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Rational points on singular intersections

of quadrics
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Abstract

Given an intersection of two quadrics X ⊂ Pm−1, with m> 9, the quantitative
arithmetic of the set X(Q) is investigated under the assumption that the singular locus
of X consists of a pair of conjugate singular points defined over Q(i).

1. Introduction

The arithmetic of quadratic forms has long held a special place in number theory. In this paper
we focus our efforts on algebraic varieties X ⊂ Pm−1 which arise as the common zero locus of two
quadratic forms q1, q2 ∈ Z[x1, . . . , xm]. We will always assume that X is a geometrically integral
complete intersection which is not a cone. Under suitable further hypotheses on q1 and q2, we
will be concerned with estimating the number of Q-rational points on X of bounded height.
Where successful this will be seen to yield a proof of the Hasse principle for the varieties under
consideration.

The work of Colliot-Thélène et al. [CSS87a, CSS87b] provides a comprehensive description
of the qualitative arithmetic associated to the set X(Q) of Q-rational points on X for large
enough values of m. In fact it is known that the Hasse principle holds for any smooth model of
X if m> 9. This can be reduced to m> 5 provided that X contains a pair of conjugate singular
points and does not belong to a certain explicit class of varieties for which the Hasse principle
is known to fail.

In this paper the quadratic forms q1 and q2 will have special structures. Let Q1 and Q2 be
integral quadratic forms in n variables x = (x1, . . . , xn), with underlying symmetric matrices
M1 and M2, so that Qi(x) = xTMix for i= 1, 2. Then we set

q1(x1, . . . , xn+2) = Q1(x1, . . . , xn)− x2
n+1 − x2

n+2,

q2(x1, . . . , xn+2) = Q2(x1, . . . , xn).

We will henceforth assume that Q2 is non-singular and that as a variety V in Pn−1, the
intersection of quadrics Q1(x) =Q2(x) = 0 is also non-singular. It then follows that X has
a singular locus containing precisely two singular points which are conjugate over Q(i). The
question of whether the Hasse principle holds for such varieties is therefore answered completely
by [CSS87a, CSS87b] when n> 3. Furthermore, when X(Q) is non-empty, it is well known
(see [CSS87a, Proposition 2.3], for example) that X is Q-unirational. In particular, X(Q) is
Zariski dense in X as soon as it is non-empty.

Let r(M) be the function that counts the number of representations of an integer M as a sum
of two squares and let W : Rn→ R>0 be an infinitely differentiable bounded function of compact
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support. Our analysis of the density of Q-rational points on X will be activated via the weighted
sum

S(B) =
∑
x∈Zn

2-Q1(x)
Q2(x)=0

r(Q1(x))W
(

x
B

)
, (1.1)

for B→∞. The requirement that Q1(x) be odd is not strictly necessary but makes our argument
technically simpler. Simple heuristics lead one to expect that S(B) has order of magnitude Bn−2,
provided that there are points in X(R) and X(Qp) for every prime p. Confirmation of this fact
is provided by the work of Birch [Bir61] when n> 12. Alternatively, when Q1 and Q2 are both
diagonal and the form b1q1 + b2q2 is indefinite and has rank at least 5 for every non-zero pair
(b1, b2) ∈ R2, then Cook [Coo71] shows that n> 7 is permissible. The following result offers an
improvement over both of these results.

Theorem 1. Let n> 7 and assume that V is non-singular with Q2 also non-singular. Assume
that Q1(x)� 1 and |∇Q1(x)| � 1, for an absolute implied constant, for every x ∈ supp(W ).
Suppose that X(R) is non-empty. Then there exist constants c > 0 and δ > 0 such that

S(B) = cBn−2 +O(Bn−2−δ).

The implied constant is allowed to depend on Q1, Q2 and W .

In § 8 an explicit value of δ will be given and it will be explained that the leading constant is an
absolutely convergent product of local densities c= σ∞

∏
p σp, whose positivity is equivalent to

the hypothesis thatX(R) andX(Qp) are non-empty for each prime p. Work of Demjanov [Dem56]
shows that p-adic solubility is automatic for pairs of quadratic forms in at least nine variables.

Our proof of Theorem 1 uses the circle method. An inherent technical difficulty in applying the
circle method to systems of more than one equation lies in the lack of a suitable analogue of
the Farey dissection of the unit interval, as required for the so-called ‘Kloosterman refinement’.
In the present case this difficulty is circumvented by the specific shape of the quadratic forms
q1, q2. Thus it is possible to trade the equality Q1(x) = x2

n+1 + x2
n+2 for a family of congruences

using the familiar identity

r(M) = 4
∑
d|M

χ(d),

where χ is the real non-principal character modulo 4. In this fashion the sum S(B) can be
thought of as counting suitably weighted solutions x ∈ Zn of the quadratic equation Q2(x) = 0,
for which Q1(x)≡ 0 (mod d), for varying d. Our approach ought to be compared with joint work
of the second author with Iwaniec [IM10], wherein an upper bound is achieved for the number of
integer solutions in a box to the pair of quadratic equations Q1(x) = 2 and Q2(x) = 0, when
n= 4. In this case a simple upper bound sieve is used to detect the square, which thereby allows
the first equation to be exchanged for a suitable family of congruences. In both settings, the
circle method is used to detect the single equation Q2(x) = 0, in the form developed by Heath-
Brown [Hea96, Theorem 1]. This sets the scene for a double Kloosterman refinement by way of
Poisson summation.

We now come to the crux of our argument. For typical values of x, with W (x/B) 6= 0, we see
that Q2(x) will have order B2. Applying [Hea96] to detect when Q2(x) vanishes leads to certain
exponential sums indexed by d and q, for q typically of order B. Having to handle such large
values of q would prevent us from achieving a version of Theorem 1, even for sufficiently large n.
Instead, we shall first replace the desired equality Q2(x) = 0 by the congruenceQ2(x)≡ 0 (mod d)
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and the equality Q2(x)/d= 0. The resulting application of [Hea96, Theorem 1] then leads to
exponential sums indexed by d and q, for q typically of order

√
B. This observation underpins

our entire investigation. The exponential sums that feature take the shape

Sd,q(m) =
∑∗

a (mod q)

∑
k (mod dq)

Q1(k)≡0 (mod d)
Q2(k)≡0 (mod d)

edq(aQ2(k) + m · k), (1.2)

for positive integers d and q and varying m ∈ Zn. The notation
∑∗ means that the sum is taken

over elements coprime to the modulus. We will extend it to summations over vectors in the
obvious way.

There is a basic multiplicativity relation at work which renders it profitable to consider the
cases d= 1 and q = 1 separately in (1.2). In the former case we will need to gain sufficient
cancellation in the sums that emerge by investigating the analytic properties of the associated
Dirichlet series

ξ(s; m) =
∞∑
q=1

S1,q(m)
qs

,

for s ∈ C. This is facilitated by the fact that S1,q(m) can be evaluated explicitly using the
formulae for quadratic Gauss sums. We will see in § 4 that ξ(s; m) is absolutely convergent for
<(s)> n/2 + 2. In order to prove Theorem 1 it is important to establish an analytic continuation
of ξ(s; m) to the left of this line. This eventually allows us to establish an asymptotic formula
for S(B) provided that n > 6. The situation for n= 6 is more delicate and we are no longer able
to win sufficient cancellation through an analysis of ξ(s; m) alone. In fact it appears desirable to
exploit cancellation due to sign changes in the exponential sum Sd,1(m). The latter is associated
to a pair of quadratic forms, rather than a single form, and this raises significant technical
obstacles. We intend to return to this topic in a future publication.

With a view to subsequent refinements, much of our argument works under much greater
generality than for the quadratic forms considered in Theorem 1. In line with this, unless
otherwise indicated, any estimate concerning quadratic forms Q1, Q2 ∈ Z[x1, . . . , xn] is valid
for arbitrary forms such that Q2 is non-singular, n> 4 and the variety V ⊂ Pn−1 defined by
Q1(x) =Q2(x) = 0 is a geometrically integral complete intersection. We let

%(d) = Sd,1(0) = #{k (mod d) :Q1(k)≡Q2(k)≡ 0 (mod d)}.

The Lang–Weil estimate yields %(p) =O(pn−2) when d= p is a prime, since the affine cone over
V has dimension n− 2. We will need upper bounds for %(d) of comparable strength for any d.
It will be convenient to make the following hypothesis.

Hypothesis. Let d ∈ N and ε > 0. Then we have %(d) =O(dn−2+ε).

Here, as throughout our work, the implied constant is allowed to depend upon the coefficients
of the quadratic forms Q1, Q2 under consideration and the parameter ε. We will further allow all
our implied constants to depend on the weight function W in (1.1), with any further dependence
being explicitly indicated by appropriate subscripts. We will establish Hypothesis-% in Lemma 2
when V is non-singular, as required for Theorem 1.

Notation and conventions. Throughout our work N will denote the set of positive integers. The
parameter ε will always denote a small positive real number, which is allowed to take different
values at different parts of the argument. We shall use |x| to denote the norm max |xi| of a
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vector x = (x1, . . . , xn) ∈ Rn. Next, given integers m and M , by writing m |M∞ we will mean
that any prime divisor of m is also a prime divisor of M . Likewise (m,M∞) is taken to mean the
largest positive divisor h of m for which h |M∞. It will be convenient to record the bound

#{m6 x :m |M∞}6
∑

p|m⇒p|M

(
x

m

)ε
= xε

∏
p|M

(1− p−ε)−1� (x|M |)ε, (1.3)

for any x> 1, a fact that we shall make frequent use of in our work. Finally we will write
e(x) = exp(2πix) and eq(x) = exp(2πix/q).

2. Auxiliary estimates

2.1 Linear congruences
Let q ∈ N. For n× n matrices M, with coefficients in Z, and a vector a ∈ Zn we will often be led
to consider the cardinality

Kq(M; a) = #{x (mod q) : Mx≡ a (mod q)}. (2.1)

The Chinese remainder theorem implies that Kq(M; a) is a multiplicative function of q, rendering
it sufficient to conduct our analysis at prime powers q = pr. We will need the following basic upper
bound.

Lemma 1. Assume that M has rank % and let δp be the minimum of the p-adic orders of the
%× % non-singular submatrices of M. Then we have

Kpr(M; a)6min{pnr, p(n−%)r+δp}.

In particular, Kpr(M; a) =OM(1) if %= n.

This is established by Loxton [Lox00, Proposition 7], but is also a trivial consequence of
earlier work by Smith [Smi71], which provides a precise equality for Kpr(M; a). We present a
proof of Lemma 1, for completeness, the upper bound Kpr(M; a)6 pnr being trivial.

Proof. Given M as in the statement of the lemma, it follows from the theory of the Smith normal
form that there exist unimodular integer matrices A,B such that

AMB = diag(M1, . . . , Mn),

with M1, . . . , Mn ∈ Z satisfying Mi |Mi+1, for 16 i < n. In particular, since M has rank %, it
follows that Mi = 0 for i > %. Hence

Kpr(M; a) = #{x (mod pr) :Mixi ≡ (Aa)i (mod pr), (16 i6 %)}
6 p(n−%)r+vp(M1)+···+vp(M%).

This completes the proof of Lemma 1, since δp = vp(M1) + · · ·+ vp(M%). 2

We end this section by drawing a conclusion about the special case that M is non-singular,
with %= n. Suppose that there exists a vector x counted by Kpr(M; 0), but satisfying p - x. Then
it follows from our passage to the Smith normal form that in fact r 6 vp(det M).

2.2 Geometry of V
In this section we consider the geometry of the varieties V ⊂ Pn−1 defined by the common
zero locus of two quadratic forms Q1, Q2 ∈ Z[x1, . . . , xn], specifically in the case that V is
non-singular. Suppose that Qi has underlying symmetric matrix Mi, with M2 non-singular.
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Let D =D(Q1, Q2) be the discriminant of the pair {Q1, Q2}, which is a non-zero integer by
assumption. According to Gelfand et al. [GKZ94, § 13], D has total degree (n+ 2)2n+1 in the
coefficients of Q1, Q2 and is equal to the discriminant of the bihomogeneous polynomial

F (b, x) = b1Q1(x) + b2Q2(x).

We write

M(b) = b1M1 + b2M2, (2.2)

for the underlying symmetric matrix. It follows from [CSS87a, Lemma 1.13] that

rank M(b)> n− 1 (2.3)

for any [b] ∈ P1. Furthermore, the binary form P (b) = det M(b) has non-zero discriminant, by
Reid’s thesis [Rei72].

