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Abstract. We prove a general result on Bailey pairs and show that two Bailey
pairs of Bringmann and Kane are special cases. We also show how to use a change
of base formula to pass from the pairs of Bringmann and Kane to pairs used by
Andrews in his study of Ramanujan’s seventh order mock theta functions. We derive
several more Bailey pairs of a similar type and use these to construct a number of
new q-hypergeometric double sums which are mock theta functions. Finally, we prove
identities between some of these mock theta double sums and classical mock theta
functions.
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1. Introduction.

1.1. Bailey pairs. A Bailey pair relative to a is a pair of sequences (αn, βn)n≥0

satisfying

βn =
n∑

k=0

αk

(q)n−k(aq)n+k
, (1)

or equivalently

αn = (1 − aq2n)
n∑

j=0

(aq)n+j−1(−1)n−jq(n−j
2 )

(q)n−j
βj. (2)

Here, we have used the standard q-hypergeometric notation,

(a)n = (a; q)n =
n∏

k=1

(1 − aqk−1),
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valid for n ∈ � ∪ {∞}. The Bailey lemma says that if (αn, βn) is a Bailey pair relative to
a, then so is (α′

n, β
′
n), where

α′
n = (ρ1)n(ρ2)n(aq/ρ1ρ2)n

(aq/ρ1)n(aq/ρ2)n
αn (3)

and

β ′
n =

n∑
k=0

(ρ1)k(ρ2)k(aq/ρ1ρ2)n−k(aq/ρ1ρ2)k

(aq/ρ1)n(aq/ρ2)n(q)n−k
βk. (4)

A useful limiting form of the Bailey lemma is found by putting (3) and (4) into (1)
and letting n → ∞, giving

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)nβn = (aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/ρ1ρ2)∞

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)n

(aq/ρ1)n(aq/ρ2)n
αn. (5)

For more on Bailey pairs and the Bailey lemma, see [1, 2, 17].
This paper has its origins in the following two Bailey pairs discovered by

Bringmann and Kane [9]. First, (an, bn) is a Bailey pair relative to 1, where

a2n = (1 − q4n)q2n2−2n
n−1∑

j=−n

q−2j2−2j, (6)

a2n+1 = −(1 − q4n+2)q2n2
n∑

j=−n

q−2j2
, (7)

and

bn = (−1)n(q; q2)n−1

(q)2n−1
χ (n 	= 0)1, (8)

and second, (αn, βn) is a Bailey pair relative to q, where

α2n = 1
1 − q

⎛
⎝q2n2+2n

n−1∑
j=−n

q−2j2−2j + q2n2
n∑

j=−n

q−2j2

⎞
⎠ , (9)

α2n+1 = − 1
1 − q

⎛
⎝q2n2+4n+2

n∑
j=−n

q−2j2 + q2n2+2n
n∑

j=−n−1

q−2j2−2j

⎞
⎠ , (10)

and

βn = (−1)n(q; q2)n

(q)2n+1
. (11)

1As usual, χ (X) = 1 if X is true and 0 if X is false.
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These are highly reminiscent of three Bailey pairs discovered by Andrews [3] in
his study of Ramanujan’s seventh order mock theta functions. Namely, he showed that
(An(0),Bn(0)) and (An(1),Bn(1)) form Bailey pairs relative to 1, where

A2n(0) = q3n2+n
n∑

j=−n

q−j2 − q3n2−n
n−1∑

j=−n+1

q−j2
, (12)

A2n+1(0) = −q3n2+4n+1
n∑

j=−n−1

q−j2−j + q3n2+2n
n−1∑

j=−n

q−j2−j, (13)

Bn(0) = 1
(qn+1)n

, (14)

A2n(1) = −(1 − q4n)q3n2−2n
n−1∑

j=−n

q−j2−j, (15)

A2n+1(1) = (1 − q4n+2)q3n2+n
n∑

j=−n

q−j2
, (16)

and

Bn(1) = 1
(qn)n

χ (n 	= 0), (17)

while (An(2),Bn(2)) is a Bailey pair relative to q, where

A2n(2) = 1
1 − q

⎛
⎝q3n2+2n

n−1∑
j=−n

q−j2−j + q3n2+n
n∑

j=−n

q−j2

⎞
⎠ , (18)

A2n+1(2) = − 1
1 − q

⎛
⎝q3n2+5n+2

n∑
j=−n

q−j2 + q3n2+4n+1
n∑

j=−n−1

q−j2−j

⎞
⎠ , (19)

and

Bn(2) = 1
(qn+1)n+1

. (20)

Our first goal in this paper is to prove the following results, which will lead to more
Bailey pairs like those of Bringmann–Kane and Andrews. Note that Theorem 1.3 is
simply an application of Theorem 1.1 followed by an application of Theorem 1.2.
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THEOREM 1.1. If (αn, βn) is a Bailey pair relative to 1 with α0 = β0 = 1, then (α′
n, β

′
n)

is also a Bailey pair relative to 1, where α′
0 = β ′

0 = 0,

α′
2n = −(1 − q4n)q2n2−2n

n−1∑
j=0

q−2j2−2jα2j+1, (21)

α′
2n+1 = −(1 − q4n+2)q2n2

n∑
j=0

q−2j2
α2j, (22)

and for n ≥ 1,

β ′
n = − βn−1

1 − q2n−1
. (23)

THEOREM 1.2. Suppose that (αn, βn) is a Bailey pair relative to 1 with α0 = β0 = 0.
Then (α′

n, β
′
n) is a Bailey pair relative to q, where

α′
n = 1

1 − q

(
− αn+1

1 − q2n+2
+ q2nαn

1 − q2n

)
(24)

and

β ′
n = −βn+1. (25)

THEOREM 1.3. If (αn, βn) is a Bailey pair relative to 1 with α0 = β0 = 1, then (α′′
n , β ′′

n )
is a Bailey pair relative to q, where

α′′
2n = 1

1 − q

⎛
⎝q2n2

n∑
j=0

q−2j2
α2j − q2n2+2n

n−1∑
j=0

q−2j2−2jα2j+1

⎞
⎠ , (26)

α′′
2n+1 = 1

1 − q

⎛
⎝q2n2+2n

n∑
j=0

q−2j2−2jα2j+1 − q2n2+4n+2
n∑

j=0

q−2j2
α2j

⎞
⎠ , (27)

and

β ′′
n = βn

1 − q2n+1
. (28)

An application of Theorem 1.1 or 1.3 to a “typical” Bailey pair (from Slater’s
list [16], for example) will give a positive definite quadratic form in the power of q
occurring in αn. However, there are a few cases where we obtain an indefinite quadratic
form. For example, using Theorems 1.1 and 1.3 and the following Bailey pair relative
to 1 from Slater’s list [16, p. 468],

αn =
{

1, if n = 0,

2(−1)n, otherwise
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and

βn = (−1)n

(q2; q2)n
,

we recover the Bailey pairs of Bringmann and Kane in (6)–(11). Some other examples
are recorded in Corollaries 2.2–2.4. Andrews’ Bailey pairs in (15)–(20) do not seem to
be simple applications of Theorems 1.1–1.3, but they can be deduced from (6)–(11)
using a change of base formula. We discuss this in Section 3. For another treatment of
these pairs, see [6].

