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A Non-zero Value Shared by an Entire
Function and its Linear Differential
Polynomials

Indrajit Lahiri and Imrul Kaish

Abstract. In this paper we study uniqueness of entire functions sharing a non-zero finite value with
linear differential polynomials and address a result of W. Wang and P. Li.

1 Introduction, Definitions, and Results

Let f be a non-constant entire function in the open complex plane C. We denote by
E(a; f), Eny(a; f), and Ez(a; f) the set of all distinct a-points, simple a-points, and
distinct multiple a-points of f.

In 1986 G. Jank, E. Mues, and L. Volkmann [2] proved a uniqueness theorem for
entire functions sharing a single value with two derivatives. Their result can be stated
as follows.

Theorem A ([2]) Let f be a non-constant entire function and let a be a non-zero finite
number. IfE(a; ) = E(a; fV) and E(a; f) C E(a; f?)), then f = fV.

Theorem A has been extended to general order derivatives and linear differential
polynomials by several authors.

Throughout the paper we denote by L a non-constant linear differential polyno-
mial in f of the form

(1.1) L:alf(l)+a2f(2)+~~~+anf<"),

where ay,ay, . . ., a,(# 0) are constants.
Inspired by Theorem A, P. Li [4] proved the following result.

Theorem B ([4]) Let f be a non-constant entire function and let L(Z 0) be given by
(1.1). If f and LV share a finite non-zero value a counting multiplicities, and E(a; f) C
E(a; fV)NE(a; L), then L = LY and f = fV or f = a+ 1L(L — a).

In 2004 W. Wang and P. Li [5] improved Theorem B and proved the following

result.

Theorem C ([5]) Let f be a non-constant entire function, a € C\{0, 00}, and let
L( 0) be given by (1.1). IfE(a; f) = E(a; L) and E(a; f) C E(a; fV) N E(a; L),
then one of the following holds:
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Qi) f=fV=L
(i) L=L%and f=a+1L(L—-a);
(iii) f=a+ce+ceandl = —2ce2* — 16e%, where 3¢} = 2ac, and ¢, ¢, are

non-zero constants.

So far as we understand there is a major lacuna in the proof of Theorem B and
the same is carried forward to the proof of Theorem C. In fact, in [4, Lemma 4] it
is shown that ¢ = (L") — f(V)/(f — a) is a constant. To do this, Li [4] claimed the
following:

LY = (A0 + L) + (€0 +no)l + () = n0)(f — ),
which is [4, (5) on p. 4]. But calculation reveals that it should be
L = (A" +€L®) + (€ + LY + () —n)(f — a).

Consequently the identity a2¢**** + R[¢] = 0, as claimed in [4, p. 4], should be
a2¢*™*2 + R[@] = 0, where R[¢] is a differential polynomial in ¢ with degree not
greater than 2n + 2. Therefore, one cannot use Clunie’s lemma to show that ¢ is a
constant. In this paper we reconsider Theorem C and prove a modified version of it.

For standard definitions and notations of the value distribution theory we refer
the reader to [1]. However, we require the following definitions.

Definition 1.1 Let f and g be two non-constant meromorphic functions defined
in C. Fora,b € CU {00} we denote by N(r,a; f | g = b) (N(r,a; f | g = b)) the
counting function (reduced counting function) of those a-points of f that are the
b-points of g.

Definition 1.2 Let f and g be two non-constant meromorphic functions defined
in C. For a,b € CU {oo} we denote by N(r,a; f | g # b) (N(r,a; f | g # b)) the
counting function (reduced counting function) of those a-points of f that are not
the b -points of g.

Definition 1.3 Let f be a non-constant meromorphic function in Canda € CU
{oc}. For A C C we denote by Nu(r,a; f) ( Na(r,a; f) ) the counting function
(reduced counting function) of those a-points of f that belong to A.

Definition 1.4 Let f be a non-constant meromorphic function defined in C. For
a € CU {00} and a positive integer k we denote by N(r,a; f |> k) (N(r,a; f |< k))
the counting function of those a-points of f whose multiplicities are not less (greater)
than k. By N(r,a; f |> k) and N(r,a; f |< k) we denote the corresponding reduced
counting functions.

Definition 1.5 Let f be a non-constant meromorphic functionin Canda € CU
{o0}. Suppose that A C € and let k be a positive number. We denote by Na(r, a; f |>
k) ( Ns(r,a; f |> k)) the counting function (reduced counting function) of those
a-points of f whose multiplicities are not less than k and that belong to A.