An important rôle in our work will be played by the dual variety V ∗ ⊂ Pn−1∗ ∼= Pn−1 of V .
Consider the incidence relation

I = {(x, H) ∈ V × Pn−1∗ :H ⊇ Tx(V )},

where Tx(V ) denotes the tangent hyperplane to V at x. The projection π1 : I → V makes I into
a bundle over V whose fibres are subspaces of dimension n− dim V − 2 = 1. In particular, I is
an irreducible variety of dimension n− 2. Since V ∗ is defined to be the image of the projection
π2 : I → Pn−1∗, it therefore follows that the dual variety V ∗ is irreducible. Furthermore, since I
has dimension n− 2 one might expect that V ∗ is a hypersurface in Pn−1∗. This fact, which is valid
for any irreducible non-linear complete intersection, is established by Ein [Ein86, Proposition 3.1].
Elimination theory shows that the defining homogeneous polynomial may be taken to have
coefficients in Z. Finally, by the work of Aznar [Azn80, Theorem 3], the degree of V ∗ is 4(n− 2).
Hence V ∗ is defined by an equation G= 0, where G ∈ Z[x1, . . . , xn] is an absolutely irreducible
form of degree 4(n− 2).

Given a prime p, which is sufficiently large in terms of the coefficients of V , the reduction
of V modulo p will inherit many of the basic properties enjoyed by V as a variety over Q. In
particular, it will continue to be a non-singular complete intersection of codimension 2, satisfying
the property that (2.3) holds for any [b] ∈ P1, where now Mi is taken to be the matrix obtained
after reduction modulo p of the entries. Furthermore we may assume that p - 2 det M2 and that
the discriminant of the polynomial P (b) does not vanish modulo p. We will henceforth set

∆V =O(1)

to be the product of all primes for which any one of these properties fails at that prime.

2.3 The function %(d)
In this section we establish Hypothesis-% when V is non-singular, where %(d) = Sd,1(0), in the
notation of (1.2). Note that %∗(d)6 %(d), where

%∗(d) = #{x (mod d) : (d, x) = 1, Q1(x)≡Q2(x)≡ 0 (mod d)}.

We proceed to establish the following result.

Lemma 2. Hypothesis-% holds if V is non-singular.

Proof. We adapt an argument of Hooley [Hoo88, § 10] used to handle the analogous situation
for cubic hypersurfaces. By multiplicativity it suffices to examine the case d= pr for a prime p
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and r ∈ N. Extracting common factors between x and pr, we see that

%(pr) =
∑

06k<r/2

pkn%∗(pr−2k) + p(r−dr/2e)n. (2.4)

Using additive characters to detect the congruences gives

%∗(ps) =
1
p2s

∑
b (mod ps)

∑∗

x (mod ps)

eps(b1Q1(x) + b2Q2(x)),

where we recall that the notation
∑∗ means only x for which p - x are of interest. Extracting

common factors between ps and b yields

%∗(ps) =
1
p2s

∑
06i<s

pinS(s− i) + p(n−2)s

(
1− 1

pn

)
,

with

S(k) =
∑∗

b (mod pk)

∑∗

x (mod pk)

epk(F (b, x)),

with F (b, x) = b1Q1(x) + b2Q2(x). We claim that

S(k) =

{
O(pn) if k = 1,
O(1) if k > 2.

Once achieved, this implies that %∗(ps) =O(p(n−2)s). Inserting this into (2.4) gives the bound
%(pr) =O(rp(n−2)r), which suffices for the lemma.

The Lang–Weil estimate implies that there are O(pn−1) choices of x (mod p) for which
Q1(x)Q2(x)≡ 0 (mod p). Likewise it implies that %∗(p) =O(pn−2). When k = 1, therefore, we
conclude that

|S(1)|6 p2%∗(p) + p
∑
i=1,2

#{x (mod p) :Qi(x)≡ 0 (mod p)}+ pn� pn.

To analyse S(k), for k > 2, we introduce a dummy sum over a ∈ (Z/pkZ)∗ and replace b by ab
to get

ϕ(pk)S(k) =
∑∗

a (mod pk)

∑∗

b (mod pk)

∑∗

x (mod pk)

epk(aF (b, x)).

Evaluating the resulting Ramanujan sum yields

S(k) =
(

1− 1
p

)−1

{N(pk)− pn+1N(pk−1)}, (2.5)

where N(pk) is the number of (b, x) (mod pk), with p - b and p - x, for which pk | F (b, x). We
are therefore led to compare N(pk) with N(pk−1), using an approach based on Hensel’s lemma.

Let ∇F (b, x) = (Q1(x), Q2(x), b1∇xQ1(x) + b2∇xQ2(x)), where ∇x means that the partial
derivatives are taken with respect to the x variables. Using our alternative definition of the
discriminant D as the discriminant of F , we may view D as the resultant of the n+ 2 quadratic
forms appearing in ∇F (b, x). Writing y = (b, x), elimination theory therefore produces n+ 2
identities of the form

DyNi =
∑

16j6n+2

Gij(y)
∂F

∂yi
(16 i6 n+ 2),
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where Gij are polynomials with coefficients in Z. In particular, if the vector (b, x) ∈ Zn+2 satisfies
pm | ∇F (b, x), but p - b and p - x, it follows that m6 vp(D). Let us put δ = vp(D).

If 26 k 6 2δ + 1, then it trivially follows from (2.5) that S(k) =O(1). If k > 2δ + 2, which
we assume for the remainder of the argument, we will show that S(k) = 0. Our work so far has
shown that

N(pk) =
∑

06m6δ

#Cm(pk),

where Cm(pk) denotes the set of y = (b, x) (mod pk), with p - b and p - x, for which pk | F (y)
and pm‖∇F (y). Given any y ∈ Cm(pk) it is easy to see that

F (y + pk−my′) ≡ F (y) + pk−my′ · ∇F (y) (mod pk)
≡ 0 (mod pk),

for any y′ ∈ Zn+2, with

∇F (y + pk−my′)−∇F (y) ≡ 0 (mod pk−m)
≡ 0 (mod pm+1).

Thus Cm(pk) consists of cosets modulo pk−m. Moreover, y + pk−my′ ∈ Cm(pk+1) if and only if

p−kF (y) + p−my′ · ∇F (y)≡ 0 (mod p),

for which there are pn+1 incongruent solutions modulo p. Hence #Cm(pk+1) = pn+1#Cm(pk),
which therefore shows that S(k) = 0 in (2.5). This completes the proof of the lemma. 2

2.4 Treatment of bad d
Returning briefly to S(B) in (1.1), we will need a separate argument to deal with the contribution
from x for which Q2(x) = 0 and Q1(x) is divisible by large values of d which share a common
prime factor with ∆V .

To begin with, we call upon joint work of the first author with Heath-Brown and
Salberger [BHS06], which is concerned with uniform upper bounds for counting functions of
the shape

M(f ;B) = #{t ∈ Zν : |t|6B, f(t) = 0},
for polynomials f ∈ Z[t1, . . . , tν ] of degree δ > 2. Although the paper focuses on the situation
for δ > 3, the methods developed also permit a useful estimate in the case δ = 2. Suppose
that ν = 3 and that the quadratic homogeneous part f0 of f is absolutely irreducible. Using
[BHS06, Lemmas 6 and 7] we can find a linear form L ∈ Z[t1, t2, t3] of height O(1) such that
the intersection of the projective plane curves f0 = 0 and L= 0 consists of two distinct points.
After eliminating one of the variables, we are then free to apply [BHS06, Lemma 13] to all the
affine curves defined by f = 0 and L= c, for each integer c�B. This gives the upper bound
M(f ;B)�B1+ε when ν = 3. According to [BHS06, Lemma 8], we have therefore established
the following result, which may be of independent interest.

Lemma 3. Let ε > 0, let ν > 3 and let f ∈ Z[t1, . . . , tν ] be a quadratic polynomial with
absolutely irreducible quadratic homogeneous part. Then we have

M(f ;B)�Bν−2+ε.

The implied constant in this estimate depends at most on ν and the choice of ε.
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We shall also require some facts about lattices, as established by Davenport [Dav63,
Lemma 5]. Suppose that Λ⊂ Zn is a lattice of rank r and determinant det(Λ). Then there
exists a ‘minimal’ basis m1, . . . ,mr of Λ such that 16 |m1|6 · · ·6 |mr|, with the property that
whenever one writes y ∈ Λ as y =

∑r
i=1 λimi, then λi� |mi|−1|y|, for 16 i6 r. Furthermore,

r∏
i=1

|mi| � det(Λ)6
r∏
i=1

|mi|. (2.6)

We now come to the key technical estimate in this section. Given any d ∈ N and B > 1, we
will need an auxiliary upper bound for the quantity

Nd(B) = #{x ∈ Zn : |x|6B, d |Q1(x), Q2(x) = 0}. (2.7)

Simple heuristics suggest that Nd(B) should have order d−1Bn−2. For our purposes we require
an upper bound in which any power of d is saved.

Lemma 4. Let ε > 0, d ∈ N and n> 5. Assume B > d and Hypothesis-%. Then we have

Nd(B)� Bn−2+ε

d1/n
+ dBn−3+ε.

Note that this estimate is valid for any quadratic forms Q1, Q2 for which Q2 is non-singular
and the expected bound for %(d) holds. In our case the desired bound follows from Lemma 2
when V is non-singular.

Proof of Lemma 4. On extracting common factors between x and d in Nd(B), one quickly verifies
that it suffices to prove the upper bound in the lemma for the quantity N∗d (B), in which the
additional constraint (d, x) = 1 is added. Breaking into residue classes modulo d, we see that

N∗d (B) =
∑∗

ξ (mod d)
Q1(ξ)≡0 (mod d)
Q2(ξ)≡0 (mod d)

#{x ∈ Zn : |x|6B, x≡ ξ (mod d), Q2(x) = 0}. (2.8)

Let us denote the set whose cardinality appears in the inner sum by Sd(B; ξ). If Sd(B; ξ) = ∅,
then there is nothing to prove. Alternatively, suppose we are given x0 ∈ Sd(B; ξ). Then any other
vector in the set must be congruent to x0 modulo d.

Making the change of variables x = x0 + dy in Sd(B; ξ), we note that |y|6 Y , with Y =
2d−1B. Furthermore, Taylor’s formula yields

y · ∇Q2(x0) + dQ2(y) = 0, (2.9)

since Q2(x0 + dy) = 0 and Q2(x0) = 0. This equation implies that the y under consideration
are forced to satisfy the congruence y · ∇Q2(ξ)≡ 0 (mod d), since x0 ≡ ξ (mod d). Let us write
a =∇Q2(ξ). Then it follows that

#Sd(B; ξ)6 1 + #{y ∈ Λa : |y|6 Y, (2.9) holds},
where Λa = {y ∈ Zn : a · y ≡ 0 (mod d)}. This set defines an integer lattice of full rank and
determinant det Λa = d/(d, a). The conditions of summation in (2.8) demand that (d, ξ) = 1.
It therefore follows from the remark at the end of § 2.1 that pj � 1, whenever j ∈ N and p is a
prime for which pj | (d,∇Q2(ξ)). Thus (d, a)� 1 and so det Λa� d.

Let M denote the non-singular matrix formed from taking a minimal basis m1, . . . ,mn

for Λa. Making the change of variables y = Mλ, and recalling the properties of the minimal
basis recorded above, we see that

#Sd(B; ξ)6 1 + #{λ ∈ Zn : λi� |mi|−1Y for 16 i6 n, q(λ) = 0},
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where q(λ) is obtained from (2.9) via substitution. In particular, the quadratic homogeneous
part q0 of q has underlying matrix MTM2M, which is non-singular. We are therefore left with
the task of counting integer solutions to a quadratic equation, which are constrained to lie in
a lop-sided region. Furthermore, since we require complete uniformity in d, we want an upper
bound in which the implied constant does not depend on the coefficients of q.

It being difficult to handle a genuinely lopsided region, we will simply fix the smallest variable
and then allow the remaining vectors λ′ = (λ1, . . . , λn−1) to run over the full hypercube with
side lengths O(Y ). In this way we find that

#Sd(B; ξ)6 1 +
∑

t�|mn|−1Y

#{λ′ ∈ Zn−1 : |λ′| � Y, q(λ′, t) = 0}.

Viewed as a polynomial in λ′, the quadratic homogeneous part of q(λ′, t) is equal to q0(λ′, 0).
This must have rank at least n− 2> 3, since q0 is non-singular and its rank cannot decrease
by more than 2 on any hyperplane. In particular, q0(λ′, 0) is absolutely irreducible. We apply
Lemma 3 with ν = n− 1 and f = q(λ′, t) to get

#Sd(B; ξ)� Y n−3+ε

(
1 +

Y

|mn|

)
.

Now it follows from (2.6) that |mn|> (det Λa)1/n� d1/n. Recalling that Y = 2d−1B and inserting
this into (2.8), we conclude that

N∗d (B)� %(d)
(
B

d

)n−3+ε(
1 +

B

d1+1/n

)
.

The conclusion of the lemma therefore follows from Hypothesis-%. 2

3. Preliminary transformation of S(B)

In this section we initiate our analysis of S(B) in (1.1). For any odd integer M it is clear that
r(M) = 0 unless M ≡ 1 (mod 4). Hence our sum can be written

S(B) =
∑
x∈Zn

Q1(x)≡1 (mod 4)
Q2(x)=0

r(Q1(x))W
(

x
B

)
.

We proceed to open up the r-function in the summand. Let {VT (t)}T be a collection of smooth
functions, with VT supported in the dyadic block [T, 2T ], such that

∑
T VT (t) = 1 for t ∈ [1, CB2].