1.2. Mock theta functions. An important difference between the pairs of Andrews
and those of Bringmann–Kane is that the former yield mock theta functions when
substituted into (5), while the latter do not. However, as we showed in [13], the Bailey
pairs of Bringmann and Kane do give rise to mock theta functions after an appropriate
application of the Bailey lemma. These mock theta functions are q-hypergeometric
double sums.

To recall them, we need some special functions. We use the classical theta series

j(x, q) :=
∑
n∈�

(−x)nq(n
2) = (x)∞(q/x)∞(q)∞,

and for brevity, we write Jm := Jm,3m with Ja,m := j(qa, qm), and Ja,m := j(−qa, qm). We
also use the Hecke-type series

fa,b,c(x, y, q) :=
⎛
⎝∑

r,s≥0

−
∑
r,s<0

⎞
⎠ (−1)r+sxrysqa(r

2)+brs+c(s
2), (29)

which is an indefinite theta series when ac < b2. Finally, we employ the Appell–Lerch
series

m(x, q, z) := 1
j(z, q)

∑
r∈�

(−1)rq(r
2)zr

1 − qr−1xz
, (30)

where x, z ∈ �∗ := � \ {0} with neither z nor xz an integral power of q. The Appell–
Lerch series is a “mock Jacobi form” which specializes to a mock theta function
when x and z are of the form ζq

m
n with ζ a root of unity [18, 19]. Recall that a mock

theta function is the holomorphic part of a weight 1/2 harmonic weak Maass form
f (τ ) (as usual, q := e2π iτ where τ = x + iy ∈ �) whose image of under the operator
ξ 1

2
:= 2iy

1
2

∂
∂τ

is a unary theta function [15, 18].
The main result in [13] contains identities equivalent to the following.
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THEOREM 1.4. [13, Theorem 1.3]

W1(q) :=
∑
n≥1

∑
n≥j≥1

(−1)j(q; q2)j−1(−1)jqn2+(j+1
2 )

(−q)n(q)n−j(q)2j−1

= −2q2

(q)∞
f3,5,3(q5, q5, q)

= 4m(−q17, q48, q24) − 4q−5m(−q, q48, q24) − 2q2 J8J12J96J7,16J4,24J6,48J30,96

J24J48J3,8J2,12J14,96J46,96
,

(31)

W2(q) :=
∑
n≥1

∗ ∑
n≥j≥1

(q; q2)n(−1)j(q; q2)j−1(−1)n+jq(j+1
2 )

(−q)n(q)n−j(q)2j−1

= q(q; q2)∞
(q2; q2)∞

f1,3,1(−q2,−q2, q)

= 4m(−q, q8, q4) + q
J2

1,8J3
3,8J2,16

J4
8 J16

, (32)

W3(q) :=
∑
n≥1

∑
n≥j≥1

(q; q2)n(−1; q2)j(q2; q4)j−1(−1)n+jqn2+j2+j

(−q2; q2)n(q2; q2)n−j(q2; q2)2j−1

= 2q3(q; q2)∞
(q2; q2)∞

f1,2,1(−q7,−q7, q4)

= 4m(−q, q12, q4) + 2q3 J
2
1,12

J1,4
, (33)

W4(q) :=
∑
n≥0

∑
n≥j≥0

(−q)j(q; q2)j(−1)jqn2+n+(j+1
2 )

(−q)n(q)n−j(q)2j+1

= 1
(q)∞

f3,5,3(q3, q3, q)

= −2q−4m(−q5, q48, q24) − 2q−2m(−q11, q48, q24)

+ J8J12J96J3,16J4,24J6,48J18,96J30,96

J24J48J1,8J2,12J6,96J26,96J38,96
. (34)

In particular, W1(q)–W4(q) are mock theta functions. We remark that the series
defining W2(q) does not converge. However, similar to the classical sixth order mock
theta function μ(q) [5], the sequence of even partial sums and the sequence of odd
partial sums both converge. We define W2(q) as the average of these two values. This
averaging is denoted here and throughout by the notation

∑∗.

The second goal of this paper is to use Bailey pairs arising from Theorems 1.1 and
1.3 to obtain many more mock theta functions like W1(q)–W4(q). Just as with the pairs
of Bringmann and Kane, this first requires one application of the Bailey lemma, and
so the mock theta functions we obtain are q-hypergeometric double sums. We record
these mock theta functions in three separate results, corresponding to three sets of
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Bailey pairs. We first express the double sums in terms of the indefinite theta series (29)
and then in terms of the Appell–Lerch series (30).

THEOREM 1.5. The following are mock theta functions.

M1(q) :=
∑
n≥1

∑
n≥j≥1

(−1)j(−1)jqn2+( j
2)

(−q)n(q)n−j(q2; q2)j−1(1 − q2j−1)

= − 2q
(q)∞

f3,5,3(q4, q6, q)

= 4q−3m(−q7, q48, q24) + 4m(−q25, q48, q−24) − 2

− 2
J8J12J96J1,16J4,24J6,48J18,96

J24J48J3,8J2,12J2,96J34,96
, (35)

M2(q) :=
∑
n≥1

∗ ∑
n≥j≥1

(q; q2)n(−1)j(−1)n+jq( j
2)

(−q)n(q)n−j(q2; q2)j−1(1 − q2j−1)

= (q; q2)∞
(q2; q2)∞

f1,3,1(−q,−q3, q)

= 4m(−q5, q8, q4) − 2 − J3
1,8J2

3,8J6,16

J4
8 J16

, (36)

M3(q) :=
∑
n≥1

∑
n≥j≥1

(q; q2)n(−1; q2)j(−1)n+jqn2+j2−j

(−q2; q2)n(q2; q2)n−j(q4; q4)j−1(1 − q4j−2)

= 2q(q; q2)∞
(q2; q2)∞

f1,2,1(−q5,−q9, q4)

= 4m(−q7, q12, q4) − 2 + 2
J3

12J5,12

J4,12J1,12J3,12
, (37)

M4(q) :=
∑
n≥0

∑
n≥j≥0

(−1)jqn2+n+( j
2)

(−q)n(q)n−j(q)j(1 − q2j+1)

= 1
(q)∞

f3,5,3(q2, q4, q)

= 2m(−q29, q48, q24) − 1 − 2q−1m(−q13, q48, q−24)

+ q
J8J12J3

96J5,16J4,24J6,48J18,48

J24J2
48J1,8J2,12J10,96J22,96J42,96

, (38)

M5(q) :=
∑
n≥0

∑
n≥j≥0

(−1)jq(n+1
2 )+( j

2)

(q)n−j(q)j(1 − q2j+1)

= (−q)∞
(q)∞

f1,2,1(q, q3, q2)

= 2m(q5, q6, q2) − 1 − q
J3

6

J2,6J3,6
. (39)
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THEOREM 1.6. The following are mock theta functions.

