(E)
∼= Def(A0, q

Dol(End(E)))

induces for any p, q, k ∈ N a natural isomorphism of subfunctors

Vpqk (F )(E)
∼= Defqk(A

0, q
Dol(End(E)), Ap,

q
Dol(E⊗F )).

Proof. Let A be an Artinian local algebra. Given any s ∈ M(E)(A) = Hom(Spec(A),M(E)),

denote its image in Def(A0, q
Dol(End(E)))(A) by ω. We need to show that s ∈ Vpqk (F )(E)(A) if and

only if ω ∈ Defqk(A
0, q
Dol(End(E)), Ap,

q
Dol(E⊗F ))(A). As in Definition 3.12, the complex associated

to ω is (Ap,
q

Dol(E⊗F )⊗CA, dω).

Denote by Es the pull-back of the Kuranishi family E by the composition Spec(A)
s

→

M(E) → M. Then Es is a vector bundle on XA
def
= X ×Spec(C) Spec(A). Denote the second

projection by p2 : XA → Spec(A). By the construction (cf. [GM88, § 6], [Wan12, Proposition
3.4]), (Ap,

q
Dol(E⊗F )⊗CA, dω) is equal to the Dolbeault complex of the vector bundle Es⊗p−1

1 OX
p−1

1 (F ⊗OX Ωp
X), and hence it is quasi-isomorphic to Rp2∗(Es ⊗p−1

1 OX
p−1

1 (F ⊗OX Ωp
X)) as

complexes of A-modules. Therefore,

Jqk(Ap,
q

Dol(E⊗F )⊗CA, dω) = Jqk(Rp2∗(Es ⊗p−1
1 OX

p−1
1 (F ⊗OX Ωp

X))) (9)

as ideals of A.
Since taking determinantal ideals commutes with base change,

Jqk(Rp2∗(Es ⊗p−1
1 OX

p−1
1 (F ⊗OX Ωp

X))) = Jqk(Rp2∗(E ⊗p−1
1 OX

p−1
1 (F ⊗OX Ωp

X)))⊗OU A, (10)

where U is an open subset of M where the Kuranishi family is defined, and we use p1, p2

for projections to first and second factors of the products X ×SpecC Spec(A) and X ×SpecC U ,
respectively, on each side of the equality.

By definition, s ∈ Vpqk (F )(E)(A) if and only if

Jqk(Rp2∗(E ⊗p−1
1 OX

p−1
1 F ⊗p−1

1 OX
p−1

1 Ωp
X))⊗OU A = 0.

On the other hand, ω ∈ Defqk(A
0, q
Dol(End(E)), Ap,

q
Dol(E ⊗ F ))(A) if and only if

Jqk(Ap,
q

Dol(E⊗F )⊗CA, dω) = 0.

We obtain that s ∈ Vpqk (F )(E)(A) if and only if ω ∈ Defqk(A
0, q
Dol(End(E)), Ap,

q
Dol(E⊗F ))(A) by (9)

and (10). 2

Remark 6.5. If we replace M(E) and Vpqk (F )(E) by the abstract deformation functors, the
theorem still holds for any compact complex manifold X and any holomorphic vector bundles
E and F , cf. also Remark 6.3. For the purpose of this paper, we focus on the case leading
to formality of the DGLA pairs. This will require the Kähler and the vanishing chern classes
assumptions.

Question 6.6. One can ask a general question, in light of Remarks 6.3 and 6.5: are the
infinitesimal deformations of a bounded complex of OX -coherent sheaves E

q
on a compact

complex manifold, or smooth complex algebraic variety X, with the hypercohomology constraint

dimCHq(X,E
q⊗F q⊗Ωp

X) > k,
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for a bounded-above complex of OX -coherent sheaves F
q
, governed by the DGLA pair

(A0, q
Dol(End

q
(Ẽ

q
)), Ap,

q
Dol(Tot

q
(Ẽ

q⊗ F̃ q
))),

where Ẽ, F̃ are locally free resolutions of E and F , and Tot
q
is the total complex?

The next formality result will provide a concrete description of the formal scheme of the
cohomology jump loci via linear algebra.

Theorem 6.7 [DGMS75]. Let X be a compact Kähler manifold. For any E ∈ M, the DGLA
pair

(A0, q
Dol(End(E)), Ap,

q
Dol(E⊗F ))

is formal.

Proof. Since both E and F are poly-stable and are of vanishing Chern classes, there exist flat
unitary metrics on both E and F , according to [UY86]. Hence E⊗F admits a flat unitary
metric too. The Chern connection on E ⊗ F induced by the flat unitary metric is flat. Similarly,
on End(E) there is also a flat unitary metric, whose Chern connection is also flat. Denote
the (1, 0) part of the flat connections by ∂. Denote the subcomplexes of A0, q

Dol(End(E)) and

Ap,
q

Dol(E⊗F ) consisting of ∂-closed forms by KA0, q
Dol(End(E)) and KAp,

q
Dol(E⊗F ), respectively.