The constant C will be large enough depending on Q1 and W , so that |Q1(x)|6 C whenever
x ∈ supp(W ). We will neither specify the function VT nor the indexing set for T . However we will
simply note that T can be restricted to lie in the interval [1

2 , 2CB
2], and that there are O(log B)

many functions in the collection. Moreover we will stipulate that

tjV
(j)
T (t)�j 1,

for each integer j > 0. For a positive integer M 6 CB2 we may write

r(M) = 4
∑
T

∑
d|M

χ(d)VT (d).
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It follows that

S(B) = 4
∑
T

∑
d

χ(d)VT (d)
∑
x∈Zn

Q1(x)≡1 (mod 4)
Q1(x)≡0 (mod d)

Q2(x)=0

W

(
x
B

)
= 4

∑
T

ST (B),

say. Let a ∈ (Z/4Z)n be such that Q1(a)≡ 1 (mod 4), and let ST,a(B) be the part of ST (B)
which comes from x≡ a (mod 4).

In the analysis of ST,a(B) we want to arrange things so that only values of d satisfying d�B
occur. When T 6B this is guaranteed by the presence of the factor VT (d). When T > B we can
use Dirichlet’s hyperbola trick, since χ(Q1(x)) = χ(Q1(a)) = 1, to get

ST,a(B) =
∑
d

χ(d)
∑

x≡a (mod 4)
Q1(x)≡0 (mod d)

Q2(x)=0

W

(
x
B

)
VT

(
Q1(x)
d

)
.

In this case too we therefore have d�B. For notational simplicity we write

Wd,T (y) =


W (y)VT (d) if T 6B,

W (y)VT

(
B2Q1(y)

d

)
otherwise.

(3.1)

Here W : Rn→ R>0 is an infinitely differentiable bounded function of compact support such that
Q1(x)� 1 and |∇Q1(x)| � 1, for some absolute implied constant, for every x ∈ supp(W ).

Our plan is to use the circle method to analyse ST,a(B), together with an application of
Poisson summation. This leads us to study the exponential sums (1.2), for varying m ∈ Zn. We
will face significant technical issues in estimating this sum when d has a large prime power
factor pr, in which p divides the constant ∆V that was introduced at the close of § 2.2. This issue
will be handled by separating out the contribution from the awkward d as follows.

Lemma 5. Let Ξ be a parameter satisfying 16 Ξ6B. Then we have

S(B) = 4
∑
T

∑
a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

(S[T,a(B) + S]T,a(B)),

with

S[T,a(B) =
∞∑
d=1

(d,∆∞V )>Ξ

χ(d)
∑

x≡a (mod 4)
Q1(x)≡0 (mod d)

Q2(x)=0

Wd,T

(
x
B

)
,

S]T,a(B) =
∞∑
d=1

(d,∆∞V )6Ξ

χ(d)
∑

x≡a (mod 4)
Q1(x)≡0 (mod d)

Q2(x)=0

Wd,T

(
x
B

)
.

We will provide an upper bound for S[T,a(B) and an asymptotic formula for S]T,a(B), always
assuming that Ξ satisfies 16 Ξ6B. The following result deals with the first task.

Lemma 6. Let ε > 0 and assume Hypothesis-%. Then we have

S[T,a(B)� Ξ−1/nBn−2+ε + ΞBn−3+ε.
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Proof. Write e= (d,∆∞V ). Then

|S[T,a(B)|6
∑
e|∆∞V
e>Ξ

∞∑
d=1

∑
x≡a (mod 4)

Q1(x)≡0 (mod de)
Q2(x)=0

Wde,T

(
x
B

)
.

By the properties of (3.1), only d, e satisfying de�B feature here. Inverting the sums over d
and x, we obtain

S[T,a(B)�
∑
e|∆∞V

Ξ<e�B

∑
|x|�B

x≡a (mod 4)
Q1(x)≡0 (mod e)

Q2(x)=0

τ

(
Q1(x)
e

)
,

where τ is the divisor function. Note that Q1(x) 6= 0, since Q1(x)≡Q1(a)≡ 1 (mod 4), so that
the inner summand is O(Bε) by the trivial estimate for τ . Hence we have

S[T,a(B)�Bε
∑
e|∆∞V

Ξ<e6cB

Ne(cB), (3.2)

for an absolute constant c > 0, in the notation of (2.7).
We will make crucial use of the monotonicity property Ne(cB)6Nd(cB) for d | e. Suppose

that we have a factorisation ∆V =
∏t
i=1 pi. For n ∈ Zt>0, let pn =

∏t
i=1 p

ni
i . Consider the

collection of integers B = {pn : n ∈ Zt>0} and set B(A1, A2) = B ∩ (A1, A2]. It follows from (1.3)
that B contains O(Bε) elements of order B. In this new notation the sum in (3.2) is over
e ∈B(Ξ, cB). We claim that

S[T,a(B)�Bε
∑

e∈B(Ξ,∆V Ξ)

Ne(cB).

Once achieved, the statement of the lemma will then follow from Lemma 4.
By the monotonicity property, in order to establish the claim it will suffice to show that every

e ∈B(Ξ, cB) has a divisor e′ | e, with e′ ∈B(Ξ,∆V Ξ). To see this, we suppose that e= pn and
consider the decreasing sequence of divisors of e. This sequence ends at 1, and the ratio between
any two consecutive members is bounded by ∆V . Thus one of the divisors must lie in the range
(Ξ,∆V Ξ], as required. This completes the proof of the lemma. 2

Turning to S]T,a(B), we now need a means of detecting the equation Q2(x) = 0. For any
integer M let

δ(M) =

{
1, if M = 0,
0, otherwise.

Our primary tool in this endeavour will be a version of the circle method developed by Heath-
Brown [Hea96], based on work by Duke et al. [DFI93]. The starting point for this is the following
smooth approximation of δ (see [Hea96, Theorem 1]).

Lemma 7. For any Q> 1 there is a positive constant cQ, and a smooth function h(x, y) defined
on (0,∞)× R, such that

δ(M) =
cQ
Q2

∞∑
q=1

∑∗

a (mod q)

eq(aM)h
(
q

Q
,
M

Q2

)
.
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The constant cQ satisfies cQ = 1 +ON (Q−N ) for any N > 0. Moreover h(x, y)� x−1 for all y,
and h(x, y) is non-zero only for x6max{1, 2|y|}.

In practice, to detect the equation M = 0 for a sequence of integers with |M |<N/2, it is
logical to choose Q=N1/2. We will use the above lemma to detect the equality Q2(x) = 0 in
S]T,a(B). However, since we already have the modulus d in the sum over x we will use this
modulus to reduce the size of the parameter Q. This is the key trick that underpins our entire
argument. Our idea is to replace the equality Q2(x) = 0 by the congruence Q2(x)≡ 0 (mod d)
and the equality Q2(x)/d= 0. This leads to the expression

S]T,a(B) =
∞∑
d=1

(d,∆∞V )6Ξ

χ(d)
∑

x≡a (mod 4)
Q1(x)≡0 (mod d)
Q2(x)≡0 (mod d)

δ

(
Q2(x)
d

)
Wd,T

(
x
B

)

=
∞∑
d=1

(d,∆∞V )6Ξ

χ(d)cQ
Q2

∞∑
q=1

∑∗

a (mod q)

∑
x≡a (mod 4)

Q1(x)≡0 (mod d)
Q2(x)≡0 (mod d)

eq

(
aQ2(x)

d

)
h

(
q

Q
,
Q2(x)
dQ2

)
Wd,T

(
x
B

)
.

We shall make the choice

Q=
B√
d
.

Since d�B, it follows that Q�
√
B.

With our choice of Q made, we remark that the size of the full modulus qd is typically of
order B3/2. Since this is much smaller than the square of the length of each xi summation, it
will be profitable to use the Poisson summation formula on the sum over x.

Lemma 8. For any N > 0 we have

S]T,a(B) = (1 +ON (B−N ))
Bn−2

4n
∑

m∈Zn

∞∑
d=1

(d,∆∞V )6Ξ

χ(d)
dn−1

∞∑
q=1

1
qn
Td,q(m)Id,q(m),

where

Td,q(m) =
∑∗

a (mod q)

∑
k (mod 4dq)
k≡a (mod 4)

Q1(k)≡0 (mod d)
Q2(k)≡0 (mod d)

e

(
4aQ2(k) + m · k

4dq

)

and

Id,q(m) =
∫

Rn
h

(
q

Q
,
B2Q2(y)
dQ2

)
Wd,T (y)e4dq(−Bm · y) dy.

Proof. Splitting the sum over x into residue classes modulo 4dq, we get that the inner sum over
x in our expression for S]T,a(B) is given by∑

k (mod 4dq)
k≡a (mod 4)

Q1(k)≡0 (mod d)
Q2(k)≡0 (mod d)

e

(
aQ2(k)
qd

) ∑
x∈Zn

f(x),

1468

https://doi.org/10.1112/S0010437X13007185 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007185


Singular intersections of quadrics

where

f(x) = h

(
q

Q
,
Q2(k + 4dqx)

dQ2

)
Wd,T

(
k + 4dqx

B

)
.

Poisson summation yields∑
x∈Zn

f(x) =
∑

m∈Zn

∫
Rn
f(y)e(−m · y) dy

=
(
B

4dq

)n ∑
m∈Zn

e4dq(m · k)
∫

Rn
h

(
q

Q
,
B2Q2(y)
dQ2

)
Wd,T (y)e4dq(−Bm · y) dy.

The lemma follows on rearranging and noting that cQ = 1 +ON (B−N ) and Q2 =B2/d. 2

In this and the next few sections, we will analyse in detail the exponential sum Td,q(m)
appearing in Lemma 8. We start with a multiplicativity relation which reduces the problem to
analysing the sum for a prime power modulus. Observe that d is necessarily odd, but q can be of
either parity. For any d, q ∈ N we recall the definition (1.2) of Sd,q(m), and for any non-negative
integer ` define

S±1,2`(m) =
∑∗

a (mod 2`)

∑
k (mod 22+`)
k≡±a (mod 4)

e22+`(4aQ2(k) + m · k). (3.3)

We note that if h ∈ N is coprime to d and q, then Sd,q(hm) = Sd,q(m). The following result is
now available.

Lemma 9. For q = 2`q′, with q′ odd, we have

Td,q(m) = Sd,q′(m)Sχ(dq′)
1,2` (m).

Proof. Set

k = k′2`+22`+2 + k′′dq′dq′, a= a′2`2` + a′′q′q′,

where k′ (mod dq′), k′′ (mod 2`+2), a′ (mod q′), and a′′ (mod 2`). The conditions on k then
translate into k′′ ≡ a (mod 4), Q1(k′)≡ 0 (mod d) and Q2(k′)≡ 0 (mod d). Furthermore, we
have

e

(
4aQ2(k) + m · k

4dq

)
= e

(
(4a′Q2(k′) + m · k′)2`+2

dq′

)
e

(
(4a′′Q2(k′′) + m · k′′)dq′

2`+2

)
.

The sum over a′ and k′ gives Sd,q′(m) after a change of variables. A similar change of variables
in a′′ and k′′ gives S±1,2`(m), where the sign is given by χ(dq′). 2

In a similar spirit we can prove the following multiplicativity property for the sum (1.2).

Lemma 10. For d= d1d2 and q = q1q2, with (d1q1, d2q2) = 1, we have

Sd,q(m) = Sd1,q1(m)Sd2,q2(m).

This result reduces the problem of estimating Sd,q(m) into three distinct cases. Accordingly,
for d, q ∈ N we define the sums

Qq(m) = S1,q(m), Dd(m) = Sd,1(m), Md,q(m) = Sd,q(m),

the latter sum only being of interest when d and q exceed 1 and are constructed from the same
set of primes. The analysis of these sums will be the focus of §§ 4–6. For the moment we content
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ourselves with recording the crude upper bound

S±1,2`(m)� 2`(n/2+1), (3.4)

for (3.3), whose truth will be established in the following section.
We close this section by presenting some facts concerning the exponential integral Id,q(m)

which appears in Lemma 8, recalling the definition (3.1) of Wd,T (y). The properties of h recorded
in Lemma 7 ensure that q�Q when Id,q(m) is non-zero. Likewise the properties of Wd,T

imply that d�B under the same hypothesis. The underlying weight function W has bounded
derivatives

∂i1+···+in

∂yi11 · · · ∂y
in
n

W (y)�i1,...,in 1,

and the function VT satisfies tjV (j)
T (t)�j 1. It therefore follows that

∂i1+···+in

∂yi11 · · · ∂y
in
n

Wd,T (y)�i1,...,in 1,

since Q1(y) has order of magnitude 1, uniformly for y ∈ supp(W ).
In the notation of [Hea96, § 7] we have

Id,q(m) = I∗r (v) =
∫

Rn
h(r, G(y))ω(y)er(−v · y) dy, (3.5)

where

r =
q

Q
, v =

Bm
4dQ

, G(y) =
B2Q2(y)
dQ2

=Q2(y), ω(y) =Wd,T (y).