In a similar manner, we define N (r, a; f |< k) and Na(r, a; f |< k).
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The following definition is well known.

Definition 1.6 Let f be a non-constant meromorphic function in C. Suppose that
M;[f] = aj(f)”of(f(l))”” . (f(pj))npj]-

is a differential monomial in f, where a; is a small function of f.

We denote by vy, = >4 nj and by Ty, = Y77 (1 + k) the degree and
weight of M;[ f] respectively.

The numbers 7p = max; <<, ym; and I'p = max; < j<, 'y, are respectively called
the degree and weight of the differential polynomial P[ f] = E?:l M;[f].

We now state the main result of the paper.

Theorem 1.7 Let f be a non-constant entire function of finite order, let a be a non-zero
finite number, and let L given by (1.1) be such that L'V is non-constant and |1 — a;| +
|az| # 0.

Let A = E(a; f)\E(a; L) and B = E(a; LV)\{E(a; fV) N E(a;L)}. Suppose
further that

(i)  Nal(r,a; f) + Ng(r,a; L) = S(r, f),
(ii) Ep(a; L") C E(a; f),

(iii) En(a; f) C E(a fY) NE(a;LY), and
(iv) Ea(a; f)NEW0;LY) = 2.

Then one of the following holds:

(a) f =L = «aé, where a is a nonzero constant;

(b) f=a+(a?/a)e¥ — ae® and L = ae®, where Y 2%y = 0,3} ax = —1 and
o is a nonzero constant;

(©) f=a+ce*+ae”andL = —2ciei” — 16,6, where 3¢} = 2ac, and ¢y, ¢, are
non-zero constants.

Putting A = B = @ we get the following corollary.

Corollary 1.8 Let f be a non-constant entire function of finite order, let a be a
non-zero finite number, and let L given by (1.1) be such that L'V is non-constant and
|1 — ay| + |ay| # 0. Further suppose that E(a; ) C E(a;LV) C E(a; fV) N E(a; L)
and Ey)(a; LV) C E(a; f). Then the conclusion of Theorem 1.7 holds.

As a consequence of Corollary 1.8 we obtain the following corollary.
Corollary 1.9 Let f be a non-constant entire function of finite order, let a be a
non-zero finite number, and let L given by (1.1) be such that L'V is non-constant and

|1 —ay| + |ay| # 0. IfE(a; f) = E(a; LY) and E(a; f) C E(a; fV) N E(a; L), then the
conclusion of Theorem 1.7 holds.
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2 Lemmas

In this section we present some necessary lemmas.

Lemma 2.1 Let f be a non-constant entire function and let a be a non-zero finite
complex number. Then f = L = «e®, where « is a non-zero constant, provided the
following hold:

(i) m(ra f) =S f),
(i) Ey(as f) C E(a; f1),
(iii) Na(r,a; f) = S(r, ), where A = E(a; f)\{E(a; L) N E(a; LY) N E(a; fV)}.

Proof Let
(1) _
2.1) N At}
f—a
From the hypothesis we see that A has no simple pole and T(r,A\) = S(r, f). From
(2.1) we get
2.2) O =Aif+p,

where \; = Aand p; = a(1 — \).

Differentiating (2.2) we get {‘ ) = N\ f + pk, where Ay and p are meromorphic
functions satisfying Agy; = )\,({1 + Mg and pgyg = /L,({l) + A fork =1,2,3,....
Also, we see that T(r, Ay) + T(r, ) = S(r, f) fork =1,2,3,....

Now

(2.3) L= (Z ak/\k) f+ Z agpx = Ef + 1, say.
k=1 k=1

Clearly T(r, &) + T(r,n) = S(r, f). Differentiating (2.3) we get
(2.4) L — ff(l) + f(l)f + 77(1)-

Let zy & A bean a-point of f. Then from (2.3) and (2.4) we get a&(zy) +n(zp) = a
and aé(z) + aéV(zy) + nV(zy) = a.

If a + 1 # a, then

N(r,a; f) < N(rya; f [< 1) + Na(rya; f) < N(rya;a8 +n) + S(r, f) = S(r, f),
which is impossible because m(r,a; f) = S(r, f). Hence a€ + 1 = a. Similarly a& +
aé® + M = q. This implies that £ = 1 and ) = 0. So from (2.3) we get L = f.