Clearly, (KA0, q
Dol(End(E)),KAp,

q
Dol(E⊗F )) is a sub-DGLA pair of (A0, q

Dol(End(E)), Ap,
q

Dol(E⊗F )),
i.e., the inclusion map

(KA0, q
Dol(End(E)),KAp,

q
Dol(E⊗F )) → (A0, q

Dol(End(E)), Ap,
q

Dol(E⊗F )) (11)

is a map of DGLA pairs. On the other hand, thanks to the existence of flat unitary metrics,
Hq(X, End(E)) can be computed by ∂-closed End(E)-valued (0, q)-forms modulo ∂-exact forms,
and similarly Hq(X,E⊗F ⊗Ωp) can be computed by ∂-closed E⊗F -valued (p, q)-forms modulo
∂-exact forms. Hence, there is a natural surjective map of DGLA pairs

(KA0, q
Dol(End(E)),KAp,

q
Dol(E⊗F )) → (H

q
(A0, q

Dol(End(E)), H
q
(Ap,

q
Dol(E⊗F )))). (12)

As in [Sim92, Lemma 2.2], one can easily show that the cohomology classes of KA0, q
Dol(End(E))

and KAp,
q

Dol(E⊗F ) are represented by harmonic forms. Therefore, the two maps (11) and (12)

are both ∞-equivalent maps. Thus, (A0, q
Dol(End(E)), Ap,

q
Dol(E⊗F )) is formal. 2

Remark 6.8. Let us spell out what the quadratic cone and the cohomology resonance varieties
are in this case, as defined in § 4. The quadratic cone Q of the DGLA A0, q

Dol(End(E)) will be
denoted Q(E) and is

Q(E) = {η ∈ H1(X, End(E)) | η ∧ η = 0 ∈ H2(X, End(E))}.

The cohomology resonance variety hRqk(A
0, q
Dol(End(E)), Ap,

q
Dol(E⊗F )) will be denoted byRpqk (E;F )

to simplify the notation. Point-wise,

Rpqk (E;F ) = {η ∈ Q(E) | dimHq(H
q
(X,E ⊗ F ⊗Ωp

X), η ∧ ·) > k},

and its scheme structure is defined using the cohomology jump ideal of the universal cohomology
Aomoto complex as in Definition 4.4.

It was shown by Nadel [Nad88] and Goldman and Millson [GM88] that there is an
isomorphism of formal schemes M(E)

∼= Q(E)(0), and thus M has quadratic algebraic
singularities. The proof follows easily from Corollary 4.3. We generalize this as follows.
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Corollary 6.9 (Theorem 1.3). The isomorphism of formal schemes

M(E)
∼= Q(E)(0)

induces for any p, q, k ∈ N an isomorphism

Vpqk (F )(E)
∼= Rpqk (E;F )(0).

Proof. Using Yoneda’s lemma, one can easily see that if two formal schemes prorepresent the
same functor from ART to SET, then the two formal schemes are isomorphic. Thus, the corollary
is a direct consequence of Proposition 6.7, Corollary 4.7 and Proposition 6.4. The only thing we
need to check is that

[H0(A0, q
Dol(End(E))), H1(A0, q

Dol(End(E)))] = 0. (13)

Since E is stable, H0(A0, q
Dol(End(E))) = H0(X, End(E)) = C · idE . Clearly, [idE ,−] = 0. 2

Remark 6.10. If E is only poly-stable, then (13) is not true in general. So for the whole
moduli space of semi-stable vector bundles we do not have a nice local description of the Hodge
cohomology jump loci as in the above corollary. In fact, the moduli space itself may not have
quadratic singularity at some points, which are semi-stable but not stable.

Corollary 6.11. Suppose k = dimHq(X,E⊗F ⊗Ωp
X). Then Vpqk (F ) has quadratic algebraic

singularities at E.

Proof. When k = dimHq(X,E⊗F ⊗Ωp
X), the resonance variety Rpqk (E;F ) is a quadratic cone

in H1(X, End(E)). Indeed, Rpqk (E;F ) is defined by a determinantal ideal of 1 × 1 minors, so
Rpqk (E;F ) is isomorphic to the intersection of the quadratic cone Q(E) and a linear subspace.
Now, it follows from the previous corollary that Vpqk (F )(E) is isomorphic to the formal scheme
of a quadratic cone at the origin. 2

Remark 6.12. Corollary 6.11 was shown for F⊗Ωp
X =OX by Martinengo [Mar09] and the second

author [Wan12].

Remark 6.13. The case when n = 1 and F = OX of Corollary 6.9 is due to Green and
Lazarsfeld [GL87, GL91] and phrased in terms of their derived complex. This complex is the
universal complex used by us to define cohomology resonance varieties in Definition 4.4. In this
case, M = Picτ (X) is locally isomorphic via the inverse of the exponential map with the cone
Q(E) which is the whole H1(X, End(E)) = H1(X,OX). As in [Wan12], by choosing E to be a
smooth point on the cohomology jump loci, the proof of Corollary 6.11 then implies a result
in [Wan12] that Vpqk are a union of translates of subtori (this has been generalized in [BW12]).
It also implies the next corollary.