We have
∂i1+···+in

∂yi11 · · · ∂y
in
n

G(y)�i1,...,in 1,
∂i1+···+in

∂yi11 · · · ∂y
in
n

ω(y)�i1,...,in 1.

Using these bounds and integration by parts, as in [Hea96, § 7], we obtain the following bound.

Lemma 11. For m 6= 0 and any N > 0, we have

Id,q(m)�N
Q

q

(
dQ

B|m|

)N
.

As a consequence we get that m with |m|> dQB−1+ε will make a negligible contribution in
our analysis of S]T,a(B). For m with 0< |m|6 dQB−1+ε a more refined bound is required. The
following result is due to Heath-Brown [Hea96, Lemma 22] and is based on a close study of the
function h(x, y).

Lemma 12. For i ∈ {0, 1}, 0< |m|6 dQB−1+ε =
√
dBε and q�Q=B/

√
d, we have

∂i

∂qi
Id,q(m)� q−i

∣∣∣∣Bm
dq

∣∣∣∣1−n/2Bε.

4. Analysis of Qq(m)

The aim of this section is to collect together everything we need to know about the sums

Qq(m) =
∑∗

a (mod q)

∑
k (mod q)

eq(aQ2(k) + m · k),
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for given m ∈ Zn. This sum appears very naturally when the circle method is employed to analyse
quadratic forms. Let M be the underlying symmetric n× n integer matrix for a quadratic form Q,
so that Q(k) = kTMk. We begin with an easy upper bound for the inner sum in Qq(m) when
q is a prime power.

Lemma 13. For any quadratic form Q(x) = xTMx, we have∣∣∣∣ ∑
k (mod pr)

epr(Q(k) + m · k)
∣∣∣∣6 pnr/2√Kpr(2M; 0),

in the notation of (2.1).

Proof. Cauchy’s inequality implies that the square of the left-hand side is not greater than∑
x,y (mod pr)

epr((Q(x)−Q(y)) + m · (x− y)).

Substituting x = y + z we see that the summand is equal to epr(m · z)epr(Q(z) + 2yTMz). The
sum over y vanishes unless pr | 2Mz, in which case it is given by pnrepr(Q(z)). The result now
follows by executing the sum over z trivially. 2

We apply Lemma 13 to estimate Qq(m). Since Q2 is non-singular it follows from Lemma 1
that there is an absolute constant c> 1 such that Kpr(2M2; 0)6 c, for any prime power pr.
Moreover one can take c= 1 when p - 2 det M2. On summing trivially over a one deduces that
|Qpr(m)|6

√
cp(n/2+1)r, for any prime power pr. Applying Lemma 10 therefore yields

Qq(m)� qn/2+1. (4.1)

Likewise (3.4) is an easy consequence of Lemmas 1 and 13 when p= 2.
Using quadratic Gauss sums, it is possible to prove explicit formulae for Qpr(m) when the

prime p is large enough. The oscillation in the sign of these sums will give cancellation in the sum
over q in Lemma 8 which will be crucial for handling n= 7. Let Q(x) be a quadratic form with
associated matrix M. We write Q∗(x) for the adjoint quadratic form with underlying matrix
(det M)M−1. For any odd prime p let

ε(p) =

{
1 if p≡ 1 (mod 4),
i if p≡ 3 (mod 4),

and let χp(·) denote the Legendre symbol (·/p). We may now record the following formula.

Lemma 14. Let p be a prime with p - 2 det M. Then we have∑
k (mod pr)

epr(Q(k) + m · k) =

{
pnr/2epr(−4 det MQ∗(m)) if r is even,

pnr/2χp(det M)ε(p)nepr(−4 det MQ∗(m)) if r is odd.

Proof. Since p is odd there exists an n× n matrix U with integer entries and p - det U such
that UTMU is diagonal modulo pr. Hence in proving the lemma we may restrict ourselves to
diagonal forms Q(x) = α1x

2
1 + · · ·+ αnx

2
n, with M = diag(α1, . . . , αn). In this case we have

Q∗(x) = det M
(
x2

1

α1
+ · · ·+ x2

n

αn

)
,

where det M = α1 · · · αn.
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Let S denote the sum appearing on the left-hand side in the statement of the lemma. Then

S =
n∏
i=1

{ ∑
k (mod pr)

epr(αik2 +mik)
}
.

Since p - 2αi, we can complete the square. This yields∑
k (mod pr)

epr(αik2 +mik) = epr(−4αim2
i )

∑
k (mod pr)

epr(αik2).

The last sum is the quadratic Gauss sum, which satisfies∑
k(mod pr)

epr(αik2) =

{
pr/2 if r is even,
χp(αi)ε(p)pr/2 if r is odd.

The lemma follows on substituting this into the above expression for S. 2

Lemma 14 directly yields an explicit evaluation of the sum Qpr(m) when the prime p is
sufficiently large. To state the outcome of this let

cpr(a) =
∑∗

x (mod pr)

epr(ax) =
∑

d|(pr,a)

dµ

(
pr

d

)
be the Ramanujan sum and let

gpr(a) =
∑

x (mod pr)

χp(x)epr(ax)

be the Gauss sum. For the former we will make frequent use of the fact that cpr(ab) = cpr(a)
for any b coprime to p, and cpr(a1) = cpr(a2) whenever a1 ≡ a2 (mod pr). Moreover, we have the
obvious inequality |cpr(a)|6 (pr, a).

It follows from Lemma 14 that

Qpr(m) = pnr/2
∑∗

a (mod pr)

{
epr(−4a det M2Q

∗
2(m)) if r is even,

χp(det M2)χp(a)nε(p)nepr(−4a det M2Q
∗
2(m)) if r is odd,

if p - 2 det M. The following lemma now follows from executing the sum over a.

Lemma 15. Let p be a prime with p - 2 det M2. Then for even n we have

Qpr(m) = ε(p)nrχp(det M2)rpnr/2cpr(Q∗2(m)).

For odd n we have

Qpr(m) =

{
pnr/2cpr(Q∗2(m)) if r is even,

ε(p)nχp(−1)pnr/2gpr(Q∗2(m)) if r is odd.

Let

N =

{
2Q∗2(m) det M2 if Q∗2(m) 6= 0,
2 det M2 otherwise.

(4.2)

We now turn to the average order of Qq(m), as one sums over q coprime to M for some fixed
M ∈ N divisible by N . For this we will use Perron’s formula unless n is even and Q∗2(m) 6= 0, a
case that can be handled trivially as follows.
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Lemma 16. Let M ∈ N with N |M . Assume that n is even and Q∗2(m) 6= 0. Then we have∑
q6x

(q,M)=1

|Qq(m)|6 xn/2+1.

Proof. Combining Lemma 15 with the multiplicativity relation Lemma 10 we obtain∑
q6x

(q,M)=1

|Qq(m)|6 xn/2
∑
q6x

(q,M)=1

|cq(Q∗2(m))|.

The lemma follows on noting that |cq(Q∗2(m))|6 (q, Q∗2(m)) = 1. 2

Let χ be a non-principal Dirichlet character with conductor cχ. It will be convenient to recall
some preliminary facts concerning the size of Dirichlet L-functions L(s, χ) in the critical strip.
We begin by recalling the convexity bound

L(σ + it, χ)�{cχ(|t|+ 1)}(1−σ)/2+ε, (4.3)

for any σ ∈ [0, 1]. Next we claim that∫ 1/2+iT

1/2−iT
|L(s, χ)|2 ds

|s|
� c7/16+ε

χ T ε. (4.4)

For this we break the integral into dyadic blocks, deducing that it is dominated by∑
Y dyadic
0<Y 6T

1
1 + Y

∫ 2Y

Y

∣∣∣∣L(1
2

+ it, χ

)∣∣∣∣2 dt.
For Y 6 c1/8

χ we use Heath-Brown’s [Hea80] hybrid bound L(1
2 + it, χ)�{cχ(|t|+ 1)}3/16+ε, to

get

1
1 + Y

∫ 2Y

Y

∣∣∣∣L(1
2

+ it, χ

)∣∣∣∣2 dt� c3/8+ε
χ

√
Y � c7/16+ε

χ .

For Y > c
1/8
χ we use the approximate functional equation to replace the L-value by a series of

length
√
cχY , and then use the mean value theorem for Dirichlet polynomials (see Iwaniec and

Kowalski [IK04, Theorem 9.1], for example). This gives

1
1 + Y

∫ 2Y

Y

∣∣∣∣ ∑
n6
√
cχY T ε

χ(n)√
n
n−it

∣∣∣∣2 dt� (1 +
√
cχ
Y

)
T ε log cχ� c7/16+ε

χ T ε.

Summing over all dyadic blocks, and redefining the choice of ε, we arrive at (4.4).
For s ∈ C let σ = <(s). Returning now to the application of Perron’s formula, we set

ξM (s; m) =
∑

(q,M)=1

Qq(m)
qs

.

By (4.1) this series is absolutely convergent for σ > n/2 + 2. When n is even and Q∗2(m) 6= 0 it is
absolutely convergent for σ > n/2 + 1, by Lemma 16. For any x− 1/2 ∈ Z and T > 0 we obtain∑

q6x
(q,M)=1

Qq(m) =
1

2πi

∫ c+iT

c−iT
ξM (s; m)xs

ds

s
+O

(
xc

T

)
, (4.5)
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where c > n/2 + 2. We will take T large enough in terms of x and |m| so that the error term in
the formula is negligible. The analytic nature of the L-series can be revealed using the explicit
formulae that we enunciated in Lemma 15 and depends on the parity of n. For even n we get

ξM (s; m) =
∏
p-M

{ ∞∑
r=0

χp(det M2)rε(p)nrcpr(Q∗2(m))
p(s−n/2)r

}
. (4.6)

For odd n we get

ξM (s; m) =
∏
p-M

{∑
r even

cpr(Q∗2(m))
p(s−n/2)r

+ χp(−1)ε(p)n
∑
r odd

gpr(Q∗2(m))
p(s−n/2)r

}
. (4.7)

The following result handles the case in which Q∗2(m) = 0.

Lemma 17. Let M ∈ N with N |M and let ε > 0. Assume that Q∗2(m) = 0. Then we have∑
q6x

(q,M)=1

Qq(m)�

{
x(n+3)/2+εM ε if (−1)n/2 det M2 6=�,
xn/2+2 if (−1)n/2 det M2 =�.

Here, and after, for any complex number z we write z =� if and only if there exists an
integer j such that z = j2. Thus the sum in question is bounded by O(x(n+3)/2+εM ε) when n is
odd since it is then impossible for (−1)n/2 det M2 to be the square of an integer.

Proof of Lemma 17. The second part of the lemma is a trivial consequence of (4.1) and the
triangle inequality. Turning to the first part we begin by supposing that n is even and
(−1)n/2 det M2 6=�. If Q∗2(m) = 0, then cpr(Q∗2(m)) = ϕ(pr). It follows from (4.6) that

ξM (s; m) = L

(
s− 1− n

2
, ψ

)
EM (s),

where L(s, ψ) is the Dirichlet L-function associated to the Jacobi symbol

ψ(·) =
(

(−1)n/2 det M2

·

)
,

with conductor cψ =O(1), and where EM (s) is an Euler product which converges absolutely
in the half-plane σ > n/2 + 1 and satisfies the bound EM (s)�M ε on any fixed half-plane
σ > n/2 + 1 + η, with η > 0. This gives the analytic continuation of ξM (s; m) up to σ > n/2 + 1.

Moving the contour of integration in (4.5) to c0 = (n+ 3)/2 and invoking the convexity
estimate (4.3) to deal with the horizontal contours, we obtain∑

q6x
(q,M)=1

Qq(m) =
1

2πi

∫ c0+iT

c0−iT
ξM (s; m)xs

ds

s
+O

(
xc

T
+
xc0M εT ε

T 3/4

)
.

Here we note that (−1)n/2 det M2 is not a square and so the L-series does not have a pole in
the region σ > c0 − 1/2. Taking T = xn+4 the error term is seen to be O(x−n/4−3/2+εM ε). The
remaining integral is estimated via (4.4), which thereby leads to the first part of Lemma 17 when
n is even.

If n is odd and Q∗2(m) = 0, then cpr(Q∗2(m)) = ϕ(pr) and gpr(Q∗2(m)) = 0. Hence ξM (s; m)
is absolutely convergent and bounded by O(M ε) in any fixed half-plane σ > (n+ 3)/2 + η,
with η > 0. This implies that we can shift the contour in (4.5) to c0 = (n+ 3)/2 + ε, without
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encountering any poles, leading to a similar but simpler situation to that considered for even n.
This completes the proof of Lemma 17. 2

Let us turn to the size of the exponential sums Qq(m) for generic m, for which sharper bounds
are required. Tracing through the proof one sees that if n is even and Q∗2(m) 6= 0, then one is
instead led to compare ξM (s; m) in (4.6) with L(s− n/2, ψ)−1. To improve on Lemma 16 one
therefore requires a good zero-free region for L(s− n/2, ψ) to the left of the line σ = n/2 + 1,
for which the unconditional picture is somewhat lacking. However, even if one is able to save a
power of x in Lemma 16, this still does not seem to be enough to handle n= 6 in Theorem 1.
The following result deals with the case of odd n when Q∗2(m) 6= 0.