M6(q) :=
∑
n≥1

∑
n≥j≥1

(−1)jqn2+(j+1
2 )

(q)n−j(q)j−1(1 − q2j−1)

= − q2

(q)∞
f3,7,3(q5, q6, q)

= m(−q49, q120, q−3) − q−3m(−q89, q120, q−3) + q−3

+ q−14m(−q119, q120, q3) − q−14

− q−1m(−q79, q120, q3) + q−1 − q−11 J12,48J16,40J2,20J3,40J17,40J40

J1J3,120J6,40J20J80

+ q−4 J24,48J1,40J4,40J1,40J8,20J4,40J18,40J80

J1J3,120J6,40J2,40J2
20J40

+ q−12 J24,48J1,40J4,40J1,40J8,20J16,40J2
42,80

J1J3,120J6,40J2,40J2
20J80

, (40)

M7(q) :=
∑
n≥1

∑
n≥j≥1

(−1)n(−1)jq(n+1
2 )+(j+1

2 )

(q)n−j(q)j−1(1 − q2j−1)

= −2q2(−q)∞
(q)∞

f1,3,1(q4, q5, q2)

= 2q−1m(−q, q16, q−1) − 2q−1 J4,8J16,32J1,16J14,32

J1,2J2,16J0,16
, (41)

M8(q) := 2
∑
n≥1

∗ ∑
n≥j≥1

(q; q2)n(−1)n+jq(j+1
2 )

(q)n−j(q)j−1(1 − q2j−1)

= q(q; q2)∞
(q2; q2)∞

f1,5,1(−q2,−q3, q)

= 2m(−q7, q24, q6) + 2q−2m(−q, q24, q−6) + q
J1J3,8J2,16

J2J16
, (42)

M9(q) :=
∑
n≥1

∑
n≥j≥1

(q; q2)n(−1)n+jqn2+j2+j

(q2; q2)n−j(q2; q2)j−1(1 − q4j−2)

= q3(q; q2)∞
(q2; q2)∞

f1,3,1(−q7,−q9, q4)

= m(−q8, q32, q−2) − q−1 J2
64J28,64

J32J4,64
+ q−1 J8,16J32,64J4,32J24,64

J1,4J6,32J2,32
, (43)

M10(q) :=
∑
n≥1

∑
n≥j≥1

(−1)2n(−1)jqn+j2+j

(q2; q2)n−j(q2; q2)j−1(1 − q4j−2)

= −2q3(−q)∞
(q)∞

f1,5,1(q5, q7, q2)

= −2q−1m(−q10, q48, q−2) − 2q−4m(−q2, q48, q−2)
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− 4q−3 J8,32J20,48J22,48J2,24J6,48J96

J1,2J8,48J0,48J24J2,48

+ 2q6 J16,32J4,48J2,48J10,24J4,48J20,48J96

J1,2J8,48J0,48J2
24J48

+ 2q−4 J16,32J4,48J2,48J10,24J20,48J2
44,96

J1,2J8,48J0,48J2
24J96

, (44)

M11(q) :=
∑
n≥0

∑
n≥j≥0

(−1)jqn2+n+(j+1
2 )

(q)n−j(q)j(1 − q2j+1)

= 1
(q)∞

f3,7,3(q3, q4, q)

= q−8m(−q17, q120, q−3) + q−6m(−q23, q120, q3) − q−1m(−q47, q120, q3)

+ q−12m(−q7, q120, q3) + q−9 J12,48J1,40J8,40J19,40J6,20J12,40J18,40J2
40

J1J3,120J14,40J10,40J3
20J80

+ q−4 J12,48J1,40J8,40J19,40J6,20J8,40J2
19,40J

2
1,40

J1J3,120J14,40J10,40J3
20J40J80

− q−4 J24,48J1,40J12,40J1,40J4,20J12,40J18,40J80

J1J3,120J14,40J10,40J2
20J40

− q−8 J24,48J1,40J12,40J1,40J4,20J8,40J2
38,80

J1J3,120J14,40J10,40J2
20J80

, (45)

M12(q) :=
∑
n≥0

∑
n≥j≥0

(−q)n(−1)jq(n+1
2 )+(j+1

2 )

(q)n−j(q)j(1 − q2j+1)

= (−q)∞
(q)∞

f1,3,1(q2, q3, q2)

= −q−1m(−q3, q16, q) + q
J4,8J16,32J5,16J6,32

J1,2J6,16J4,16
. (46)

THEOREM 1.7. The following are mock theta functions.

M13(q) :=
∑
n≥1

∑
n≥j≥1

(−1)jqn2+( j
2)

(q)n−j(q)j−1(1 − q2j−1)

= − q
(q)∞

f3,7,3(q4, q7, q)

= m(−q59, q120, q−9) − q−7m(−q19, q120, q−9) − q−4m(−q29, q120, q9)

− q−10m(−q11, q120, q−9) − q−8 J12,48J3,40J16,40J17,40J2,20J4,40J14,40J2
40

J1J9,120J10,40J2,40J3
20J80

− q−9 J12,48J3,40J16,40J17,40J2,20J16,40J2
17,40J

2
3,40

J1J9,120J10,40J2,40J3
20J40J80
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+ q−2 J24,48J3,40J4,40J3,40J8,20J4,40J14,40J80

J1J9,120J10,40J2,40J2
20J40

+ q−10 J24,48J3,40J4,40J3,40J8,20J16,40J2
34,80

J1J9,120J10,40J2,40J2
20J80

, (47)

M14(q) :=
∑
n≥1

∑
n≥j≥1

(−1)n(−1)jq(n+1
2 )+( j

2)

(q)n−j(q)j−1(1 − q2j−1)

= −2q(−q)∞
(q)∞

f1,3,1(q3, q6, q2)

= 2m(−q7, q16, q−3) − 2
J4,8J16,32J1,16J14,32

J1,2J2,16J4,16
, (48)

M15(q) := 2
∑
n≥1

∗ ∑
n≥j≥1

(q; q2)n(−1)n+jq( j
2)

(q)n−j(q)j−1(1 − q2j−1)

= (q; q2)∞
(q2; q2)∞

f1,5,1(−q,−q4, q)

= 2m(−q13, q24, q2) − 2q−1m(−q5, q24, q2) + J1J1,8J6,16

J2J16
, (49)

M16(q) :=
∑
n≥1

∑
n≥j≥1

(q; q2)n(−1)n+jqn2+j2−j

(q2; q2)n−j(q2; q2)j−1(1 − q4j−2)