Corollary 6.14 ([GL91], [Man07, Theorem 4.2]). Assume n = 1, that is, M = Picτ (X). If E
is a singular point of Vpqk (F ), then E ∈ Vpqk+1(F ).

7. Representations of π1(X) and local systems

Let X be a finite-type CW-complex with base point x ∈ X. Fix n. Let

R(X,n) = Hom(π1(X,x),GL(n,C)).

Since π1(X,x) is finitely presented, R(X,n) is an algebraic scheme.

1517

https://doi.org/10.1112/S0010437X14007970 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007970


N. Budur and B. Wang

Fix W a local system of any rank on X. We consider now the deformation problem with
cohomology constraints

(R(X,n), ρ, Ṽ ik(W ))

where the cohomology jump loci are defined as

Ṽ ik(W ) = {ρ ∈ R(X,n) | dimH i(X,Lρ ⊗C W ) > k},
where Lρ is the rank n local system on X associated to the representation ρ.

One can give Ṽ ik(W ) a closed subscheme structure by the universal local system L on X ×
R(X,n) as follows. Here L is actually a local system of R-modules on X, where R =H0(OR(X,n)),
such that L ⊗R (R/mρ) = Lρ, where mρ is the maximal ideal of the closed point ρ in R. Let
a : X → pt be the map from X to a point. Then Ra∗(L ⊗C W ) represents a bounded complex
of free R-modules with finitely generated cohomology. Thus we can define the closed subscheme
Ṽ ik(W ) of R(X,n) = SpecR by the ideal

J ik(Ra∗(L ⊗C W )).

By base change and Corollary 2.5, the closed points of Ṽ ik(W ) are the representations ρ with
dimH i(X,Lρ ⊗C W ) > k. Equivalently, one can use the definition of the cohomology of local
systems in terms of twisted cochain complexes on the universal covering of X to define the
scheme structure on Ṽ ik(W ). The cohomology jump loci for finite CW-complexes can be rather
arbitrary [Wan13b].

Assume from now on that X is a smooth manifold of the homotopy type of a finite CW-
complex.

Definition 7.1. For a local system F on X, let (A q
DR(F), d) be the de Rham complex of sheaves

of F-valued C∞-forms on X. The corresponding complex of global sections on X, which we will
call the de Rham complex of F , will be denoted A

q
DR(F).

Let g = End(Lρ)|x, and let the DGLA augmentation map ε : A
q

DR(End(Lρ)) → g be the
restriction map. Let ρ ∈ R(X,n). Goldman and Millson [GM88] showed that the formal scheme
of R(X,n) at ρ prorepresents the functor Def(A

q
DR(End(Lρ)); ε). See § 5 for the definition of this

functor. We generalize this to Ṽ ik(W ), noting first that

(A
q

DR(End(Lρ)), A
q

DR(Lρ ⊗C W ); ε)

is naturally an augmented DGLA pair.

Theorem 7.2. Let X be a smooth manifold of the homotopy type of a finite CW-complex. The
natural isomorphism

R(X,n)(ρ)
∼= Def(A

q
DR(End(Lρ)); ε)

induces for any i, k ∈ N a natural isomorphism of subfunctors,

(Ṽ ik(W ))(ρ)
∼= Defik(A

q
DR(End(Lρ)), A

q
DR(Lρ ⊗C W ); ε).

Proof. This is similar to the proof of Theorem 6.4. Let A be an Artinian local algebra. Given any
s : SpecA → R(X,n)(ρ), denote its image in Def(A

q
DR(End(Lρ)); ε) by ω. Let Ls be the induced

A-local system L ⊗R A on X. Then we have that (A
q

DR(Lρ ⊗C W ) ⊗C A, dω) is the de Rham
complex of the A-local system Ls⊗CW on X (cf. [GM88, § 6]). Thus it is quasi-isomorphic with
Ra∗(Ls ⊗C W ) as complexes of A-modules. So

J ik(A
q

DR(Lρ ⊗C W )⊗C A, dω) = J ik(Ra∗(Ls ⊗C W )),

which in turn equals J ik(Ra∗(L ⊗C W ))⊗R A by Corollary 2.4. 2
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Remark 7.3. This theorem generalizes a result of Dimca and Papadima [DP12] who proved it
for the reduced structure of the cohomology jump loci at the trivial representation, that is, for
the germ of (Ṽ ik)red at 1. In [DP12], X is allowed to be a connected CW-complex of finite type
by replacing the de Rham complex with Sullivan’s de Rham complex of piecewise C∞ forms. For
simplicity, we opted to leave out this topological refinement.

Along with representations of the fundamental group, let us consider the closely-related
deformation problem for the associated local systems. The relation at the level of deformations
between representations (i.e. local systems with a frame at a fixed point) and local systems is
a particular case of the relation between the deformation functors of an augmented DGLA pair
and those of the DGLA pair itself; see Theorem 5.3.