By actual calculation we see that Ay, = A? + A and A3 = A* + 3A\D + A?), In

general, we now verify that

(2.5) Me = A+ P[],
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where P;_;[A] is a differential polynomial in A with constant coefficients such that
Yo, < k—1landI'p_, < k. Also each term of P;_;[A] contains some derivative
of \.

Let (2.5) be true. Then

Mot = M+ A = W+ Py DD + (M + P [A]) = A+ P

noting that differentiation does not increase the degree of a differential polynomial
but increases its weight by 1. So (2.5) is verified by mathematical induction.
Since £ = 1, we get from (2.5)

(2.6) S aN + > P [N =1
k=1 k=1

Let zg be a pole of A with multiplicity p(> 2). Then z is a pole of >_;_, axA* with
multiplicity np, and it is a pole of Y _;_, axPx—1[A] with multiplicity not exceeding
(n—1)p+1. Since np > (n— 1)p + 1, it follows that z, is a pole of the left-hand
side of (2.6) with multiplicity #p, which is impossible. So A is an entire function. If
A is transcendental, then by Clunie’s lemma we get from (2.6) that T(r, \) = S(r, A),
which is a contradiction. If X is a polynomial of degree d(> 1), then the left-hand
side of (2.6) is a polynomial of degree nd with leading coefficient a,(# 0), which is
also a contradiction. Therefore, A is a constant, and so from (2.5) we get Ay = K for
k=1,2,3,....

Since £ = 1, we see that 3| axAF = 1. Also from (2.2), we obtain f? = ) fV
andso fV = ale’ and f = ae + 3, where a(# 0) and 3 are constants.

Now L = (2:,:’:1 a\)ae™ = ae. Since f = L, we get 3 = 0. Since

Na(rya; f) = S(r, f) and N(r,a; f) = T(r, f) +S(r, f),

we see that E(a; f) N E(a; fV) # @. So f) = \f implies A\ = 1. Hence f = a¢.
This proves the lemma. u

Lemma 2.2 ([3]) Letfbeanon-constant entire function in C, let a be a finite non-zero
complex number, and let L given by (1.1) be such that L'V is non-constant.

Further suppose that Eyy(a; f) C E(a; fOY and Ny(r,a; f) + Np(r,a; L) = S(r, f),
where A = E(a; f) \ E(a; L) and B = E(a; L) \ {E(a; fV) N E(a; L'V)}. Then one of
the following cases holds:

(i) f=a+ e and L = ae®, where o is a nonzero constant;

(ii) f =L = «é’, where « is a nonzero constant;

(i) f=a+ “72622 —aé® and L = aé, where Y, 2¥a, = 0,>")_ ax = —1,and
is a nonzero constant.

Lemma 2.3 Let f be a non-constant entire function in C, let a be a finite non-zero
complex number, and let L given by (1.1) be such that L'V is non-constant. Let A =
E(a; f)\E(a; L) and B = E(a; LV)\{E(a; fV) N E(&L)}. IfE(a; f) # @ and
Na(r,a; f) + Np(r,a; LV) = S(r, f), then N(r,a; L'V | f # a) = S(r, f).
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Proof We put
C =E(a; f) N E(a; fV) N E(a; L) N E(a; LY),
D = {E(a; f) N E(a; LV)}\C,
and henceforth we use these notations.
Let x = (L— f")/(f—a)and ¢ = (LY — fD)/(f —a). Then m(r,x) +
m(r, ¢) = S(r, f) and

N(r,x) + N(r,¢) < 2{Na(r,a; f) + Np(r,a; f)} < 2(n+ 1)Np(r,a; f) + S(r, f)
= 2(n+ 1)Np(r,a; L'V) + S(r, f) < 2(n+ 1)Np(r, a; L'V) + S(r, f)
=S(r, f).

So
(2.7) T(r,x) + T(r,¢) = S(r, f).

First we suppose that L # f(). Then by the hypothesis

28)  N(raLl )<N(r1 )+N3(r,a;L )<T( )+S(r,f)

o o

f(l))-i—S(r f) <N, 0; fV) + S(r, ).