= q(q; q2)∞
(q2; q2)∞

f1,3,1(−q5,−q11, q4)

= −q−1m(−q8, q32, q−6)+ 1
2

+ J3
32J10,32J6,32

J6,32J16,32J0,32J10,32
+ q−1 J8,16J32,64J4,32J24,64

J1,4J2,32J10,32
,

(50)

M17(q) :=
∑
n≥1

∑
n≥j≥1

(−1)2n(−1)jqn+j2−j

(q2; q2)n−j(q2; q2)j−1(1 − q4j−2)

= −2q(−q)∞
(q)∞

f1,5,1(q3, q9, q2)

= 2m(−q22, q48, q−6) + 2q−1m(−q14, q48, q−6)

− 2q3 J8,32J20,48J18,48J2,24J4,48J12,48J2
48

J1,2J16,48J8,48J3
24J96

− 2q−1 J8,32J20,48J18,48J2,24J20,48J2
18,48J

2
6,48

J1,2J16,48J8,48J3
24J48J96

+ 2q10 J16,32J4,48J6,48J10,24J4,48J12,48J96

J1,2J16,48J8,48J2
24J48

+ 2
J16,32J4,48J6,48J10,24J20,48J2

36,96

J1,2J16,48J8,48J2
24J96

, (51)
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M18(q) :=
∑
n≥0

∑
n≥j≥0

(−1)jqn2+n+( j
2)

(q)n−j(q)j(1 − q2j+1)

= 1
(q)∞

f3,7,3(q2, q5, q)

= m(−q67, q120, q−9) + q−9m(−q13, q120, q9) − q−2m(−q37, q120, q9)

− q−1m(−q43, q120, q−9) + q−7 J12,48J3,40J8,40J17,40J6,20J12,40J14,40J2
40

J1J9,120J18,40J6,40J3
20J80

+ q−4 J12,48J3,40J8,40J17,40J6,20J8,40J2
17,40J

2
3,40

J1J9,120J18,40J6,40J3
20J40J80

− q−3 J24,48J3,40J12,40J3,40J4,20J12,40J14,40J80

J1J9,120J18,40J6,40J2
20J40

− q−7 J24,48J3,40J12,40J3,40J4,20J8,40J2
34,80

J1J9,120J18,40J6,40J2
20J80

, (52)

M19(q) :=
∑
n≥0

∑
n≥j≥0

(−q)n(−1)jq(n+1
2 )+( j

2)

(q)n−j(q)j(1 − q2j+1)

= (−q)∞
(q)∞

f1,3,1(q, q4, q2)

= m(−q11, q16, q−3) + q
J4,8J16,32J5,16J6,32

J1,2J8,16J2,16
. (53)

It will have been noticed that some of the expressions in Theorems 1.5–1.7 are
considerably more involved than others. For instance, equation (52) involves four
Appell–Lerch series and four modular forms while equation (53) involves only one
of each. This depends on the indefinite theta function fn,n+p,n(x, y, q). In general, the
number of Appell–Lerch series grows with n and the number of modular forms grows
with p.

The final goal of the paper is to give identities involving some of the double sums
in Theorems 1.5–1.7 and “classical” mock theta functions. Namely, we express the
double sums M2(q), M5(q), M9(q), and M16(q) in terms of the mock theta functions

T0(q) :=
∑
n≥0

q(n+1)(n+2)(−q2; q2)n

(−q; q2)n+1
,

ω(q) :=
∑
n≥0

q2n(n+1)

(q; q2)2
n+1

,

A(q) :=
∑
n≥0

qn+1(−q2; q2)n

(q; q2)n+1
,
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and

U1(q) :=
∑
n≥0

q(n+1)2
(−q; q2)n

(−q2; q4)n+1
,

of “orders” 8, 3, 2, and 8, respectively (see [11]). A similar identity was found in [13],
namely

W2(q) = 2qT1(q) − qS1(q)

where

S1(q) :=
∑
n≥0

qn(n+2)(−q; q2)n

(−q2; q2)n

and

T1(q) :=
∑
n≥0

qn(n+1)(−q2; q2)n

(−q; q2)n+1

are mock theta functions of order 8 [11].

COROLLARY 1.8. We have the following identities.

M2(q) = 4T0(q) + 2 − 2
J3

8 J4,8

J2
2,8J1,8

+ J2,4J8,16J1,8J6,16

J1,4J1,8J3,8
, (54)

M5(q) = 1 + qω(q), (55)

M9(q) = −A(−q8) + J3
32J14,32J10,32

J16,32J2,32J6,32J8,32
− q−1 J2

64J28,64

J32J4,64
+ q−1 J8,16J32,64J4,32J24,64

J1,4J6,32J2,32
,

(56)

M16(q) = 1
2

+ q−1U1(q8) − q−1 J3
32J10,32J14,32

J16,32J6,32J8,32J2,32
+ J3

32J10,32J6,32

J6,32J16,32J0,32J10,32
(57)

+ q−1 J8,16J32,64J4,32J24,64

J1,4J2,32J10,32
. (58)

The paper is organized as follows. In Section 2, we prove Theorems 1.1 and 1.2
and record some corollaries. In Section 3, we establish a change of base lemma and
deduce Andrews’ Bailey pairs from those of Bringmann and Kane. In Section 4, we
recall important work of Hickerson and Mortenson on mock theta functions [12] and
then prove Theorems 1.5–1.7 and Corollary 1.8.

In [14], we consider applications of Theorems 1.1–1.3 to q-hypergeometric double
sums related to real quadratic fields, in the spirit of [4].

2. Proofs of Theorems 1.1 and 1.2. Proof of Theorem 1.1. First note that the
sequence α′

n in (21) and (22) is uniquely defined by α′
0 = 0, α′

1 = −(1 − q2), and

α′
n+2

1 − q2n+4
− q2nα′

n

1 − q2n
= −αn+1. (59)
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Suppose that the β ′
n are given by (23). Then the corresponding α′

n satisfy the initial
conditions. Moreover, using (2) we have

α′
n+2

1 − q2n+4
− q2nα′

n

1 − q2n
=

n+2∑
j=1

(q)n+j+1q(n−j+2
2 )(−1)n+j

(q)n−j+2
β ′

j −
n∑

j=1

(q)n+j−1q(n−j
2 )+2n(−1)n+j

(q)n−j
β ′

j

=
n+2∑
j=1

(q)n+j−1(−1)n+jq(n−j
2 )+2n

(q)n−j+2

(
(1 − qn+j)(1 − qn+j+1)q−2j+1

− (1 − qn−j+2)(1 − qn−j+1)
)
β ′

j

= −
n+2∑
j=1

q(n−j
2 )+2n(−1)n+j(q)n+j−1

(q)n−j+2

(
(1 − q2n+2)(1 − q−2j+1)

)
β ′

j

= (1 − q2n+2)
n+1∑
j=0

q(n−j−1
2 )+2n−2j−1(q)n+j(−1)n+j+1

(q)n−j+1
(1 − q2j+1)β ′

j+1

= −(1 − q2n+2)
n+1∑
j=0

q(n+1−j
2 )(q)n+j(−1)n+j+1

(q)n+1−j
βj

= −αn+1.