Lemma 18. Let M ∈ N with N |M and let ε > 0. Assume that n is odd and Q∗2(m) 6= 0. Then
we have ∑

q6x
(q,M)=1

Qq(m)�

{
|m|7/16+εxn/2+1+εM ε, if (−1)(n−1)/2Q∗2(m) 6=�,

x(n+3)/2+εM ε, if (−1)(n−1)/2Q∗2(m) =�.

Proof. Recalling (4.7) we note that gp(a) = χp(a)ε(p)p1/2, for any non-zero integer a that is
coprime to p. Hence we deduce in this case that

ξM (s; m) = L

(
s− n+ 1

2
, ψm

)
EM (s),

where ψm is the Jacobi symbol

ψm(·) =
(

(−1)(n−1)/2Q∗2(m)
·

)
,

with conductor 4|Q∗2(m)|=O(|m|2). Also EM (s) is an Euler product which now converges
absolutely for σ > n/2 + 1 and satisfies the bound EM (s)�M ε on any fixed half-plane
σ > n/2 + 1 + η, with η > 0. Under the assumption that (−1)(n−1)/2Q∗2(m) 6=�, the L-series
ξM (s; m) does not have a pole in the region σ > n/2 + 1. Moving the contour of integration in
(4.5) to c0 = n/2 + 1 + ε, and using the convexity estimate (4.3), we therefore get∑

q6x
(q,M)=1

Qq(m) =
1

2πi

∫ c0+iT

c0−iT
ξM (s; m)xs

ds

s
+O

(
xc

T
+
|m|1/2+εxc0M ε

T 3/4

)
,

in this case. Estimating the remaining integral using (4.4), as before, we conclude the proof of
the lemma when (−1)(n−1)/2Q∗2(m) 6=� by taking T sufficiently large.

Finally, if (−1)(n−1)/2Q∗2(m) =�, then ξM (s; m) is regularised by ζ(s− (n+ 1)/2) and has
a pole at s= (n+ 3)/2. In this case we move the line of integration back to c0 = (n+ 3)/2 + ε,
which easily leads to the statement of the lemma. 2

5. Analysis of Dd(m)

The aim of this section is to collect together everything we need to know about the sums

Dd(m) =
∑

k∈V̂ (Z/dZ)

ed(m · k),

for given m ∈ Zn and d ∈ N. Here we write Ŵ to denote the affine cone above a projective
variety W . The estimates in this section pertain to the quadratic forms considered in Theorem 1,
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so that V is non-singular and we may make use of the geometric facts recorded in § 2.2. Our
starting point is Lemma 10, which yields Dd1d2(m) = Dd1(m)Dd2(m) if (d1, d2) = 1, rendering it
sufficient to understand the behaviour of the sum at prime powers.

For any m ∈ Zn we begin by examining the case in which d= p, a prime. Introducing a free
sum over elements of F∗p, we find that

(p− 1)Dp(m) =
p−1∑
a=1

∑
x∈V̂ (Fp)

ep(m · x)

=
∑

x∈V̂ (Fp)

p−1∑
a=1

ep(am · x)

= p#V̂m(Fp)−#V̂ (Fp),

where Vm is the variety obtained by intersecting V with the hyperplane m · x = 0, and V̂m is
the corresponding affine variety lying above it. Rearranging, we obtain

Dp(m) =
(

1− 1
p

)−1

(#V̂m(Fp)− p−1#V̂ (Fp)). (5.1)

Now for any complete intersection W ⊂ Pm, which is non-singular modulo p and has dimension
e> 1, it follows from Deligne’s resolution of the Weil conjectures [Del74] that

|#W (Fp)− (pe + pe−1 + · · ·+ 1)|=Od,m(pe/2),

where d is the degree of W . In particular, since

#W (Fp) =
#Ŵ (Fp)− 1

p− 1
,

we deduce that
#Ŵ (Fp) = pe+1 +Od,m(p(e+2)/2). (5.2)

In our setting we have e= n− 3 for V and e= n− 4 for Vm if p - m. We may now record the
following inequalities.

Lemma 19. We have

Dp(m)�


p(n−2)/2 if p -G(m),
p(n−1)/2 if p |G(m) and p - m,

pn−2 if p |m.

Proof. We may assume that p - ∆V , since otherwise the result is trivial. Our starting point
is (5.1). If p |m, then Dp(m) = #V̂ (Fp) and the claim follows from (5.2).

If p -G(m), so that Vm is non-singular modulo p, then an application of (5.2) yields

Dp(m) =
(

1− 1
p

)−1

(pn−3 +O(p(n−2)/2)− p−1(pn−2 +O(p(n−1)/2))) =O(p(n−2)/2),

if n> 5. When n= 4 this is trivial since then #Vm(Fp) =O(1). This establishes the claim.
Finally, if p |G(m) and p - m, then Vm is singular and of codimension 1 in V modulo p. By

a result of Zak (see [Hoo91, Appendix, Theorem 2]), the singular locus of Vm has projective
dimension 0. Hence the work of Hooley [Hoo91] yields #V̂m(Fp) = pn−3 +O(p(n−1)/2), which
once inserted into (5.1) yields the desired inequality. 2
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We now turn our attention to higher prime powers. Let d= pr for r > 2 and suppose that
G(m) 6= 0. We assume that p - ∆V and p - m. Then it is easy to see that

Dpr(m) =
∑

x∈V̂ (Z/prZ)
p-x

epr(m · x).

Mimicking the argument leading to (5.1), a line of attack that we have already met in the proof
of Lemma 2, we deduce from the explicit formula for the Ramanujan sum that

ϕ(pr)Dpr(m) =
∑∗

a (mod pr)

∑
x∈V̂ (Z/prZ)

p-x

epr(am · x) = pr
∑

x∈V̂ (Z/prZ)
pr|m·x
p-x

1− pr−1
∑

x∈V̂ (Z/prZ)
pr−1|m·x

p-x

1.

In the second sum we write x = y + pr−1z with y (mod pr−1) and z (mod p), to get∑
x∈V̂ (Z/prZ)
pr−1|m·x

p-x

1 =
∑

y∈V̂ (Z/pr−1Z)
pr−1|m·y

p-y

#{z : Qi(y + pr−1z)≡ 0 (mod pr), for i= 1, 2}.

Since p - ∆V , the count for the number z (mod p) is given by pn−2. Setting

N(pj ,m) = #{x ∈ V̂ (Z/pjZ) : p - x,m · x≡ 0 (mod pj)},

we get

Dpr(m) =
pr

ϕ(pr)
{N(pr,m)− pn−3N(pr−1,m)}.

In particular, an application of Hensel’s lemma yields the following conclusion.

Lemma 20. Let r > 2. Then we have Dpr(m) = 0 unless p |∆VG(m).

We also require a general bound for Dd(m). By the orthogonality of characters we may write

Dd(m) =
1
d2

∑
b (mod d)

Dd(m; b),

where

Dd(m; b) =
∑

k (mod d)

ed(b1Q1(k) + b2Q2(k) + m · k).

We proceed to extract the greatest common divisor h of b with d, writing d= hd′ and b = hb′,
with (d′, b′) = 1. Breaking the sum into congruence classes modulo d′ we then see that

Dd(m; b) =
∑

k′ (mod d′)

∑
k′′ (mod h)

ed′(b′1Q1(k′) + b′2Q2(k′) + h−1m · k′)eh(m · k′′).

In particular, h must be a divisor of m, and, furthermore, if we write m = hm′, then we have
Dd(m; b) = hnDd′(m′; b′). Applying Lemma 13, we conclude that

|Dd(m)|6 1
d2

∑
h|(d,m)

hnd′
n/2

∑∗

b′ (mod d′)

√
Kd′(2M(b′); 0), (5.3)

in the notation of (2.1) and (2.2). The following result provides a good upper bound for the inner
sum, provided that d′ does not share a common prime factor with ∆V .
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Lemma 21. For any ε > 0 and e ∈ N with (e,∆V ) = 1, we have∑∗

b (mod e)

Ke(2M(b); 0)� e2+ε.

Proof. Let g(e) denote the sum that is to be estimated and put Ue(b) =Ke(2M(b); 0). One
notes via the Chinese remainder theorem that g is a multiplicative arithmetic function which it
will therefore suffice to understand at prime powers e= pr, with p - ∆V . We have

g(pr) =
∑

06b1,b2<pr

p-b

Upr(b).

Viewed as a matrix with coefficients in Z, it follows from (2.3) that M(b) has rank n or n− 1,
and furthermore P (b) = det M(b) has non-zero discriminant, as a polynomial in b. For i= 0, 1
we write Bi for the set of b ∈ Z2 with 06 b1, b2 < pr and p - b, for which M(b) has rank n− i
over Z.

We will provide two upper bounds for Upr(b). We begin with Lemma 1, which gives

Upr(b)6 pr(n−%)+δp , (5.4)

where % is the rank of 2M(b) over Z and δp is the minimum of the p-adic orders of the %× %
non-singular submatrices of 2M(b). Our second estimate for Upr(b) is based on an analysis of
the case r = 1. Since p - ∆V it follows that 2M(b) has rank n or n− 1 modulo p. In the former
case one obtains Up(b) = 1 and in the latter case Up(b) = p. An application of Hensel’s lemma
therefore yields

Upr(b)6

{
1 if p - ∆V det M(b),
pr if p - ∆V and p | det M(b).

(5.5)

Combining (5.4) and (5.5) we deduce that

Upr(b)6

{
pmin{r,vp(P (b))} if b ∈B0,
pr if b ∈B1.

It therefore follows that

g(pr)6
∑
b∈B0

pmin{r,vp(P (b))} + pr#B1.

Now it is clear that there are only O(1) primitive integer solutions of the equation P (b) = 0,
whence #B1 =O(pr). Moreover we have vp(P (b))6∆ with ∆ = rn+O(1), for any b ∈B0.
Our investigation so far has shown that for p - ∆V we have

g(pr)� p2r +
∆∑
`=0

pmin{`,r}#B0(`),

where B0(`) is the set of b ∈B0 for which p` | P (b). If `6 r, then

#B0(`)� p2(r−`)#{b (mod p`) : p - b, P (b)≡ 0 (mod p`)}� p2r−`,

since p does not divide the discriminant of P . Alternatively if ` > r, then it follows that

#B0(`)� pr.
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Putting this altogether we conclude that

g(pr)� p2r +
∑

06`6r

p2r +
∑

r<`6∆

p2r� rp2r,

for p - ∆V . This suffices for the statement of the lemma. 2

Applying Lemma 21 in (5.3), we conclude that

Dd(m)� dn/2+ε(d,m)n/2−2,

if (d,∆V ) = 1. If d |∆∞V , we will merely take the trivial bound

|Dd(m)|6 %(d)� dn−2+ε,

which follows from Lemma 2. Combining these therefore leads to the following result.

Lemma 22. For any ε > 0 we have Dd(m)� (d,∆∞V )n/2−2dn/2+ε(d,m)n/2−2.

We are now ready to record some estimates for the average order of |Dd(m)|, as we range
over appropriate sets of moduli d. Combining Lemma 19 with Lemma 20 and the multiplicativity
property in Lemma 10, we are immediately led to the following conclusion.

Lemma 23. For any ε > 0 we have ∑
d6x

(d,∆VG(m))=1

|Dd(m)| � xn/2+ε.

Here Lemma 20 ensures that only square-free values of d are counted in this sum. Furthermore
this result is trivial if G(m) = 0, in which case we will need an allied estimate. This is provided
by the following result.

Lemma 24. Assume that G(m) = 0. For any ε > 0 we have∑
d6x

(d,∆Vm)=1

|Dd(m)| � x(n+1)/2+ε.

Proof. We make the factorisation d= uv, where u is the square-free part of d and v is the square-
full part. In particular, both u and v are assumed to be coprime to ∆V and m. Then Lemma 19
yields Du(m)� u(n−1)/2+ε, and it follows from Lemma 22 that Dv(m)� vn/2+ε. Hence∑

d6x
(d,∆Vm)=1

|Dd(m)| �
∑
uv6x

u(n−1)/2+εvn/2+ε

� x(n+1)/2+ε
∑
v6x

1
v1/2

.

On noting that the number of square-full integers v 6 V is O(V 1/2), this therefore concludes the
proof of the lemma. 2

6. Analysis of Md,q(m)

It remains to estimate the mixed character sums Md,q(m), which it will suffice to analyse at
prime powers. Our goal in this section will be a proof of the following result.
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Lemma 25. Assume that q | d∞ and d | q∞. Let ε > 0 and assume Hypothesis-%. Then we have

Md,q(m)� (d, (2 det M2)∞)n/2−2dn/2+εqn/2+1.