Again,
mir,as f) < m(r ffma) (05 f1) = T(r, V) = N0 /) + (1, f)
< T(r f) = NG, 0; fV) + 5(r, f)
and so
(2.9) N(r,0; f) < N(r,a5 f) + S(r, f).
From (2.8) and (2.9) we get
(2.10) N(r,a; 1) < N(r,a; f) + 8(1; ).
Also, we see that

Np(r,a; f) < (n+ )Np(r,a; f) = (n+ )Np(r,a; LV)
< (n+ 1)Np(r,a; LV) = S(r, f).
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Now by (2.10) we get

N(r,a; LV | f # a) = N(r,a; L'Y) — Ne(r,a; LY) — Np(r, a; L)
< N(r,a; f) — Ne(r,a; f) — Np(r,a; f)
= N(r,a; f) — Nc(r,a; f) + S(r, f)
= Na(r,a; f) + Np(r,a; f) + S(r, f) = S(r, f).

Next we suppose that f) # L)), Then by the hypothesis

o L L
N(r, a;L(l)) < N(r7 1; W> + Np(r, a;L(l)) < T(r, W> +S(r, )

LM
=N () 0. 1) < N0 £ +505 )

which is (2.8). Now proceeding as above we get N(r, a; L | f#a) =S(r, f).
Finally we suppose that L = () and L") = f). Then L = f + ¢, where cis a
constant. Hence f“) = f +c. Since E(a; f) # O, we see that a + ¢ # 0, because on
integration we set f = —c + «e?, where « is a non-zero constant. Hence N(r, a; f) #
S(r, f). Also, we see that f() = L = LV = ¢, and since Nu(r,a; f) = S(r, f), we
get E(a; f) NE(a; L) # @. So f + ¢ = L'V implies that ¢ = 0. Therefore, f = L
and so N(r,a; LV | f # a) = S(r, f). This proves the lemma. [ ]

Lemma 2.4 Let f be a non-constant entire function. Then, for a non-zero finite num-
ber a,

T(r, f) < N(rya; f) + N(r,a; R) + S(r, f),

where R is a non-constant linear differential polynomial in 'V with constant coeffi-
cients.

Proof If f is a non-constant meromorphic function and 7 is a non-constant linear
differential polynomial in f, then by [1, Theorem 3.2 on p. 57] we get

T(r, f) < N(r,00; f) + N(1,0; f) + N(r, ;) + S(r, f).

Since f is entire and R is a linear differential polynomial in f(), the lemma follows
from the above inequality replacing f by f — a and putting ¢» = X. This proves the
lemma. .

3 Proof of Theorem 1.7

Proof We putvy = (L—LY)/(f —a) and ¢ = (LY — f1)/(f — a). Since ) =
X — ¢, by (2.7) we get T(r,y) + T(r,¢) = S(r, ). We now consider the following
cases.

https://doi.org/10.4153/CMB-2011-198-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-198-7

776 I. Lahiri and I. Kaish

Case 1. Let ¢ = 1. Then

(3.1) LW=L-(f-a),

(32) LV = fV 4 ¢(f - a).
Differentiating (3.1) and using (3.2) we get

(3.3) [P =1V~ fV=¢(f —a).
Differentiating (3.2) we get

(3.4) L = f@ 4 ¢fW + ¢V (f —a).
Eliminating L® from (3.3) and (3.4) we get

(3.5) f@==¢fV+(¢—o")(f - a),

Differentiating (3.5) and using it repeatedly we get

FE = {(=0) + Palol} fU + { 6" + Qulol} (f — ),

where Py [¢], Qk[¢] are differential polynomials in ¢ with constant coefficients and
Ip,_, <k vp,_, <k— 1. Therefore

n

36) LV = a{ (=) +Plgl} fU+ > a{ ¢+ Qlol} (f —a)
k=1

k=1

Let E(a; f) = @. Since f is of finite order, we can put f = a + ef, where p is a
polynomial with deg(p) > 1. Differentiating repeatedly we get f* = Te?, where T}
is a polynomial with deg(Ty) = k(deg(p) —1). SoL = >, axf¥) = Pe? and LV =
S arf® = QeP, where P, Q are polynomials with deg(P) = n(deg(p) — 1)
and deg(Q) = (n + 1)(deg(p) — 1) . From (3.1) we get P = Q + 1, which implies
deg(p) = 1. So P, Q are constants. Therefore, E)(a;L“)) # @ and this contradicts
the hypothesis Ejy(a; LV) C E(a; f). Therefore E(a; f) # @.