For now, the assumptions are the same: X is a smooth manifold of the homotopy type of a
finite CW-complex and W is a local system on X. We consider the deformation problem with
cohomology constraints

(MB =M(X,n), L,V ik(W )),

where MB =MB(X,n) is the moduli space of irreducible rank n local systems on X and

V ik(W ) = {L ∈MB | dimCH
i(X,L⊗C W ) > k}.

The natural subscheme structure of V ik(W ) in MB is defined as follows: GL(n,C) acts on
R(X,n) by conjugation. Clearly these actions preserve all the cohomology jump loci Ṽ ik(W )
of representations. Since MB is an open subset of the GIT quotient of R(X,n) by GL(n,C),
V ik(W ) can be defined as the intersection ofMB and the image of Ṽ ik(W ) under the GIT quotient
map.

The argument in § 6 works similarly for moduli spaces of local systems. Since the proofs are
essentially the same, we only state the results.

Let L be in MB. Then (A
q

DR(End(L)), A
q

DR(L⊗W )) is naturally a DGLA pair. It is a
standard fact that the deformation functor Def(A

q
DR(End(L))) is prorepresented by the formal

scheme (MB)(L).

Theorem 7.4. Let X be a smooth manifold of the homotopy type of a finite CW-complex. The
natural isomorphism of functors

(MB)(L)
∼= Def(A

q
DR(End(L)))

induces for any i, k ∈ N a natural isomorphism of subfunctors

V ik(W )(L)
∼= Defik(A

q
DR(End(L)), A

q
DR(L⊗W )).

In this last result, the condition of irreducibility of the local system can be removed if we
replace (MB)(L) and V ik(W )(L) by the abstract deformation functors, cf. Remark 6.5. However,
we are again focusing on the case leading to formality, for which at least a semi-simplicity
condition is crucial. Irreducibility will be used to further simplify the answer of the deformation
problem in terms of resonance varieties.

Theorem 7.5. Let X be a compact Kähler manifold, L ∈MB, and let W be a semi-simple local
system on X. Then the DGLA pair (A

q
DR(End(L)), A

q
DR(L⊗W )) is formal.

Proof. The proof is essentially the same as the proof of Theorem 6.7, except here we need to use
the harmonic metric on the flat bundle in the sense of [Sim92] instead of the flat unitary metric
as before. 2
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In the situation of Theorem 7.5, as in Remark 6.8, the quadratic cone of A
q

DR(End(L)) is

Q(L) = {η ∈ H1(X, End(L)) | η ∧ η = 0 ∈ H2(X, End(L))},

and the cohomology resonance varieties of the DGLA pair are

Rik(L;W ) = {η ∈ Q(L) | dimH i(H
q
(X,L⊗W ), η ∧ ·) > k},

with the scheme structure of Rik(L;W ) defined using the universal Aomoto complex, as in
Definition 4.4. The condition on the irreducibility of L, as opposed to just semi-simplicity, is
now used to derive the analog of Corollary 6.9 for local systems with a similar proof.

Corollary 7.6 (Theorem 1.4). Let X be a compact Kähler manifold, L ∈ MB, and let W be
a semi-simple local system on X. The isomorphism of formal schemes

(MB)(L)
∼= Q(L)(0)

induces for any i, k ∈ N an isomorphism

V ik(W )(L)
∼= Rik(L;W )(0).

The analogs of Corollaries 6.11 and 6.14 also hold.

Remark 7.7. Corollary 7.6 for rank one local systems E and W = CX also follows from the strong
linearity theorem of Popa–Schnell, namely [PS13, Theorem 3.7]. In fact, our approach gives a
different proof of the strong linearity theorem, at least of the fact that the two complexes that
appeared in [PS13, Theorem 3.7] are quasi-isomorphic (in the derived category) after restricting
to the formal neighborhood of the origin. One can argue as follows. For an Artinian local algebra
A and a map from Spec(A) to the formal neighborhood, one can restrict the two complexes
in [PS13, Theorem 3.7] to Spec(A). After the restriction, the two complexes can be connected
to another one via a zig-zag using the proof of Theorem 3.16 and the proof of Theorem 6.7. The
two maps in the zig-zag are quasi-isomorphisms. Since the zig-zag is canonical, it allows us to
take inverse limit for all such A. After taking limit, we obtain two quasi-isomorphisms which
connect the two complexes on the formal neighborhood of origin. Note that the proof of [PS13,
Theorem 3.7] gives a stronger statement: the quasi-isomorphism is obtained by one single map.
The proof we sketched gives that the quasi-isomorphism is obtained by one zig-zag. However,
this suffices for the application to cohomology jump loci.

Now, coming back to representations, by Theorems 5.3 and 7.5 we have the following
corollary.

Corollary 7.8. Let X be a compact Kähler manifold. Let ρ ∈ R(X,n) be a semi-simple
representation, and let W be a semi-simple local system. Then there is an isomorphism of formal
schemes

Ṽ ik(W )(ρ)
∼= (Rik(Lρ,W )× g/h)(0)

where h = ε(H0(X, End(Lρ))).