�

Proof of Theorem 1.2. Let a = q and let β ′
n be defined as in (25). Then

α′
n = (−1)n

1 − q

n∑
j=0

(q)n+j(−1)jq(n−j
2 )

(q)n−j
β ′

j

(
1 − qn+j+1 + qn+j+1(1 − qn−j)

)

= (−1)n

1 − q

⎛
⎝ n∑

j=0

(q)n+j+1(−1)jq(n−j
2 )

(q)n−j
β ′

j +
n−1∑
j=0

(q)n+j(−1)jq(n−j
2 )+n+j+1

(q)n−j−1
β ′

j

⎞
⎠

= 1
1 − q

⎛
⎝−

n+1∑
j=1

(q)n+j(−1)n+j+1q(n−j+1
2 )

(q)n−j+1
βj +

n∑
j=1

(q)n+j−1(−1)n−jq(n−j
2 )+2n

(q)n−j
βj

⎞
⎠

= 1
1 − q

(
− αn+1

1 − q2n+2
+ q2nαn

1 − q2n

)
,

which establishes the result. �

Note that the proof of Theorem 1.1 implies an inverse result. Since the α′
n are

uniquely defined by the αn in (59) together with the initial conditions α′
0 = 0 and

α′
1 = −(1 − q2), we have the following.

THEOREM 2.1. If (α′
n, β

′
n) form a Bailey pair relative to 1 with α′

0 = 0 and α′
1 =

−(1 − q2), then (αn, βn) also form a Bailey pair relative to 1, where α0 = β0 = 1,

αn = −1
1 − q2n+2

α′
n+1 + q2n−2

1 − q2n−2
α′

n−1, (60)
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and

βn = −(1 − q2n+1)β ′
n+1. (61)

We finish this section with three corollaries of Theorems 1.1 and 1.3, giving three
sets of two Bailey pairs involving indefinite quadratic forms. These come from three
Bailey pairs in Slater’s list [16]. These are not the only three pairs from Slater’s list
which lead to indefinite quadratic forms in Theorems 1.1 and 1.3, but we have limited
ourselves to those we will use in the sequel.

First, on p. 468 of [16] we find the Bailey pair relative to 1,

αn =
{

1, if n = 0,

(−1)n(qn + q−n), otherwise,

and

βn = (−1)nq−n

(q2; q2)n
.

Applying Theorems 1.1 and 1.3 we have the following.

COROLLARY 2.2. The sequences (an, bn) form a Bailey pair relative to 1, where

a2n = (1 − q4n)q2n2−2n+1
n−1∑

j=−n

q−2j2
, (62)

a2n+1 = −(1 − q4n+2)q2n2
n∑

j=−n

q−2j2−2j, (63)

and

bn =
{

0, if n = 0,
(−1)nq−n+1

(q2;q2)n−1(1−q2n−1) , otherwise,
(64)

and the sequences (αn, βn) form a Bailey pair relative to q, where

α2n = 1
1 − q

⎛
⎝q2n2

n∑
j=−n

q−2j2−2j + q2n2+2n+1
n−1∑

j=−n

q−2j2

⎞
⎠ , (65)

α2n+1 = − 1
1 − q

⎛
⎝q2n2+2n+1

n∑
j=−n−1

q−2j2 + q2n2+4n+2
n∑

j=−n

q−2j2−2j

⎞
⎠ , (66)

and

βn = (−1)nq−n

(q2; q2)n(1 − q2n+1)
. (67)
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Next, on p. 468 of [16] we find the Bailey pair relative to 1,

αn =
{

1, if n = 0,

(−1)nq−(n+1
2 )(1 + qn), otherwise,

and

βn = (−1)nq−(n+1
2 )

(q)n
.

Applying Theorems 1.1 and 1.3, we have the following.

COROLLARY 2.3. The sequences (an, bn) form a Bailey pair relative to 1, where

a2n = (1 − q4n)q2n2−2n
n−1∑

j=−n

q−4j2−3j, (68)

a2n+1 = −(1 − q4n+2)q2n2
n∑

j=−n

q−4j2−j, (69)

and

bn =
{

0, if n = 0,

(−1)nq−(n
2)

(q)n−1(1−q2n−1) , otherwise,
(70)

and the sequences (αn, βn) form a Bailey pair relative to q, where

α2n = 1
1 − q

⎛
⎝q2n2

n∑
j=−n

q−4j2−j + q2n2+2n
n−1∑

j=−n

q−4j2−3j

⎞
⎠ , (71)

α2n+1 = − 1
1 − q

⎛
⎝q2n2+2n

n∑
j=−n−1

q−4j2−3j + q2n2+4n+2
n∑

j=−n

q−4j2−j

⎞
⎠ , (72)

and

βn = (−1)nq−(n+1
2 )

(q)n(1 − q2n+1)
. (73)

Finally, on p. 468 of [16] we find the Bailey pair relative to 1,

αn =
{

1, if n = 0,

(−1)nq−n(n+3)/2(1 + q2n), otherwise,

and

βn = (−1)nq−n(n+3)/2

(q)n
.

https://doi.org/10.1017/S0017089516000197 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000197


338 JEREMY LOVEJOY AND ROBERT OSBURN

Applying Theorems 1.1 and 1.3, we find the following.

COROLLARY 2.4. The sequences (an, bn) form a Bailey pair relative to 1, where

a2n = (1 − q4n)q2n2−2n+1
n−1∑

j=−n

q−4j2−j, (74)

a2n+1 = −(1 − q4n+2)q2n2
n∑

j=−n

q−4j2−3j, (75)

and

bn =
{

0, if n = 0,

(−1)nq−(n+1
2 )+1

(q)n−1(1−q2n−1) , otherwise,
(76)

and the sequences (αn, βn) form a Bailey pair relative to q, where

α2n = 1
1 − q

⎛
⎝q2n2

n∑
j=−n

q−4j2−3j + q2n2+2n+1
n−1∑

j=−n

q−4j2−j

⎞
⎠ , (77)

α2n+1 = − 1
1 − q

⎛
⎝q2n2+2n+1

n∑
j=−n−1

q−4j2−j + q2n2+4n+2
n∑

j=−n

q−4j2−3j

⎞
⎠ , (78)

and

βn = (−1)nq−n(n+3)/2

(q)n(1 − q2n+1)
. (79)

3. The seventh order Bailey pairs of Andrews. We begin with a change of base
lemma for Bailey pairs. For other results of this nature, see [7] and [8]. Throughout
this section, we emphasize the base by saying that a pair of sequences satisfying (1) is
a Bailey pair relative to (a, q).