Let us recall the following sets from the proof of Lemma 2.3 : C = E(a; f) N
E(a; fVYNE(a; L) NE(a; LV) and D = {E(a; f) NE(a; LV)}\C. We now verify that

(3.7) Ne(ra; f) # S(r, f).
If Nc(r,a; f) = S(r, f), we get

(3.8) N(r,a; f) = Na(r,a; f) + Nc(r,a; f) + Np(r, a5 f)
< Nc(r,a; f) + (n+ 1)Np(r,a; ) + S(r, )
= (n+ 1)Np(r,a; L) + S(r, f)

< (n+ 1)Ng(r,a; LV) + S(r, f) =S f).
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Since E(a; f) # &, by (3.8) and Lemma 2.3 we obtain
(3.9) N(r,a;LV) < N(r,a; f) + N(r,a; L'V | f # a) = S(r, f).

By Lemma 2.4 we get from (3.8) and (3.9) that T(r, f) = S(r, f), a contradiction.
Thus (3.7) is verified. So from (3.6) we get

n

Ne(ra; f) < N<r, 5> af(—¢) + Pk_l[qs]}) = S(r. ),

k=1

which is a contradiction unless

n

(3.10) Yo a{ (=) +Pilol} = 1.

k=1

If ¢ is a polynomial of degree p(> 1), then the left-hand side of (3.10) is a poly-
nomial of degree np with leading coefficient (—1)"a, (3 0). This is a contradiction.

If ¢ is transcendental, by Clunie’s lemma we get from (3.10) that m(r, ¢) = S(r, ¢).
By the hypothesis we see that ¢ has no simple pole. Let z; be a pole of ¢ with mul-
tiplicity g(> 2). Then z is a pole of a,(—¢)" with multiplicity nq. Also, z is a pole
of

n—1
> {a(=o) + P[]} +anPu119]
k=1

with multiplicity at most n+ (¢ — 1)(n — 1) = g(n — 1) + 1. Since g > 2, we see that
nq > q(n — 1) + 1, and so zy becomes a pole of the left-hand side of (3.10), which is
impossible. Therefore, ¢ is entire and so T(r, ) = S(r, ¢), a contradiction. Hence ¢
is a constant.

So from (3.5) we get

(3.11) fO+ofY —o(f —a)=o.

Solving (3.11) we obtain

{cle’\lz +oe+a if A # N,

(ci+6z)eM+a  ifA =N\,

where ¢}, ¢, are constants and A, )\, are roots of the equation A2 + ¢\ — ¢ = 0.

If A\; = X\, then N(r,a; f) = N(r,05¢1 + c22) = S(r, f), which contradicts (3.7).
So A1 # Ay, and by (3.7) we get ¢cic; # 0.

Let \; = a+ Band \; = a — 3, where 2a = —¢ and 23 = ++/¢* +4¢ # 0.

Then
f:a+e(“_ﬁ)z(\/ae32—i cz)(ﬂeﬁzﬂ-i cz).

This shows that all a-points of f are simple. Hence

E(a; f) = Ey(a; f) C E(a; ) NE(a; L") C E(a; L),
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From (3.3) we see that
Eu(a; LY) C E(0; L) = E(a; f).

Since by the hypothesis E;)(a; L") C E(a; f), we get E(a; LV) = E(a; f).
Since E(a; L'V) = E(a; f) = Ey)(a; f) C E(a; fV) and from (3.3) we get L®) =
£, each a-point of LV is a double a-point. Therefore,

(3.12) LY —a=(f —a)e,

where h is an entire function.

Since the order of f is 1 and that of L' is at most 1, 4 is a polynomial of degree at
most 1. Since A\; # \,, we see that ¢ # 0. Differentiating (3.12) and using (3.3) we
get

(3.13) A1 + 7)1 M7 4 (2, + ) et = e,

where we put h = vz + § and v, J are constants.
We now verify that at least one of A\; + v and A\, + 7 is zero. Otherwise, by the
second fundamental theorem, we get

—0
T(r, M 7)< N<,7 (2)\‘?5‘1 ) ;eww)z) £ S(r, M)
1 T7)a

= N(r,0; e()‘zﬂ)z) +8(r, e()“”)z) =5(r, e(A‘”)Z) ,
which is a contradiction unless 2A; + v = 0. So from (3.13) we get 2A\; + v = 0,
which is impossible, as A; # ;.