Our proof of this result is based on an analysis of the sum

Mpr,p`(m) =
∑∗

a (mod p`)

∑
k (mod pr+`)

Q1(k)≡0 (mod pr)
Q2(k)≡0 (mod pr)

epr+`(aQ2(k) + m · k),

for integers r, `> 1. We first split the inner sum by replacing k by k + prx, where k runs modulo
pr and x runs modulo p`. This yields

Mpr,p`(m) =
∑

k (mod pr)
Q1(k)≡0 (mod pr)
Q2(k)≡0 (mod pr)

S(k), (6.1)

where

S(k) =
∑∗

a (mod p`)

epr+`(aQ2(k) + m · k)
∑

x (mod p`)

ep`(aQ2(x)pr + a∇Q2(k) · x + m · x).

We will argue differently according to which of r or ` is largest. Recall that Q∗2 is the dual of Q2,
with matrix M∗

2 = (det M2)M−1
2 . Lemma 25 is a straightforward consequence of the following

pair of results and the multiplicativity property in Lemma 10.

Lemma 26. Suppose that ` > r. Then Mpr,p`(m) = 0 unless pr |Q∗2(m) or p | 2 det M2, in which
case Mpr,p`(m)� p`+n(`+r)/2.

Proof. In the inner sum of S(k) we take x = y + p`−rz, where y runs modulo p`−r and z runs
modulo pr. This gives∑

y (mod p`−r)

ep`(aQ2(y)pr + a∇Q2(k) · y + m · y)
∑

z (mod pr)

epr(a∇Q2(k) · z + m · z),

for the sum over x (mod p`). The sum over z vanishes unless

a∇Q2(k) + m≡ 0 (mod pr). (6.2)

Recall from the conditions of summation in (6.1) that pr |Q2(k). In particular, if p - 2 det M2,
then it follows that Mpr,p`(m) = 0 unless pr |Q∗2(m), as required for the first part of the lemma.
For the second part, we let v ∈ Zn be such that a∇Q2(k) + m = prv. Then we have

S(k) = pnr
∑

a∈A(k)

epr+`(aQ2(k) + m · k)
∑

y (mod p`−r)

ep`−r(aQ2(y) + v · y),

where A(k) denotes the set of a ∈ (Z/p`Z)∗ such that (6.2) holds. Applying Lemma 13 and then
Lemma 1 we conclude that

|S(k)|6
∑

a∈A(k)

pnr+n(`−r)/2
√
Kp`−r(2M2; 0)�

∑
a∈A(k)

pnr+n(`−r)/2.

Inserting this into (6.1) therefore gives

Mpr,p`(m)� pn(`+r)/2
∑∗

a (mod p`)

Kpr(2aM2;−m).

A further application of Lemma 1 therefore gives the bound in the lemma. 2
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Lemma 27. Suppose that `6 r and assume Hypothesis-%. Then Mpr,p`(m) = 0 unless p` |Q∗2(m)
or p | 2 det M2, in which case Mpr,p`(m)� p`+n(`+r)/2(p, 2 det M2)nr/2−2r+ε.

Note that when p | 2 det M2 in Lemma 27, so that p is bounded absolutely, the bound for
Mpr,p`(m) is O(p(n/2+1)`+(n−2)r+ε), which grows like Cr for an absolute constant C > 0.

Proof of Lemma 27. The expression in (6.1) now features

S(k) =
∑∗

a (mod p`)

epr+`(aQ2(k) + m · k)
∑

x (mod p`)

ep`(a∇Q2(k) · x + m · x).

The sum over x vanishes unless

a∇Q2(k) + m≡ 0 (mod p`). (6.3)

Recall that pr |Q2(k) in (6.1), which implies that p` |Q2(k) since r > `. If p - 2 det M2, it follows
from (6.3) that

ak≡−2 det M2M∗
2m (mod p`),

whence p` |Q∗2(m), as required for the first part of the lemma. For the second part we deduce
that

S(k) = pn`
∑∗

a (mod p`)
(6.3) holds

epr+`(aQ2(k) + m · k).

Re-introducing the sum over k and using exponential sums to detect the divisibility constraints
pr−` | p−`Qi(ak), which are clearly equivalent to pr−` | p−`Qi(k) when a is coprime to p, we
deduce that

Mpr,p`(m) =
pn`

p2(r−`)

∑
b (mod pr−`)

T (b), (6.4)

where

T (b) =
∑∗

a (mod p`)

∑
k∈K

epr+`(aQ2(k) + m · k)epr(b1Q1(ak) + b2Q2(ak)),

and K denotes the set of k (mod pr) for which (6.3) holds and Qi(k)≡ 0 (mod p`), for i= 1, 2.
We proceed by writing ak = x + p`y, for y modulo pr−`. For each value of a coprime to p,

choose an integer a such that aa≡ 1 (mod pr+`). This leads to the expression

T (b) =
∑∗

a (mod p`)

∑
x (mod p`)

∇Q2(x)+m≡0 (mod p`)
Qi(x)≡0 (mod p`)

∑
y (mod pr−`)

f(x, y),

for i= 1, 2, with

f(x, y) = epr+`(aQ2(x + p`y) + am · (x + p`y))epr(b1Q1(x + p`y) + b2Q2(x + p`y)).

Recall the notation M(b) introduced in (2.2). One concludes that∣∣∣∣ ∑
y (mod pr−`)

f(x, y)
∣∣∣∣=
∣∣∣∣ ∑
y (mod pr−`)

epr−`(Q(y) + n · y)
∣∣∣∣,

with n = p−`a(∇Q2(x) + m) + 2M(b)x and

Q(y) = aQ2(y) + p`(b1Q1(y) + b2Q2(y)).
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This quadratic form has underlying matrix M(p`b1, p`b2 + a). The number of x (mod p`)
appearing in our expression for T (b) is O(1) by Lemma 1. Applying Lemma 13, we deduce
that

T (b)� p(r−`)n/2
∑∗

a (mod p`)

√
Kpr−`(2M(p`b1, p`b2 + a); 0).

As b2 runs modulo pr−` and a runs over elements modulo p` which are coprime to p, so
c2 = p`b2 + a runs over the set of residue classes modulo pr, which are coprime to p. Replacing
b1 by b1c2, and recalling (6.4), we obtain

Mpr,p`(m)� pn(`+r)/2

p2(r−`)

∑
b1 (mod pr−`)

∑∗

c2 (mod pr)

√
Kpr−`(2M(p`b1c2, c2); 0)

� pn(`+r)/2

pr−`

∑
b1 (mod pr−`)

√
Kpr−`(2M(p`b1, 1); 0).

It will be convenient to put δ = vp(2n det M2). We may assume that ` > δ. Indeed, if `6 δ, then
we may take the trivial bound S(k) =O(1) in (6.1). Applying Hypothesis-% we go on to deduce
that Mpr,p`(m) =O(pr(n−2)+ε), which is satisfactory.

Using Taylor’s formula we may write

det 2M(p`b1, 1) = p`f(b1) + det 2M(0, 1)
= p`f(b1) + 2n det M2,

for an appropriate polynomial f(b1) with integer coefficients. Viewing b1 as an element of Z, it
follows that p`f(b1) + 2n det M2 6= 0, since ` > δ. Hence

vp(det 2M(p`b1, 1)) = δ

and Lemma 1 yields Kpr−`(2M(p`b1, 1); 0)� 1. The overall contribution to Mpr,p`(m) from this
case is therefore O(p`+n(`+r)/2), which is satisfactory. 2

7. Proof of Theorem 1: initial steps

We henceforth assume that n> 5. From Lemma 8 we have

S]T,a(B) = (1 +ON (B−N ))
Bn−2

4n
∑

m∈Zn

∞∑
d=1

(d,∆∞V )6Ξ

χ(d)
dn−1

∞∑
q=1

1
qn
Td,q(m)Id,q(m),

for any N > 0. We expect that the main term of the sum comes from the zero frequency m = 0.
This we will compute explicitly in § 8 and it will turn out to have size Bn−2, as expected. Our
immediate task, however, is to produce a satisfactory upper bound for the contribution from
the non-zero frequencies. In view of the properties of Id,q(m) recorded in § 3 the sums over d
and q are effectively restricted to d�B and q�Q, respectively. Moreover, Lemma 11 implies
that the contribution of the tail |m|> dQB−1+ε is arbitrarily small. Finally, Lemma 2 confirms
Hypothesis-% for the quadratic forms considered here.

As reflected in the various estimates collected together in §§ 4–6, the behaviour of the
exponential sum Td,q(m) will depend intimately on m. We must therefore give some thought
to the question of controlling the number of m ∈ Zn which are constrained in appropriate ways.
The constraints that feature in our work are of three basic sorts: either Q∗2(m) = 0 or G(m) = 0
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or (−1)(n−1)/2Q∗2(m) =�, the last case only being distinct from the first case when n is odd.
The first two cases correspond to averaging m over rational points [m] belonging to a projective
variety W ⊂ Pn−1, with W equal to the quadric Q∗2 = 0 or the dual hypersurface V ∗, respectively.
For such W we claim that

#{m ∈ Zn : [m] ∈W (Q), |m|6M}�Mn−2+ε, (7.1)

for any M > 1 and ε > 0. When W is the quadric, in which case we recall that Q∗2 is non-singular,
this follows from Lemma 3. When W = V ∗ our discussion in § 2.2 shows that W is an irreducible
hypersurface of degree 4(n− 2)> 12. Hence the desired bound follows directly from joint work
of the first author with Heath-Brown and Salberger [BHS06, Corollary 2]. Finally, we note that

#{m ∈ Zn : (−1)(n−1)/2Q∗2(m) =�, |m|6M}�Mn−1+ε, (7.2)

for any M > 1 and ε > 0. Indeed, the contribution from m for which Q∗2(m) = 0 is satisfactory
by (7.1) and the remaining contribution leads us to count points of height O(M) on a non-singular
quadric in n+ 1 variables, for which we may appeal to Lemma 3.

We may now return to the task of estimating the contribution to S]T,a(B) from m for which
0< |m|6 dQB−1+ε =

√
dBε. In this endeavour it will suffice to study the expression

UT,a(B, D) =Bn−2
∑

0<|m|6
√
DBε

∑′

d∼D
(d,∆∞V )6Ξ

1
dn−1

∣∣∣∣∑
q

1
qn
Td,q(m)Id,q(m)

∣∣∣∣, (7.3)

for D > 1, where
∑′ indicates that the sum should be taken over odd integers only and the

notation d∼D means D/2< d6D. In our analysis of this sum we will clearly only be interested
in values of D�B. However, for the time being we allow D > 1 to be an arbitrary parameter.

Recall the definition (4.2) of the non-zero integer N . We split q as δq with (q, dN) = 1 and
δ | (dN)∞. Since q is restricted to have size O(Q) in (7.3), by the properties of Id,q(m) recorded
in § 3, we may assume that δ�B. We deduce from the multiplicativity relations Lemmas 9
and 10 that

UT,a(B, D)6Bn−2
∑

0<|m|6
√
DBε

∑′

d∼D
(d,∆∞V )6Ξ

1
dn−1

∑
δ|(dN)∞

δ�B

|Td,δ(m)|
δn

∣∣∣∣ ∑
q

(q,dN)=1

1
qn

Qq(m)Id,δq(m)
∣∣∣∣.

To estimate the inner sum over q we see via partial summation that it is

−
∫ ∞

1

( ∑
q6y

(q,dN)=1

Qq(m)
)
∂

∂y

(
Id,δy(m)
yn

)
dy.

The integral is over y 6 cQ/δ, for some absolute constant c > 0. Define the quantities

θ1(n; m) =

{
7
16 if 2 - n and (−1)(n−1)/2Q∗2(m) 6=�,
0 otherwise,

and

θ2(n; m) =


1 if Q∗2(m) = 0 and (−1)n/2 det M2 =�,
1
2 if Q∗2(m) = 0 and (−1)n/2 det M2 6=�,
1
2 if Q∗2(m) 6= 0 and (−1)(n−1)/2Q∗2(m) =�,
0 otherwise.
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According to our conventions we note that the first case in the definition of θ2(n; m) only arises
for even n and likewise the third case only arises for odd n. Drawing together Lemmas 16–18,
and using Lemma 12, we therefore obtain the estimate

� |m|θ1(n;m)(dN)ε
∫ cQ/δ

1
yn/2+1+θ2(n;m)+ε

∣∣∣∣ ∂∂y
(
Id,δy(m)
yn

)∣∣∣∣ dy
�
(

dδ

B|m|

)n/2−1

|m|θ1(n;m)(dNB)ε
∫ cQ/δ

1
yn/2+1+θ2(n;m) · y−n/2−2 dy,

for the above integral. Let

θ1(n) =

{
0 if n is even,
7
16 if n is odd,

θ2(n) =

{
1
2 if 2 | n and (−1)n/2 det M2 =�,
0 otherwise.

(7.4)

Returning to our initial estimate for UT,a(B, D) and recalling the definition (1.2) of Sd,q(m), we
now have everything in place to establish the following result.