Proof. To apply Theorem 5.3, we only need to check the assumptions in Theorem 5.2. It is
obvious that A0

DR(End(Lρ)) → End(Lρ)|x is surjective. Since ρ is semi-simple, or equivalently
Lρ is a semi-simple local system, we can assume it splits into a direct sum of simple local
systems Lρ =

⊕
j∈J Lj . Then H0(A

q
DR(End(Lρ))) is generated by idLj , j ∈ J . Therefore,

ε0 : H0(A
q

DR(End(Lρ))) → End(Lρ)|x is injective. 2
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We can give another equivalent description of the cohomology resonance variety Rik(Lρ,W )
and the affine space g/h. It is well known that the tangent space of R(X,n) at the point ρ is
isomorphic to the vector space of 1-cocycles Z1(π1(X), gl(n,C)ad ρ), see [GM88]. Moreover, we
have the following isomorphism,

Z1(π1(X), gl(n,C)ad ρ)/B
1(π1(X), gl(n,C)ad ρ) ∼= H1(X, End(Lρ)). (14)

In fact, one can easily check that B1(π1(X), gl(n,C)ad ρ) ∼= g/h. For 1-cocycle η in the vector
space Z1(π1(X), gl(n,C)ad ρ), denote the image in H1(X, End(Lρ)) under the above isomorphism
by η̄.

Definition 7.9. Define the quadratic cone of ρ to be

Q(ρ) = {η ∈ Z1(π1(X), gl(n,C)ad ρ) | η̄ ∧ η̄ = 0 ∈ H2(X, End(Lρ))}.
Define the twisted resonance varieties of ρ to be

Rik(ρ,W ) = {η ∈ Q(ρ) | dimH i(H
q
(X,Lρ ⊗C W ), η̄ ∧ ·) > k}.

As in Definition 6.1, using the universal family, we can give Rik(ρ,W ) a subscheme structure.

Simpson [Sim92] showed that there is an isomorphism of formal schemes R(X,n)(ρ)
∼=Q(ρ)(0)

for a semi-simple representation ρ. We generalize this to Ṽ ik(W )(ρ). First, we need the following
lemma.

Lemma 7.10. Let X be a compact Kähler manifold. There is a non-canonical isomorphism of
schemes

H1(X, End(Lρ))× g/h ∼= Z1(π1(X), gl(n,C)ad ρ).

This induces an isomorphism of subshemes

Rik(Lρ,W )× g/h ∼= Rik(ρ,W )

if ρ and W are semi-simple.

Proof. The first claim follows from (14) and the remark after. Now B1(π1(X), gl(n,C)ad ρ) acts on
Z1(π1(X), gl(n,C)ad ρ). By definition, Rik(ρ,W ) is invariant under this action. Therefore,
Rik(ρ,W ) is equal to the pull-back of some closed subscheme R̄ik(ρ,W ) of the quotient Z1(π1(X),
gl(n,C)ad ρ)/B

1(π1(X), gl(n,C)ad ρ). Under the isomorphism (14) one can easily see that
Rik(Lρ,W ) and R̄ik(ρ,W ) are defined by the same universal complexes, and hence they are
isomorphic. The conclusion follows. 2

From Corollary 7.8 and Lemma 7.10 we get the following theorem.

Theorem 7.11 (Theorem 1.5). Let X be a compact Kähler manifold. Let ρ ∈ R(X,n) be a
semi-simple representation, and let W be a semi-simple local system. Then the isomorphism of
formal schemes

R(X,n)(ρ)
∼= Q(ρ)(0)

induces an isomorphism
Ṽ ik(W )(ρ)

∼= Rik(ρ,W )(0).

When k = dimH i(X,Lρ), the resonance variety Rik(ρ,W ) is equal to the intersection
of the quadratic cone Q(ρ) and a linear subspace of Z1(π1(X), gl(n,C)adρ), see the proof of
Corollary 6.11. Hence, Rik(ρ,W ) is also a quadratic cone. Thus we have the following corollary.

Corollary 7.12. Let X be a compact Kähler manifold. Let ρ ∈ R(X,n) be a semi-simple
representation, and let W be a semi-simple local system. Suppose k = dimH i(X,Lρ). Then
Ṽ ik(W ) has quadratic singularities at ρ.
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8. Stable Higgs bundles

According to nonabelian Hodge theory due to Simpson, given a smooth projective complex
variety X, one can consider three moduli spaces and the cohomology jump loci in them:
MB(X,n), MDR(X,n), MDol(X,n), denoting the moduli spaces of irreducible local systems of
rank n, stable flat bundles of rank n, and stable Higgs bundles with vanishing Chern classes
of rank n, respectively, see [Sim94]. Although MB(X,n) can be constructed for any topological
space with finitely generated fundamental group, the assumption that X is smooth projective is
essential for the construction of MDR(X,n) and MDol(X,n). Since MB(X,n) and MDR(X,n)
are isomorphic as analytic spaces, and since the isomorphism induces isomorphisms on the
cohomology jump loci, the deformation problems with cohomology constraints are the same
for irreducible local systems and stable flat bundles.