Hence we can suppose that A\, +v = 0. Then from (3.13) we get 2A; + vy = 0, and
s0 2A1 = A,. Since A; and ), are roots of A2 + A — ¢ = 0, we get A\ = %, A =3
and ¢ = —%.

From (3.3) we get L = —%(cle%z+ch3z), and on integration, LV = —3(f — a)+
%cze3z + d, where d is a constant. In view of (3.7), let zy € C. Then

3
(3.14) 5626320 +d=a,
(3.15) cle%Z" + e = 0.
Since fV) = %cle%Z + 3c,e%, we get
3
(3.16) Eclegz" +306% = a.

From (3.14), (3.15), and (3.16) we obtain d = 0. Now eliminating z, from (3.14) and
(3.15), we get 3¢ = 2ac;.
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Since f = a+cie2* + e and LV = —3(f — a) + 2¢,¢%, we get from (3.1)
L=1"+ (f—a)= —2cle%Z - %czeﬁ.
Case 2. Let ¢ # 1. Then
(3.17) N(r,a; LV |> 2) < N(r, 1;9) = S(r, f).

We now consider the following subcases.
Subcase 2.1. Let ¢ = 0. Then LY = V) and so L = f + d, where d is a constant.
Let E(a; f) = @. Since f is of finite order, we can put f = a+e”, where p is a non-
constant polynomial. Since Ey)(a; fV) = Eyy(a; LY) C E(a; f) = @, by (3.17) we
get N(r,a; fV) = S(r, f) = S(r, fV). Also, N(r,0; f1) = N(r,0; pV) = S(r, f1)),
and so by the second fundamental theorem T(r, f Wy = §(r, f M), a contradiction.
Hence E(g; f) # @, and so (3.7) is also valid.
Since fV = LW, from (3.17) we get

N(rya; fV [>2) < (n+ DN(ra5 fV [> 2) = S(1, f).
Let
_ L® — (1 —y)LW® L® — (1 —y)LW
&1 = 0 —a f—a .
If zy € C, then clearly L (zy) — (1 — 4(z))L"(25) = 0. So by Lemma 2.3 we get

and g =

N(r,g1) < N(r,a; fV |>2) + Np(r,a5 fV) + N(r, a5 fV | f # a)
< Np(r,a; LYY + (n+ 1)N(rya; fV | f # a) + S(r, f)
= (n+1)N(r,a; LY | f#a)+S(r, ) =S f),

and N(r, &) < Nu(r,a; f) + (n+ 1)N3g(r, a; LWy = §(r, f). Also, m(r,g1) + m(r,g2) =

S(r, f), and so T(r, g1) + T(r,g) = S(r, f).
Let L'® — (1 — )L # 0. Then

m(r, f?_—;) = m(r, i—j) = S(r, f),

and so m(r,a; f) = S(r, f). Therefore by Lemma 2.1 we get f = L = «e?, where « is
a non-zero constant.
Next let

(3.18) ¥ —a -y =o.
We suppose that ¢ # 0. Differentiating L — L'V = 1 (f — a) we get

(3.19) LY — 1@ = pW(f —a) +pfD.
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Eliminating L'» from (3.18) and (3.19) we obtain ¢)")(f — a) = 0. Since f is non-
constant, we obtain 1)) = 0 and so v is a non-zero constant.
Leta+d = 0. Then

f-a  f-da

andso fV/(f —a) = 1 — ¢ = ¢, say, a non-zero constant. This implies that f =
a + Ke®, where K(# 0) is a constant. Since L = f +d = f —a = Ke%, we get
LW = cKe®. Since by (3.7), C # @, there exists z, such that L(z)) = LV (z) = a
and so ¢ = 1. This implies a contradiction, as ¢ # 0. Therefore, a + d # 0, and so

fia:aid(]{ii_l) :aid(ffa_l)’

which implies that m(r, a; f) = S(r, ). So by Lemma 2.1 we get f = L = «e?, where
« is a non-zero constant. This implies a contradiction as @) # 0.

Therefore indeed ©» = 0. Then L'V = L and so L = ae?, where « is a non-zero
constant. Since by (3.7) there exists zy € C, we get f(z)) = L(zp) = aand so d = 0.
Therefore f = L = aé®.

Subcase 2.2. Let ¢ # 0. First we suppose that ¢ = 0. Then L = L"), and we can
apply Lemma 2.2. If Lemma 2.2(i) or (ii) holds, then ¢ = 0, which is a contradiction.
Therefore Lemma 2.2(iii) holds.