Lemma 28. We have

UT,a(B, D)� Bn/2−1+ε

Dn/2
(U (1) + U (2)),

where

U (1) =
∑

0<|m|6
√
DBε

(−1)(n−1)/2Q∗2(m)=�

(B/
√
D)1/2+θ2(n)

|m|n/2−1

∑
d∼D

(d,∆∞V )6Ξ

∑
δ|d∞
δ�B

|Sd,δ(m)|
δn/2+1

,

U (2) =
∑

0<|m|6
√
DBε

(−1)(n−1)/2Q∗2(m)6=�

|m|θ1(n)

|m|n/2−1

∑
d∼D

(d,∆∞V )6Ξ

∑
δ|d∞
δ�B

|Sd,δ(m)|
δn/2+1

.

Proof. Our work so far shows that UT,a(B, D)� C(1) + C(2), with

C(1) =
Bn−2+ε

Bn/2−1

∑
0<|m|6

√
DBε

(−1)(n−1)/2Q∗2(m)=�

(B/
√
D)θ2(n;m)

|m|n/2−1

∑′

d∼D
(d,∆∞V )6Ξ

1
dn/2

∑
δ|(dN)∞

δ�B

|Td,δ(m)|
δn/2+1+θ2(n;m)

,

C(2) =
Bn−2+ε

Bn/2−1

∑
0<|m|6

√
DBε

(−1)(n−1)/2Q∗2(m)6=�

|m|θ1(n)

|m|n/2−1

∑′

d∼D
(d,∆∞V )6Ξ

1
dn/2

∑
δ|(dN)∞

δ�B

|Td,δ(m)|
δn/2+1

.

We note that θ2(n; m) = 1/2 + θ2(n) in C(1), but take n/2 + 1 for the exponent of δ. Drawing
together Lemma 9, (3.4) and (4.1), it follows that∑

δ|N∞
δ�B

|T1,δ(m)|
δn/2+1

�
∑
δ|N∞
δ�B

1� (NB)ε,

where the final inequality follows from (1.3). Thus we can restrict δ to be a divisor of d∞ in
C(1) and C(2) at the cost of enlarging the bound by Bε. In particular, since d is odd, it follows
that δ is odd and so Lemma 9 implies that Td,δ(m) = Sd,δ(m). Finally, on taking d > D/2 in the
denominator of both expressions, we arrive at the statement of the lemma. 2
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We are now ready to commence our detailed estimation of UT,a(B, D), based on Lemma 28.
We begin by directing our attention to the estimation of U (2). Pulling out the greatest common
divisor h of m, and then splitting d= d1d2 and δ = δ1δ2, with δ1 | d∞1 , d1 | h∞, δ2 | d∞2 and
(d2, h) = 1, it follows that

U (2) =
∑

0<h6
√
DBε

hθ1(n)

hn/2−1

∑
0<|m|6

√
DBε/h

(−1)(n−1)/2Q∗2(m)6=�
gcd(m)=1

|m|θ1(n)

|m|n/2−1

∑
d16D
d1|h∞

(d1,∆∞V )6Ξ

∑
δ1|d∞1
δ1�B

|Sd1,δ1(hm)|
δ
n/2+1
1

Σ1, (7.5)

where if Ξd1 = Ξ/(d1,∆∞V ), then

Σ1 =
∑

d2∼D/d1

(d2,h)=1
(d2,∆∞V )6Ξd1

∑
δ2|d∞2
δ2�B

|Sd2,δ2(hm)|
δ
n/2+1
2

.

Here we recall from § 3 that Sd2,δ2(hm) = Sd2,δ2(m) since (δ2d2, h) = 1. Now set

H(m) =

{
∆VG(m)Q∗2(m) det M2 if G(m) 6= 0,
∆VQ

∗
2(m) det M2 if G(m) = 0,

where G is the dual form introduced in § 2.2. Note that Q∗2(m) 6= 0 in this definition, so that
H(m) is a non-zero integer.

We further split d2 = d21d22 and δ2 = δ21δ22 with δ21 | d∞21, d21 |H(m)∞, δ22 | d∞22 and
(d22, H(m)) = 1. It follows that

Σ1 6
∑

d216D/d1

d21|H(m)∞

(d21,h)=1
(d21,∆∞V )6Ξd1

∑
δ21|d∞21
δ21�B

∑
d22∼D/d1d21

(d22,hH(m))=1

∑
δ22|d∞22
δ22�B

|Sd21,δ21(m)||Sd22,δ22(m)|
(δ21δ22)n/2+1

.

In view of the fact that (d22, 2Q∗2(m) det M2) = 1, it follows from Lemmas 26 and 27 that
Sd22,δ22(m) vanishes unless δ22 = 1. Hence we may conclude that the sum over d22 and δ22 is

∑
d22∼D/d1d21

(d22,hH(m))=1

|Dd22(m)| �
(

D

d1d21

)n/2+ψ1(m)+ε

,

by Lemmas 23 and 24, where

ψ1(m) =

{
1
2 if G(m) = 0,
0 otherwise.

It follows that

Σ1�
(
D

d1

)n/2+ψ1(m)+ε ∑
d216D/d1

d21|H(m)∞

(d21,h)=1
(d21,∆∞V )6Ξd1

∑
δ21|d∞21
δ21�B

|Sd21,δ21(m)|
d
n/2+ψ1(m)
21 δ

n/2+1
21

.
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Now there is a factorisation d21 = d′21d
′′
21 such that (d′21, d

′′
21) = 1 and d′21 | δ∞21 and δ21 | d′∞21 ,

with Sd21,δ21(m) = Md′21,δ21(m)Dd′′21(m). It therefore follows from Lemmas 22 and 25 that

Sd21,δ21(m)� (d21,∆∞V )n/2−2d
n/2+ε
21 δ

n/2+1
21 ,

since m is primitive. Hence

Σ1� Ξn/2−2
d1

(
D

d1

)n/2+ψ1(m)+ε

Bε.

Substituting this into (7.5) we now examine

Σ2 =
∑
d16D
d1|h∞

(d1,∆∞V )6Ξ

∑
δ1|d∞1
δ1�B

|Sd1,δ1(hm)|
δ
n/2+1
1

Σ1

� Dn/2+ψ1(m)+εBε
∑
d16D
d1|h∞

(d1,∆∞V )6Ξ

Ξn/2−2

(d1,∆∞V )n/2−2

∑
δ1|d∞1
δ1�B

|Sd1,δ1(hm)|
d
n/2+ψ1(m)
1 δ

n/2+1
1

.

We repeat the process that we undertook above to estimate Sd1,δ1(hm), using Lemmas 22 and 25.
This gives

|Sd1,δ1(hm)|
d
n/2+ψ1(m)
1 δ

n/2+1
1

� (d1,∆∞V )n/2−2dε1h
n/2−2−ψ1(m).

By (1.3) there are only O(BεDε) values of δ1 that feature in this analysis. In this way we arrive
at the estimate

Σ2� Ξn/2−2Dn/2+ψ1(m)+εBεhn/2−2−ψ1(m). (7.6)

It is time to distinguish between whether G(m) = 0 or G(m) 6= 0 in our analysis of U (2).
Accordingly, let us write U (2) = U (21) + U (22) for the corresponding decomposition. We begin
with a discussion of U (22) , for which ψ1(m) = 0 in (7.6). We deduce from (7.5) that

U (22) � Ξn/2−2Dn/2+εBε
∑

0<h6
√
DBε

hθ1(n)−1
∑

0<|m|6
√
DBε/h

|m|θ1(n)

|m|n/2−1

� Ξn/2−2Dn/2+εBε
∑

0<h6
√
DBε

hθ1(n)−1

(√
DBε

h

)n/2+1+θ1(n)

,

on breaking the sum over m into dyadic intervals for |m|. The sum over h is therefore convergent
and we conclude that

U (22) � Ξn/2−2Dn/2+εBε(
√
D)n/2+1+θ1(n)

= Ξn/2−2D3n/4+(1+θ1(n))/2+εBε. (7.7)
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We now turn to a corresponding analysis of U (21), for which ψ1(m) = 1/2 in (7.6) . It follows
from (7.5) that

U (21) � Ξn/2−2D(n+1)/2+εBε
∑

0<h6
√
DBε

hθ1(n)−3/2
∑

0<|m|6(
√
DBε)/h

G(m)=0

|m|θ1(n)

|m|n/2−1

� Ξn/2−2D(n+1)/2+εBε max
1/2<M6

√
DBε

M θ1(n)+1−n/2
∑
|m|6M
G(m)=0

1.

Appealing to (7.1), we therefore deduce that

U (21) � Ξn/2−2D(n+1)/2+εBε(
√
D)n/2−1+θ1(n)

= Ξn/2−2D3n/4+θ1(n)/2+εBε. (7.8)

Our final task in this section is to estimate U (1) in Lemma 28, for which we will be able to
recycle most of the treatment of U (2). Following the steps up to (7.6) we find that

U (1)� Ξn/2−2Dn/2+ε

(
B√
D

)1/2+θ2(n)+ε ∑
0<|m|6

√
DBε

(−1)(n−1)/2Q∗2(m)=�

Dψ1(m)|m|1−n/2.

One notes that in the absence of the function θ1(n), the exponent of h is at most −1, so that the
summation over h can be carried out immediately. As previously it will be necessary to write
U (1) = U (11) + U (12), where U (11) denotes the contribution from the case G(m) = 0 and U (12) is
the remaining contribution. Beginning with the latter, in which case ψ1(m) = 0, we deduce that

U (12)� Ξn/2−2Dn/2+ε

(
B√
D

)1/2+θ2(n)+ε

max
1/2<M6

√
DBε

M1−n/2
∑
|m|6M

(−1)(n−1)/2Q∗2(m)=�

1.

Applying (7.2) we therefore obtain

U (12) � Ξn/2−2Dn/2+ε

(
B√
D

)1/2+θ2(n)

Bε(
√
D)n/2

= Ξn/2−2D3n/4−1/4−θ2(n)/2+εB1/2+θ2(n)+ε. (7.9)

For the remaining contribution, with ψ1(m) = 1/2, we will drop the fact that (−1)(n−1)/2Q∗2(m)
should be a square from the sum over m since there is already sufficient gain from the fact that
G(m) vanishes. Arguing as above, but this time with recourse to (7.1), we conclude that

U (11) � Ξn/2−2D(n+1)/2+ε

(
B√
D

)1/2+θ2(n)

Bε(
√
D)n/2−1

= Ξn/2−2D3n/4−1/4−θ2(n)/2+εB1/2+θ2(n)+ε. (7.10)

Recall the definitions (7.4) of θ1 and θ2. Combining (7.7)–(7.10) in Lemma 28, we may now
record our final bound for UT,a(B, D).

Lemma 29. Let n> 5 and D > 1. Then we have

UT,a(B, D)� Ξn/2−2Bn/2−1+ε(Dn/4+1+θ1(n)/2+ε +Dn/4−1/4−θ2(n)/2+εB1/2+θ2(n)).
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8. Proof of Theorem 1: conclusion

Recall the expression for S]T,a(B) recorded at the start of § 7. We now have everything in place
to estimate the overall contribution to this sum from the non-zero m. An upper bound for this
contribution is obtained by taking D�B in Lemma 29’s estimate for the quantity introduced
in (7.3). This gives the overall contribution

� Ξn/2−2Bn/2−1+ε(Bn/4+(1+θ1(n))/2 +Bn/4+1/4+θ2(n)/2)
� Ξn/2−2B3n/4−1/2+θ1(n)/2+ε.

Combining this with Lemmas 5, 6 and 8, our work so far has shown that

S(B) =M ](B) +O(Ξ−1/nBn−2+ε + ΞBn−3+ε + Ξn/2−2B3n/4−1/2+θ1(n)/2+ε), (8.1)

where

M ](B) =
Bn−2

4n−1

∑
T

∑
a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∞∑
d=1

(d,∆∞V )6Ξ

χ(d)
dn−1

∞∑
q=1

1
qn
Td,q(0)Id,q(0). (8.2)

We begin with a few words about the integral

Id,q(0) =
∫

Rn
h

(
q
√
d

B
, Q2(y)

)
Wd,T (y) dy,

where Wd,T is given by (3.1) and we have made the substitution Q=B/
√
d. Recall the

correspondence (3.5) between Id,q(0) and I∗r (0). Recall additionally the properties of h(x, y) and
the weight function Wd,T that were recorded in § 3. In particular, |∇Q2(y)| � 1 on supp(Wd,T )
and we have d�B and q

√
d�B if Id,q(0) is non-zero. Combining [Hea96, Lemma 14]

and [Hea96, Lemma 15] it follows that

Id,q(0)� 1. (8.3)

Furthermore, according to [Hea96, Lemma 13], we have

Id,q(0) = τ∞(Q2, Wd,T ) +ON

{(
q
√
d

B

)N}
, (8.4)

for any N > 0, where for any infinitely differentiable bounded function ω : Rn→ R of compact
support we set

τ∞(Q2, ω) = lim
ε→0

(2ε)−1

∫
|Q2(y)|6ε

ω(y) dy. (8.5)

In fact τ∞(Q2, ω) is the real density of points on the affine cone over the hypersurface Q2 = 0,
weighted by ω. We will use these facts to extract the dependence on Id,q(0) from (8.2).

Returning to (8.2), our main goal in this section will be a proof of the following asymptotic
formula.