We now consider the deformation problem with cohomology constraints

(MDol =MDol(X,n), E = (E, θ),V ik(F ))

where F = (F, φ) is a poly-stable Higgs bundle with vanishing Chern classes and

V ik(F ) = {(E, θ) ∈MDol | dimHi(X, (E ⊗OX F ⊗OX Ω
q
X , θ⊗ 1 + 1⊗ φ)) > k}.

The subscheme structure of V ik(F ) is defined as follows. Fix a base point x ∈ X. Then MDol is
the GIT quotient by GL(n,C) of a fine moduli space RDol(X,x, n) of rank n stable Higgs bundles
(E, θ) on X with vanishing Chern classes together with a basis β : E|x → Cn. On RDol(X,x, n),
there is a universal family of Higgs bundles. Using these universal Higgs bundles, we can define
cohomology jump loci in RDol(X,x, n) as closed subschemes. These cohomology jump loci are
invariant under the GL(n,C) action. Thus we can define their image under the quotient map to
be V ik(F ), which has a closed subscheme structure.

This deformation problem with cohomology constraints is parallel to the case of irreducible
local systems. We will only state the main theorem. We leave all the statements and the proofs
of the other corollaries to the reader.

Definition 8.1. For a Higgs bundle (F , ψ) we define the Higgs complex as the complex of global
F-valued C∞-forms with differential ∂̄ + ψ. We denote this complex by (A

q
Higgs(F), ∂̄ + ψ), or

simply A
q

Higgs(F).

For a Higgs bundle (E, θ) in MDol, we have a DGLA pair

(A
q

Higgs(End(E)), A
q

Higgs(E ⊗OX F )),

where the Higgs field on the locally free OX -module End(E) is [θ, ·], and the Higgs field on
E⊗OXF is as in the complex from the definition of V ik(F ). The standard fact is that the formal
scheme of MDol at (E, θ) prorepresents the functor Def(A

q
Higgs(End(E))), see [Mar12].

Theorem 8.2. The natural isomorphism of functors

(MDol)(E,θ)
∼= Def(A

q
Higgs(End(E)))

induces for any i, k ∈ N a natural isomorphism of subfunctors

(V ik(F ))(E,θ) = Defik(A
q

Higgs(End(E)), A
q

Higgs(E ⊗ F )).

The DGLA pair (A
q

Higgs(End(E)), A
q

Higgs(E⊗F )) is formal, and hence its quadratic cone and

cohomology resonance variety determine the formal germs at (E, θ) of MDol and V ik(F ).
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9. Other consequences of formality

In this section we point out how the formality of a DGLA pair (C,M) has implications on the
possible shape of the Betti numbers of M and on the geometry of the cohomology resonance
varieties hRik(C,M).

Let (C,M) be a formal DGLA pair. We will use the following simplifying notation in this
section:

Q = Q(C),

Rik = hRik(C,M),

P = P(H1(C)),

bi = dimCH
i(M).

Let R be the homogeneous coordinate ring of the projectivization PQ of the quadratic cone Q
in P. Consider the universal complex from Definition 4.4 on PQ

H0(M)⊗COPQ
ζQ−→ · · · −→ Hk(M)⊗C OPQ(k)

ζQ−→ · · · (15)

and the associated complex of graded R-modules

H0(M)⊗CR
ζQ−→ · · · −→ Hk(M)⊗C R(k)

ζQ−→ · · · . (16)

By definition, multiplication with ζQ are graded maps of degree one, hence the shifts. The
cohomology jump ideals J ik of these complexes define PRik inside PQ. Let

a = a(C,M)
def
= min{i | H i(H

q
(M)⊗C R( q), ζQ) 6= 0}

measure how far to the right the complex (16) is exact. Therefore the complexes

H0(M)⊗COPQ(−a)−→ · · · −→ Ha(M)⊗C OPQ (17)

and
H0(M)⊗CR(−a)−→ · · · −→ Ha(M)⊗C R (18)

are exact except in degree a, and the complex (18) is a minimal graded free resolution of the
cokernel of the last map. We will denote by φi the maps in these complexes from the degree i
term to the degree i+ 1 term.

There are two sources of restrictions on the possible Betti numbers bi and on the geometry of
the resonance varieties PRik for i < a: one from the Chern classes of the vector bundles in (17),
and another one from the relation of PRik with Fitting ideals of the maps in (18). The Chern
classes technique was first applied by Lazarsfeld and Popa [LP10] to, in our language, the DGLA
pair controlling the infinitesimal deformations of OX in Picτ (X) = M(X, 1) with cohomology
constraints when X is a compact Kähler manifold, see § 6. Fitting ideals were also used by
Fulton–Lazarsfeld to prove connectedness results for Brill–Noether loci, which are particular cases
of cohomology jump loci. For applications of Fitting ideals to twisted higher-rank Brill–Noether
loci, see the survey [GT09]. It was noticed in [Bud11] that the case of the trivial local system
of rank one on the complement of a hyperplane arrangement is similar, where the Chern classes
approach and the relation with Fitting ideals were also explored. This similarity is explained and
generalized in this section by observing that we can run the arguments for any formal DGLA
pair.