LEMMA 3.1. If (αn, βn) is a Bailey pair relative to (1, q), then (α′
n, β

′
n) is a Bailey pair

relative to (1, q2), where

α′
n = 1

2
(1 + q2n)qn2−nαn (80)

and

β ′
n = 1

(−1)2n

n∑
k=0

qk2−k

(q2; q2)n−k
βk. (81)
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Proof. We will need the fact that

(q−n)k = (q)n

(q)n−k
(−1)kq(k

2)−nk (82)

along with the identity

n−r∑
k=0

(−1)kq2nk(q−(n−r))k(−q−(n−r))k

(q)k(q2r+1)k
= (1 + q2r)(q)2r(−1)2n

2(q2; q2)n+r
, (83)

which follows from a short calculation using the case z = −q2n, a = q−n+r, b = −q−n+r,
and c = q2r+1 of the second Heine transformation [10],

∑
n≥0

(a)n(b)n

(c)n(q)n
zn = (c/b)∞(bz)∞

(c)∞(z)∞

∑
n≥0

( abz
c )n(b)n

(bz)n(q)n

( c
b

)n
. (84)

Now, beginning with (81), we have

β ′
n = 1

(−1)2n

n∑
k=0

qk2−k

(q2; q2)n−k
βk

= 1
(−1)2n

n∑
k=0

qk2−k

(q2; q2)n−k

k∑
r=0

1
(q)k−r(q)k+r

αr

= 1
(−1)2n

n∑
r=0

αr

n∑
k=r

qk2−k

(q2; q2)n−k

1
(q)k−r(q)k+r

= 1
(−1)2n

n∑
r=0

αr

n−r∑
k=0

qk2+2kr+r2−k−r

(q2; q2)n−k−r(q)k(q)k+2r

= 1
(−1)2n

n∑
r=0

qr2−r

(q)2r
αr

n−r∑
k=0

qk2+2kr−k

(q2; q2)n−k−r(q)k(q2r+1)k

= 1
(−1)2n

n∑
r=0

qr2−r

(q)2r(q2; q2)n−r
αr

n−r∑
k=0

(−1)kq2nk(q−2(n−r); q2)k

(q)k(q2r+1)k
(by (82))

= 1
(−1)2n

n∑
r=0

qr2−r

(q)2r(q2; q2)n−r
αr

n−r∑
k=0

(−1)kq2nk(q−(n−r))k(−q−(n−r))k

(q)k(q2r+1)k

=
n∑

r=0

(1 + q2r)qr2−r

2(q2; q2)n−r(q2; q2)n+r
αr (by (83)).

This implies the statement of the theorem. �
Now, we insert the Bailey pair in (6)–(8) into Lemma 3.1. We obtain a Bailey pair

relative to (1, q2), where

a′
2n = 1

2
(1 − q8n)q6n2−4n

n−1∑
j=−n

q−2j2−2j,
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a′
2n+1 = −1

2
(1 − q8n+4)q6n2+2n

n∑
j=−n

q−2j2
,

b′
0 = 0, and for n ≥ 1,

b′
n = 1

(−1)2n

n∑
k=1

(−1)kqk2−k(q; q2)k−1

(q)2k−1(q2; q2)n−k

= −1
(−1)2n

n−1∑
k=0

(−1)kqk2+k(q; q2)k

(q)2k+1(q2; q2)n−k−1

= −1
(−1)2n(q2; q2)n−1(1 − q)

n−1∑
k=0

q2nk(q−2(n−1); q2)k(q; q2)k

(q2; q2)k(q3; q2)k
(by (82))

= −1
(−1)2n(q; q2)n

= −1
2(q2n; q2)n

,

where the penultimate equality follows from the case q = q2, n = n − 1, a = q, and
c = q3 of the q-Chu–Vandermonde summation [10]

n∑
k=0

(a)k(q−n)k

(q)k(c)k

(
cqn

a

)k

= (c/a)n

(c)n
.

Now multiplying (a′
n, b′

n) by −2 and replacing q by q1/2 gives Andrews’ Bailey pair (15)–
(17). Finally, multiplying (15)–(17) by −1, then applying Theorem 1.2 and Theorem
2.1 gives the pairs (18)–(20) and (12)–(14), respectively.

4. Proofs of Theorems 1.5–1.7 and Corollary 1.8. The approach for proving
Theorems 1.5–1.7 is as follows. We first apply (3) and (4) to Corollaries 2.2–2.4 to
obtain new Bailey pairs, then use (5) in various ways to obtain identities expressing
q-hypergeometric double sums in terms of the indefinite theta series (29). Next, to
deduce that these q-hypergeometric double sums are mock theta functions, we apply
the following three explicit results of Hickerson and Mortenson which express (29) in
terms of the Appell–Lerch series (30). Define

ga,b,c(x, y, q, z1, z0)

:=
a−1∑
t=0

(−y)tqc(t
2)j(qbtx, qa)m

(
−qa(b+1

2 )−c(a+1
2 )−t(b2−ac) (−y)a

(−x)b
, qa(b2−ac), z0

)

+
c−1∑
t=0

(−x)tqa(t
2)j(qbty, qc)m

(
−qc(b+1

2 )−a(c+1
2 )−t(b2−ac) (−x)c

(−y)b
, qc(b2−ac), z1

)
.

(85)

Following [12], we use the term “generic” to mean that the parameters do not
cause poles in the Appell–Lerch sums or in the quotients of theta functions.
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THEOREM 4.1. [12, Theorem 1.6] Let n be a positive integer. For generic x, y ∈ �∗

fn,n+1,n(x, y, q) = gn,n+1,n(x, y, q, yn/xn, xn/yn).

THEOREM 4.2. [12, Theorem 1.9] Let n be an odd positive integer. For generic x,
y ∈ �∗

fn,n+2,n(x, y, q) = gn,n+2,n(x, y, q, yn/xn, xn/yn) − �n,2(x, y, q)

where

�n,2(x, y, q)

:= y(n+1)/2J2n,4nJ4(n+1),8(n+1)j(y/x, q4(n+1))j(qn+2xy, q4(n+1))j(q2n/x2y2, q8(n+1))

q(n2−3)/2x(n−3)/2j(yn/xn, q4n(n+1))j(−qn+2x2, q4(n+1))j(−qn+2y2, q4(n+1))
.