Lemma 30. Let n> 5, let ε > 0 and assume Hypothesis-%. Then we have

M ](B) =Bn−2σ∞
∏
p

σp +O(Ξ−1Bn−2 +Bn−5/2+ε +B3n/4−1+ε),

where σ∞ and σp are the expected local densities of points on X(R) and X(Qp), respectively. In
particular, σ∞

∏
p σp > 0 if X(R) and X(Qp) are non-empty for each prime p.

In the context of Theorem 1, for which n> 7, we note that Hypothesis-% follows from
Lemma 2. Moreover, X(Qp) is non-empty for every prime p by the work of Demjanov [Dem56].
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We now wish to apply Lemma 30 in (8.1) to complete the proof of Theorem 1. Our estimates
will be optimised by the choice Ξ =Bξ(n), with

ξ(n) =
(
n

4
− 3 + θ1(n)

2

)(
2n

n2 − 4n+ 2

)
,

which comes from balancing the first and third error terms in (8.1). We make the observation
that ξ(n)< ξ(n)(1 + 1/n)< 1, for n> 7. Hence we obtain the overall error term O(Bn−2−η(n)+ε),
with

η(n) = min
{
ξ(n)
n

, 1− ξ(n),
1
2
,
n

4
− 1
}

=
ξ(n)
n

.

Observe that η(n)> 0 if n> 7. At this point we stress that if we had exponent 1/2 instead of
7/16 in (4.4), which corresponds to the convexity bound, we would have θ1(n) = 1/2 for odd n
and hence our result would only hold for n> 8. This completes the proof of Theorem 1, subject
to Lemma 30.

The remainder of this section will be devoted to the proof of Lemma 30. Combining (3.4),
(4.1) and Lemma 25 it follows from Hypothesis-% that

Td,q(0)� dn−2+εqn/2+1, (8.6)

for any d, q ∈ N. We will also make use of the bound (8.3) and the fact that d�B whenever
Id,q(0) is non-zero. Let M(B) be defined as in (8.2), but in which the sum over d runs over all
positive integers with d�B. It follows from (8.6) that M ](B) =M(B) +O(Ξ−1Bn−2+ε). Write

M(B) =
Bn−2

4n−1

∑
T

MT (B),

say.
For given θ > 0, let us consider the contribution to MT (B) from q > B1/2−θ. Invoking (8.6),

this contribution is seen to be

�
∑

a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∑
d�B

1
dn−1

∑
q>B1/2−θ

|Td,q(0)|
qn

�
∑
d�B

d−1+ε
∑

q>B1/2−θ

q−n/2+1+ε

�B(1/2−θ)(−n/2+2)+ε,

since n> 5. Turning to the contribution from q 6B1/2−θ we see that the error term in (8.4) is
ON (B−N ) for arbitrary N > 0, since d�B. Hence such q make the overall contribution∑

a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∑
d�B

χ(d)τ∞(Q2, Wd,T )
dn−1

∑
q6B1/2−θ

Td,q(0)
qn

+ON (B−N ),

to MT (B). The previous paragraph shows that the summation over q can be extended to infinity
with error O(B(1/2−θ)(−n/2+2)+ε). Moreover, for any fixed T , the function τ∞(Q2, Wd,T ) vanishes
unless

d�

{
T if T 6B,
B2/T otherwise.
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Hence we may also extend the summation over d to infinity. Taking θ to be a suitably small
positive multiple of ε, we may therefore conclude that

MT (B) =
∑

a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∞∑
d=1

χ(d)τ∞(Q2, Wd,T )
dn−1

∞∑
q=1

Td,q(0)
qn

+O(B−n/4+1+ε).

Let us denote by LT (B) the main term in this expression. We proceed to introduce the summation
over T via the following result, in which %(d) = Dd(0).

Lemma 31. Let ε > 0 and M ∈ N. Assume Hypothesis-%. Then for any 16 y < x we have∑
y<d6x

(d,M)=1

χ(d)%(d)
dn−1

� M ε

√
y
.

Proof. Let s= σ + it ∈ C. In the usual way we consider the Dirichlet series

ηM (s) =
∑

(d,M)=1

χ(d)%(d)
ds

=
∏
p-M

(
1 +

χ(p)%(p)
ps

+O(p2n−4−2σ+ε)
)
,

where the error term comes from Hypothesis-%. Since %(p) = pn−2 +O(pn−5/2), by the Lang–Weil
estimate, we conclude that

ηM (s) = L(s− (n− 2), χ)EM (s),

where EM (s) is absolutely convergent and bounded by O(M ε) in any fixed complex half-
plane σ > n− 3/2 + η, with η > 0. The conclusion of the lemma is now available through a
straightforward application of Perron’s formula in the form (4.5). 2

We deduce from Lemma 31 that∑
(d,q)=1

χ(d)%(d)VT (d)
dn−1

� qε√
T

(8.7)

and ∑
(d,q)=1

χ(d)%(d)VT (B2Q1(y)/d)
dn−1

� qε
√
T

B
√
Q1(y)

� qε
√
T

B
, (8.8)

uniformly for y ∈ supp(W ). Here we recall that Q1(y) is positive and has order of magnitude 1
on supp(W ).

We now claim that ∑
T

LT (B) = 2C +O(B−1/2+ε),

with

C = τ∞(Q2, W )
∑

a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∞∑
d=1

χ(d)
dn−1

∞∑
q=1

Td,q(0)
qn

. (8.9)

Now the weight function Wd,T differs according to whether T 6B or T > B. It will be convenient
to set W (1)

d,T (y) =W (y)VT (d) and W
(2)
d,T (y) =W (y)VT (B2Q1(y)/d). In either case we wish to
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extend the sum over T to the full range, since
∑

T VT (t) = 1 for 16 t�B2. We have∑
T6B

LT (B) = C −
∑
T>B

L
(1)
T (B)

and ∑
T>B

LT (B) = C −
∑
T6B

L
(2)
T (B),

where L(i)
T (B) is defined as for LT (B) but with the weight function W (i)

d,T , for i= 1, 2. To estimate
the tails we employ the factorisation properties of Td,q(0), finding that

L
(i)
T (B) =

∑
a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∞∑
q=1

1
qn

∑
δ|q∞
δ�B

Tδ,q(0)
δn−1

∑
(d,q)=1

χ(d)%(d)τ∞(Q2, W
(i)
δd,T )

dn−1
,

for i= 1, 2. The inner sum over d is estimated by substituting the expression (8.5) for
τ∞(Q2, W

(i)
δd,T ), and then interchanging the limit integral and sum. Note that the sum over d

is finite since τ∞(Q2, W
(i)
δd,T ) = 0 unless δd�B. The resulting sum over d is then estimated

using (8.7) or (8.8), according to whether i= 1 or 2, respectively. After estimating the limit
integral trivially, the claim follows on invoking our hypothesised bound (8.6). Bringing everything
together, we have therefore shown that

M(B) =
2Bn−2

4n−1
C +O(Bn−5/2+ε +B3n/4−1+ε), (8.10)

with C given by (8.9).
To close, we wish to show that the leading constant admits an interpretation in terms of local

densities for the intersection of quadrics X considered in Theorem 1. For a prime p the relevant
p-adic density is equal to

σp = lim
k→∞

p−knN(pk),

where

N(pk) = #
{

(x, u, v) ∈ (Z/pkZ)n+2 :
Q1(x)≡ u2 + v2 (mod pk),
Q2(x)≡ 0 (mod pk)

}
,

if p > 2, and

N(2k) = #
{

(x, u, v) ∈ (Z/2kZ)n+2 :
Q1(x)≡ u2 + v2 (mod 2k),
Q2(x)≡ 0 (mod 2k), 2 -Q1(x)

}
.

The restriction to odd values of Q1(x) in N(2k) comes from the definition of the counting function
S(B). In order to relate these densities to the local factors that arise in our analysis, we set

S(A; pk) = #{(u, v) ∈ (Z/pkZ)2 : u2 + v2 ≡A (mod pk)},

for any A ∈ Z and any prime power pk. According to Heath-Brown [Hea03, § 8] we have

S(A; pk) =

{
pk + kpk(1− 1/p) if vp(A)> k,
(1 + vp(A))pk(1− 1/p) if vp(A)< k,
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when p≡ 1 (mod 4). When p≡ 3 (mod 4), we have

S(A; pk) =


p2[k/2] if vp(A)> k,
pk(1 + 1/p) if vp(A)< k and 2 | vp(A),
0 if vp(A)< k and 2 - vp(A).

Finally, for odd A, when p= 2 and k > 2 we have

S(A; 2k) =

{
2k+1 if A≡ 1 (mod 4),
0 otherwise.

We now have everything in place to reinterpret the densities σp. We being by analysing the
case p= 2, obtaining

σ2 = lim
k→∞

21−k(n−1)#
{
x ∈ (Z/2kZ)n :

Q1(x)≡ 1 (mod 4),
Q2(x)≡ 0 (mod 2k)

}
. (8.11)

Alternatively, when p > 2, it is straightforward to deduce that

σp =
(

1− χ(p)
p

)
lim
k→∞

p−k(n−1)
∑

06e6k

χ(pe)Ñk(e), (8.12)

where

Ñk(e) = #
{
x ∈ (Z/pkZ)n :

Q1(x)≡ 0 (mod pe),
Q2(x)≡ 0 (mod pk)

}
.

Finally, for the real density σ∞ of points, we claim that

σ∞ = πτ∞(Q2, W ), (8.13)

in the notation of (8.5). Supposing that the equations for X are taken to be Q1(x) = u2 + v2

and Q2(x) = 0, the real density is equal to

σ∞ =
∫ ∞
−∞

∫ ∞
−∞

∫
(x,u,v)∈Rn+2

W (x)e(α{Q1(x)− u2 − v2}+ βQ2(x)) dx du dv dα dβ.

We restrict u, v to be non-negative and substitute t=Q1(x)− u2 − v2 for v. Writing

F (t) =
1
2

∫ ∞
−∞

∫
x,u

W (x)e(βQ2(x))√
Q1(x)− u2 − t

dx du dβ,

where the integral is over (x, u) ∈ Rn+1 such that u> 0 and Q1(x)− u2 − t> 0, we therefore
obtain

σ∞ = 4
∫ ∞
−∞

∫
t
F (t)e(αt) dt dα.

By the Fourier inversion theorem this reduces to 4F (0). Noting that∫ √A
0

du√
A− u2

=
π

2
,

for any A> 0, we arrive at the expression

σ∞ = 4× 1
2
× π

2

∫ ∞
−∞

∫
x∈Rn

W (x)e(βQ2(x)) dx dβ.

However, the remaining integral is just the real density τ∞(Q2, W ), by [Hea96, Theorem 3]. This
concludes the proof of (8.13).
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It is now time to interpret the constant C in (8.9) in terms of the local densities σp and σ∞.
Invoking Lemma 9 we may write

C = τ∞(Q2, W )
∑

a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∞∑
d=1

χ(d)
dn−1

∞∑
`=0

∞∑
q′=1
2-q′

1
(2`q′)n

Sd,q′(0)Sχ(dq′)
1,2` (0).

Recall (3.3). We therefore see that for fixed d and q′ the sum over a and ` is∑
a∈(Z/4Z)n

Q1(a)≡1 (mod 4)

∞∑
`=0

1
2`n

S
χ(dq′)
1,2` (0) =

∞∑
`=0

1
2`n

∑∗

a (mod 2`)

∑
k (mod 22+`)

Q1(k)≡1 (mod 4)

e2`(aQ2(k))

= lim
`→∞

2−`(n−1)#
{
k ∈ (Z/22+`Z)n :

Q1(k)≡ 1 (mod 4),
Q2(k)≡ 0 (mod 2`)

}
= 4n × σ2

2
,

on carrying out the sum over a and comparing with (8.11). Hence it follows that

C = 4n × σ2

2
× τ∞(Q2, W )

∞∑
d=1

χ(d)
dn−1

∞∑
q′=1
2-q′

1
q′n

Sd,q′(0).

Expressing the sum over d and q′ as an Euler product one finds that
∞∑
d=1

χ(d)
dn−1

∞∑
q′=1
2-q′

1
q′n

Sd,q′(0) =
∏
p>2

∑
r,`>0

prχ(pr)
p(r+`)n

Spr,p`(0).

Here Spr,1(0) = Ñr(r) and Spr,p`(0) = p`Ñr+`(r)− p`−1+nÑr+`−1(r), when `> 1, in the notation
of (8.12). It easily follows that

∞∑
d=1

χ(d)
dn−1

∞∑
q′=1
2-q′

1
q′n

Sd,q′(0) =
∏
p>2

τp,

with

τp = lim
k→∞

p−k(n−1)
∑

06r6k

χ(pr)Ñk(r) =
(

1− χ(p)
p

)−1

σp.

Finally, on appealing to the identity (8.13) and noting that L(1, χ) = π/4, we deduce that

C = 4n × σ2

2
× τ∞(Q2, W )L(1, χ)

∏
p>2

σp =
4n−1

2
× σ∞

∏
p

σp.

Once inserted into (8.10) we therefore arrive at the statement of Lemma 30.
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