The following results were stated in [Bud11] for hyperplane arrangement complements.
However, in that case PQ = P, which is not true in general.
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Proposition 9.1. With notation as above for a formal DGLA pair (C,M), let i < a.

(a) Let βi = Rank(φi) and let Iβi(φi) be the ideal in R generated by the minors of rank βi of
φi. Then bi = βi + βi−1 and depth(Iβi(φi)) > a− i.

(b) (PRi1)red is the support of Iβi(φi).

(c) (PRi−1
1 )red ⊂ (PRi1)red.

(d) codimPQ PRi1 > a− i if R is Cohen–Macaulay.

(e) codimPQ PRi1 6 (βi−1 + 1)(βi+1 + 1) if R is Cohen–Macaulay.

(f) R0
k is defined by Iβ0+1−k(φi).

(g) (PRik)red contains the support of Iβi+1−k(φi), and equals it away from (PRi1).

(h) codimPQ PRik 6 (βi−1 + k)(βi+1 + k) if R is Cohen–Macaulay.

(i) PRik is connected away from the components of PRi1 which are disconnected from the
support of Iβi+1−k(φi), if PQ is irreducible and reduced.

(j) (Ri1)red ⊂ (Ri+1
2 )red. If i < a− 1 and k 6 1 + (a− 2)/(i+ 1), then (Ri1)red ⊂ (Ri+1

j )red.

(k) bi >
(
a
i

)
if R is a polynomial ring. βi > a− i if R is Cohen–Macaulay.

Let qi = codimPQ PRi1, and for i > 0 let

c
(i)
t =

i+1∏
k=1

(1− k · t)(−1)kbi+1−k.

Let c
(i)
j be the coefficient of tj in c

(i)
t . Assume that χa(M) := ba − ba−1 + ba−2 − · · · 6= 0.

(l) Any Schur polynomial of weight < qi in c
(i)
1 , . . . , c

(i)
qi−1 is non-negative.

Proof. (a) This is [Eis95, Theorem 20.9].
(b) The proof is essentially the same as for [Bud11, Proposition 3.4]. By truncating (18) and

repeating the following argument, it is enough to show only the case i = a−1. Using the complex
of sheaves (17), let F = coker(φa−1). The support of the Fitting ideal Iβa−1(φa−1) is the locus
of closed points in PQ where F fails to be locally free. The claim follows now from Lemma 4.5,

Lemma 9.2, and the fact that Tor
OPQ,η̄
1 (κ(η̄),Fη̄) = 0 if and only if the stalk Fη̄ is free.

(c) Follows from (b) and [Eis95, Corollary 20.12].
(d) Follows from (a) and (b), since the Cohen–Macaulay condition implies that depth equals

codimension.
(e) See [Bud11, Theorem 1.2]. The result of Eagon–Northcott used there holds if R is Cohen–

Macaulay.
(f) It follows by definition.
(g) This is essentially the proof of [Bud11, Theorem 1.1] and its Erratum. Again, it is enough

to prove the case i = a− 1. By Lemmas 4.5 and 9.2,

(PRa−1
k )red = {η̄ ∈ PQ | Tor

OPQ,η̄
1 (κ(η̄),Fη̄) > k}.

The support of the Fitting ideal Iβa−1+1−k(φa−1) is

{η̄ ∈ PQ | m(Fη̄)− Rank(Fη̄) > k},

where m(Fη̄) is the minimal number of generators of Fη̄ over OPQ,η̄. The rank is well defined
since minimal free resolutions exist over local rings, and by the characterization of exactness of
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a complex from [Eis95, Theorem 20.9]. Thus we do not need to assume that OPQ,η̄ is a domain
as in [Eis95]. The rest of the argument is as in [Eis95].

(h) Follows from (f) as in the proof of (e).
(i) Follows from (f) and from the Fulton–Lazarsfeld connectedness theorem, see Erratum,

[Bud11, Corollary 1.2].
(j) See [Bud11, Corollary 1.3].
(k) See [Bud11, Proposition 3.2]. The result of Herzog–Kühl used holds for the case when

R is a polynomial ring. The result of Evans-Griffiths used holds for the case when R is Cohen–
Macaulay.

(l) This is essentially the same proof as for [Bud11, Theorem 3.1]. Consider the case i = a−1
firstly. By (b), PRa−1

1 is the locus of points in PQ where F fails to be locally free. Let W be a
generic vector subspace of H1(C) of codimension dimPRa−1

1 + 1. Then the restriction of (17) to
X = PQ ∩ PW gives an exact sequence of locally free sheaves on X:

0 → H0M ⊗OX(−a) → · · ·→ HaM ⊗OX → F|X → 0. (19)

Since we assume χa(M) 6= 0, the restriction of F to X is non-zero. Moreover, this is a globally
generated vector bundle, so Fulton–Lazarsfeld positivity applies, see [Ful98, 12.1.7(a)]: for any
positive k-cycle α on X, the intersection Pj∩α is the rational equivalence class of a non-negatively
supported k − j cycle on X, where Pj is any Schur polynomial of weight j 6 k in the Chern
classes of F|X .