THEOREM 4.3. [12, Theorem 1.11] Let n be an odd positive integer. For generic x,
y ∈ �∗

fn,n+4,n(x, y, q) = gn,n+4,n(x, y, q, yn/xn, xn/yn) − �n,4(x, y, q)

where

�n,4(x, y, q)

:= q−(n2+n−3)x−(n−3)/2y(n+1)/2j(y/x, q4(2n+4))
j(yn/xn, q4n(2n+4))j(−q2n+8x4, q4(2n+4))j(−q2n+8, q4(2n+4))

{
J4n,16nS1 − qJ8n,16nS2

}
,

S1 := j(q6n+16x2y2, q4(2n+4))j(−q2(2n+4)y/x, q4(2n+4))j(qn+4xy, q2(2n+4))

J3
2(2n+4J8(2n+4)

·
{

j(−q2n+8x2y2, q4(2n+4))j(q2(2n+4), q4(2n+4))J2
4(2n+4)

+ qn+4x2j(−q6n+16x2y2, q4(2n+4))j(q2(2n+4)y/x, q4(2n+4))2j(−y/x, q4(2n+4))2

J4(2n+4

}

and

S2 := j(q2n+8x2y2, q4(2n+4))j(−y/x, q4(2n+4))j(q3n+8xy, q2(2n+4))

J2
2(2n+4)

·
{

qn+1j(−q2n+8x2y2, q4(2n+4))j(q2(2n+4)y2/x2, q4(2n+4))J8(2n+4)

yJ4(2n+4)

+ qxj(−q6n+16x2y2, q4(2n+4))j(q4(2n+4)y2/x2, q8(2n+4))2

J8(2n+4

}
.

Finally, we use the fact that specializations of Appell–Lerch series are well known
to be mock theta functions [18], [19, Ch. 1].
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To simplify expressions arising in Theorems 4.1–4.3, we require certain facts about
j(x, q) and m(x, q, z). From the definition of j(x, q), we have

j(qnx, q) = (−1)nq−(n
2)x−nj(x, q) (86)

where n ∈ � and

j(x, q) = j(q/x, q) = −xj(x−1, q). (87)

Next, some relevant properties of the sum m(x, q, z) are given in the following (see
(3.2b), (3.2c) of Proposition 3.1, (3.3) of Corollary 3.2 and Theorem 3.3 in [12]).

PROPOSITION 4.4. For generic x, z, z0, z′ ∈ �∗,

m(x, q, z) = x−1m(x−1, q, z−1), (88)

m(qx, q, z) = 1 − xm(x, q, z), (89)

m(q, q2,−1) = 1
2

(90)

and

m(x, q, z) = m(x, q, z0) + z0J3
1 j(z/z0, q)j(xzz0, q)

j(z0, q)j(z, q)j(xz0, q)j(xz, q)
. (91)

We are now ready to proceed to the proofs of Theorems 1.5–1.7.

Proof of Theorem 1.5. Applying equations (3) and (4) with (a, ρ1, ρ2) = (1,−1,∞)
to (62)–(64) and (q,−q,∞) to (65)–(67) gives a Bailey pair relative to 1,

a′
2n = 2(1 − q2n)q4n2−n+1

n−1∑
j=−n

q−2j2
, (92)

a′
2n+1 = −2(1 − q2n+1)q4n2+3n+1

n∑
j=−n

q−2j2−2j, (93)

and

b′
n = 1

(−q)n

n∑
j=1

(−1)j(−1)jq( j
2)+1

(q)n−j(q2; q2)j−1(1 − q2j−1)
, (94)

and a Bailey pair relative to q,

α′
2n = 1

1 − q

⎛
⎝q4n2+n

n∑
j=−n

q−2j2−2j + q4n2+3n+1
n−1∑

j=−n

q−2j2

⎞
⎠ , (95)

α′
2n+1 = − 1

1 − q

⎛
⎝q4n2+5n+2

n∑
j=−n−1

q−2j2 + q4n2+7n+3
n∑

j=−n

q−2j2−2j

⎞
⎠ , (96)
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and

β ′
n = 1

(−q)n

n∑
j=0

(−1)jq( j
2)

(q)n−j(q)j(1 − q2j+1)
, (97)

respectively. Now to prove (35), we insert the Bailey pair (a′
n, b′

n) from equations (92)–
(94) into (5) with ρ1, ρ2 → ∞. This gives

qM1(q) =
∑
n≥0

qn2
b′

n(q) = 1
(q)∞

∑
n≥0

qn2
a′

n(q)

= 1
(q)∞

(∑
n≥0

q4n2
a′

2n(q) +
∑
n≥0

q4n2+4n+1a′
2n+1(q)

)

= 2
(q)∞

(∑
n≥0

q8n2−n+1
n−1∑

j=−n

q−2j2 −
∑
n≥0

q8n2+n+1
n−1∑

j=−n

q−2j2

−
∑
n≥0

q8n2+7n+2
n∑

j=−n

q−2j2−2j +
∑
n≥0

q8n2+9n+3
n∑

j=−n

q−2j2−2j

)
.

After replacing n with −n in the second sum and n with −n − 1 in the fourth sum, we let
n = (r + s + 1)/2, j = (r − s − 1)/2 in the first two sums and n = (r + s)/2, j = (r − s)/2
in the latter two sums to find

M1(q) = 2q
(q)∞

(( ∑
r,s≥0

r	≡s (mod 2)

−
∑
r,s<0

r	≡s (mod 2)

)
q

3
2 r2+5rs+ 9

2 r+ 3
2 s2+ 5

2 s

−
( ∑

r,s≥0
r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

)
q

3
2 r2+5rs+ 5

2 r+ 3
2 s2+ 9

2 s

)

= − 2q
(q)∞

((∑
r,s≥0

−
∑
r,s<0

)
q

3
2 r2+5rs+ 9

2 r+ 3
2 s2+ 5

2 s

)

= − 2q
(q)∞

f3,5,3(q6, q4, q).

(98)

By (98), Theorem 4.2 with n = 3 and (85)–(87),

M1(q) = −2q−10m(−q−7, q48, q6) + 2q−23m(−q−23, q48, q6) + 2m(−q25, q48, q−6)

− 2q−10m(−q−7, q48, q−6) + 2q
(q)∞

�3,2(q6, q4, q).
(99)
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Now, we simplify (99) using (88), (89) and (91) to obtain

M1(q) = 4q−3m(−q7, q48, q6) + 4m(−q25, q48, q6) − 2 + 2q
(q)∞

�3,2(q6, q4, q)

+ 2q−3 J3
48J12,48J7,48

J2
6,48J1,48J13,48

+ 2
J3

48J12,48J25,48

J2
6,48J19,48J31,48

= 4q−3m(−q7, q48, q24) + 4m(−q25, q48, q−24) − 4q3 J3
48J18,48J11,48

J6,48J24,48J13,48J17,48

− 4
J3

48J18,48J7,48

J6,48J24,48J1,48J17,48
− 2 + 2q

(q)∞
�3,2(q6, q4, q)

+ 2q−3 J3
48J12,48J7,48

J2
6,48J1,48J13,48

+ 2
J3

48J12,48J25,48

J2
6,48J19,48J31,48

.

Comparing with (35), we are left with a modular identity to verify. Such a verification
can always be done using a finite computation. This, and similar computations
in this paper, were carried out using computer software packages available at
http://www.qseries.org/fgarvan.