Let i : X → P be the natural inclusion. For a vector bundle E on P and for α ∈ A∗(X), the
projection formula says that i∗(cj(i

∗E) ∩ α) = cj(E) ∩ i∗α. From (19) it is not difficult to see
that the same holds for F|X , namely

i∗(cj(F|X) ∩ α) = Cj

{ a∏
k=1

(1 + c1(OP(−k)) · t)(−1)kba−k

}
∩ i∗α, (20)

where Cj stands for the coefficient of tj . Let α = [X] ∩ [L] ∈ Ak(X) with [L] ∈ A∗(P) the
class of a linear section. Then the degree of i∗α is deg(PQ). Thus the non-negativity result of
Fulton–Lazarsfeld implies that

Cj

{ a∏
k=1

(1− k · t)(−1)kba−k

}
· deg(PQ) > 0

for j 6 k, and so for j 6 dimX = qa−1− 1. Thus the claim follows in this case for Pj = cj(F|X).
For the other Schur polynomials, a repeated application of (20) reduces the claim to this case.

For the case i < a − 1, note that χi(M) 6= 0 for i < a by (c) and the assumption that
χa(M) 6= 0. Hence this case follows by the same argument by truncating (19) and shifting to get
global generation. 2

The following, which was used above, was proved for the case PQ = P in [EPY03, Theorem
4.1] using the BGG correspondence.

Lemma 9.2. With the notation as above, let F = coker(φa−1) in (17). Let 0 6= η ∈ Q and denote
its image in PQ by η̄. Then for i > 0

Ha−i(H
q
M,η.) = Tor

OPQ,η̄
i (κ(η̄),Fη̄),

where κ(η̄) is the residue field of η, and Fη̄ is the stalk of the sheaf F at η̄.
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Proof. By induction on k, we can assume that

Hk−iσ6k(H
q
M,η.) = Tor

OPQ,η̄
i (κ(η̄),Kk−1,η̄)

for i > 0, k < a, where σ6k is the stupid truncation and Kk = coker(φk) in (17). By applying

.⊗OPQ,η̄ κ(η̄) to the exact sequence

0 −→ Ka−2 −→ Ha(M)⊗OPQ −→ Ka−1 −→ 0,

we obtain that

Tor
OPQ,η̄
i (κ(η̄),Ka−1,η̄) = Tor

OPQ,η̄
i−1 (κ(η̄),Ka−2,η̄) = Ha−i(H

q
M,η.)

for i > 2. Since the case i = 0 is obvious, it remains to prove the case i = 1. This case follows

since the map Ha−1(M) → Ha(M) decomposes via the surjection Ha−1(M) → Ka−2,η̄ ⊗κ(η̄),

and we have an exact sequence

0 −→ Tor
OPQ,η̄
1 (κ(η̄),Ka−1,η̄) −→ Ka−2,η̄ ⊗ κ(η̄) −→ Ha(M) −→ Ka−1 ⊗ κ(η̄) −→ 0. 2

Remark 9.3. Given a particular deformation problem with cohomology constraints, it is

interesting to determine geometrically the number a = a(C,M) for a DGLA pair governing

the deformation problem. Let us give some examples.

(a) Consider the formal DGLA pair (A0, q
Dol(End(OX)), Ap,

q
Dol(OX)) governing the deformation

problem with cohomology constraints (Picτ (X),OX ,Vpqk (OX)) from Remark 6.13. Then

Proposition 9.1 becomes a result about Vpqk (OX) and hq(X,Ωp
X) via Corollary 6.9. In this

case the deformation problem can be stated on the Albanese of X, but one pays the price that

one has to know something about the Albanese map. For p = 0 or dimX,

a = dimX − dim(generic fiber of the Albanese map),

see [LP10] where the statements on the numbers hq(OX) are also proven. For other values of p,

it is enough to consider p+ q 6 dimX by Hodge symmetry. Then Popa and Schnell [PS13] show

that

a > n− p− δ, (21)

where δ is the defect of the semismallness of the Albanese map. This fact is implicit in the proof

of their result that codimVpq1 (OX) > |n− p− q| − δ, which follows from (21) together with part

(d) of Proposition 9.1 above.

(b) Consider the DGLA pair (A
q

DR(End(CX)), A
q

DR(CX)) governing the deformation problem

with cohomology constraints (R(X, 1),1, Ṽ ik(CX)) from § 7. When X is the complement in Cn
of a central essential indecomposable hyperplane arrangement, the pair is formal because X is

formal. Moreover, in this case, a = n− 1 by [EPY03] and Proposition 9.1 is proved in [Bud11].
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