This proves identity (35) and shows that M1(q) is a mock theta function.
As equations (36)–(39) are handled similarly, we briefly sketch the relevant details.

For equations (36) and (37), we again use the Bailey pair (92)–(94) in (5), with
(ρ1, ρ2, q) = (

√
q,−√

q, q) and (q,∞, q2) and the above argument to obtain

M2(q) = (q; q2)∞
(q2; q2)∞

f1,3,1(−q,−q3, q)

and

M3(q) = 2q(q; q2)∞
(q2; q2)∞

f1,2,1(−q5,−q9, q4).

One then proceeds with Theorems 4.2 and 4.1, respectively, and simplifies.
For (38) and (39), we use the Bailey pair (95)–(97) in (5), with (ρ1, ρ2, q) =

(∞,∞, q) and (−q,∞, q) to get

M4(q) = 1
(q)∞

f3,5,3(q2, q4, q)

and

M5(q) = (−q)∞
(q)∞

f1,2,1(q, q3, q2).

Applying Theorems 4.2 and 4.1, respectively, and continuing as above yields the
result. �
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Proof of Theorem 1.6. Applying equations (3) and (4) with (a, ρ1, ρ2) = (1,∞,∞)
to (68)–(70) and (q,∞,∞) to (71)–(73) gives a Bailey pair relative to 1,

a′
2n = (1 − q4n)q6n2−2n

n−1∑
j=−n

q−4j2−3j, (100)

a′
2n+1 = −(1 − q4n+2)q6n2+4n+1

n∑
j=−n

q−4j2−j, (101)

and

b′
n =

n∑
j=1

(−1)jq(j+1
2 )

(q)n−j(q)j−1(1 − q2j−1)
, (102)

and a Bailey pair relative to q,

α′
2n = 1

1 − q

⎛
⎝q6n2+2n

n∑
j=−n

q−4j2−j + q6n2+4n
n−1∑

j=−n

q−4j2−3j

⎞
⎠ , (103)

α′
2n+1 = − 1

1 − q

⎛
⎝q6n2+8n+2

n∑
j=−n−1

q−4j2−3j + q6n2+10n+4
n∑

j=−n

q−4j2−j

⎞
⎠ , (104)

and

β ′
n =

n∑
j=0

(−1)jq(j+1
2 )

(q)n−j(q)j(1 − q2j+1)
, (105)

respectively. For the identities (40)–(44) in Theorem 1.6, we use the Bailey pair (100)–
(102) in (5) with (ρ1, ρ2, q) = (∞,∞, q), (−1,∞, q), (

√
q,−√

q, q), (q,∞, q2), and
(−1,−q, q2) to obtain

M6(q) = − q2

(q)∞
f3,7,3(q5, q6, q),

M7(q) = −2q2(−q)∞
(q)∞

f1,3,1(q4, q5, q2),

M8(q) = q(q; q2)∞
2(q2; q2)∞

f1,5,1(−q2,−q3, q),

M9(q) = q3(q; q2)∞
(q2; q2)∞

f1,3,1(−q7,−q9, q4),
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M10(q) = −2q3(−q)∞
(q)∞

f1,5,1(q5, q7, q2),

respectively. One then applies Theorems 4.2 and 4.3 and proceeds as in the proof of
(35). The identities (45) and (46) follow similarly but with the Bailey pair (103)–(105)
in (5) with (ρ1, ρ2, q) = (∞,∞, q) and (−q,∞, q) yielding

M11(q) = 1
(q)∞

f3,7,3(q3, q4, q)

and

M12(q) = (−q)∞
(q)∞

f1,3,1(q2, q3, q2).

One now applies Theorems 4.3 and 4.2, respectively, and simplifies. �

Proof of Theorem 1.7. Applying (3) and (4) with (a, ρ1, ρ2) = (1,∞,∞) to (74)–(76)
and (q,∞,∞) to (77)–(79), we obtain a Bailey pair relative to 1,

a′
2n = (1 − q4n)q6n2−2n+1

n−1∑
j=−n

q−4j2−j, (106)

a′
2n+1 = −(1 − q4n+2)q6n2+4n+1

n∑
j=−n

q−4j2−3j, (107)

and

b′
n =

n∑
j=1

(−1)jq( j
2)+1

(q)n−j(q)j−1(1 − q2j−1)
, (108)

and a Bailey pair relative to q

α′
2n = 1

1 − q

⎛
⎝q6n2+2n

n∑
j=−n

q−4j2−3j + q6n2+4n+1
n−1∑

j=−n

q−4j2−j

⎞
⎠ , (109)

α′
2n+1 = − 1

1 − q

⎛
⎝q6n2+8n+3

n∑
j=−n−1

q−4j2−j + q6n2+10n+4
n∑

j=−n

q−4j2−3j

⎞
⎠ , (110)

and

β ′
n =

n∑
j=0

(−1)jq( j
2)

(q)n−j(q)j(1 − q2j+1)
, (111)
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respectively. For the identities (47)–(51) in Theorem 1.7, we use the Bailey pair (106)–
(108) in (5) with (ρ1, ρ2, q) = (∞,∞, q), (−1,∞, q), (

√
q,−√

q, q), (q,∞, q2), and
(−1,−q, q2) to obtain

M13(q) = − q
(q)∞

f3,7,3(q4, q7, q),

M14(q) = −2q(−q)∞
(q)∞

f1,3,1(q3, q6, q2),

M15(q) = (q; q2)∞
2(q2; q2)∞

f1,5,1(−q,−q4, q),

M16(q) = q(q; q2)∞
(q2; q2)∞

f1,3,1(−q5,−q11, q4),

M17(q) = −2q(−q)∞
(q)∞

f1,5,1(q3, q9, q2),

respectively. One then applies Theorems 4.2 and 4.3 and proceeds as above where (90)
is used for M16(q). The identities (52) and (53) follow similarly but with the Bailey pair
(109)–(111) in (5) with (ρ1, ρ2, q) = (∞,∞, q) and (−q,∞, q) yielding

M18(q) = 1
(q)∞

f3,7,3(q2, q5, q)

and

M19(q) = (−q)∞
(q)∞

f1,3,1(q, q4, q2).

One applies Theorems 4.3 and 4.2, respectively, and simplifies. �
Proof of Corollary 1.8. The identities in Corollary 1.8 are established by comparing

the expressions in Theorems 1.5–1.7 with those for classical mock theta functions. We
sketch the details. Equations (5.37) and (5.8) in [12] state

T0(q) = −m(−q3, q8, q2)

and

ω(q) = −2q−1m(q, q6, q2) + J3
6

J2J3,6
.

By (88), (89), (91), (36) and (39), (55) and (56) follow. Equations (5.1) and (5.40) in [12]
state

A(q) = −m(q, q4, q2)
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and

U1(q) = −m(−q, q4,−q2).

By (91), (43) and (50), (57) and (58) follow. �
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