Next we suppose that ¢ # 0. If 1 + (é)“) = 0, then on integration we get

o= % where c is a constant. This is impossible, as the hypothesis implies that ¢

—2z?

has no simple pole. Hence 1 + (é) Z 0.

Now
L~ fo
(s f) = m(ra+ =2 ) < mn f0) + 0, f) < mls f) + S0 )
and so
(3.20) T(r, ) = T(, fV) + 8(r, f).

£ L. _ L0
Differentiating f = a + 5 Wwe get

(1) (1) (2) _ £
el (0 e (55

This implies that m(r, fV /(fV — a)) = S(r, f), and so m(r, a; fV) = S(r, f).
From the definitions of ¢ and ¢ we get

(3.21) L—LY =y(f - a),
(3.22) LV — fV = 6(f - a).
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Differentiating (3.21) and using (3.22) we obtain

(3.23) (1 =)LV — L@ = () — gp)(f — a).
Let V) — ¢p = 0. Then
1/}(1)
3.24 = —.
(3.24) 0=

The hypothesis implies that ¢ has no simple pole, and clearly @ has no multiple
pole. So from (3.24) we can infer that ¢ and ¢ are entire functions.
Since M — ¢1p = 0, from (3.23) we get

(3.25) L? = (1 —y)LW.

Since 1) is entire, (3.25) implies that L) has no zero, and so L") = ¢", where h is an
entire function. Since f and so LV is of finite order, & is a polynomial. From (3.25)
we get that 1) = 1 — h')) is also a polynomial. Since ¢ is entire, (3.24) implies that )

is a constant and so ¢ = 0, which is a contradiction. Therefore 1)) — ¢ 2 0.
From (3.23) we get

1—1 L
f=a+ P — WL(I){ b (1 — )LD }

and so

m(r, ) < m(r, L) + S(r, f) < m(r,L) + S(r, f) < m(r, f) + S(r, f).
Therefore,
(3.26) T(r, f) = T(r,L) + S(r, f) = T(r,L'V) + S(r, f).

Eliminating f — a from (3.21) and (3.23) we get

RS et R
T g o0 oy

Hence m(r,L/(L —a)) = S(r, f) and so m(r,a;L) = S(r, f). Since m(r,a; fV) +
m(r,a; L) = S(r, f), we get from (3.20) and (3.26)

L L?.

(3.27) N(r,a f(l)) = N(r,a;L) + S(r, f).

We now suppose that L # (. Then y = L;f;l) # 0, and by (2.7) we get
T(r,x) = S(r, f).

First we suppose that xy # 1. Then L) — f&) = y f0 4+ y(D(f —q). Letz, € C
be a multiple a-point of f() that is not a pole of . Then from above we see that
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x(z0) = 1. So N¢(r, a5 fV) |>2) < N(r,15x) + N(r, 005 x) = S(r, f). Also in view of
(3.27) we note that N(r,a; fV | L # a) = S(r, f).

Let E(a; f) # @. Then by Lemma 2.3 we get N(r,a; L'V | f # a) = S(r, f). We
put X = {E(a; fV) N E(a; L'V)}\E(a; f). Then

Nx(r,a; fV) < (n+ DNx(r,a; fV) < (n+ DN(r,a; LV | f # a) = S(r, f).
We put Y = {E(a; L) N E(a; fV)}\E(a; f). If z, € Y, then clearly x(z) = 0. So
Ny(r,a; fV) < (n+ )Ny (r,a; fV) < (n+ )N(r, 05 x) = S(r, f).

We now put Z = {E(a; ) N E(a; f) N E(a; L) }\E(a; L'V). Then
Ny (r,a; fV) < (n+ 1)Nz(r,as fV) < (n+ 1)Ny(r, a5 f) = S(r, f).
Therefore,
N(ra; fV |>2) < Ne(ras £ [> 2) + Nx(rya; f [> 2) + Ny (r, a5 f) > 2)
+Nz(rya; fV > 2) + N(r,a; fV | L # a)
< (n+1)Ne(rya; fV [>2) +S(r, f) = S(r, f).

Let E(a; f) = @. Since f is of finite order, we can put f = a + ef, where p is a
non-constant polynomial. Then

N(r,a; £V |>2) < 2N(r,0; f%) = 2N(r,0; (p")* + p?) = S(r, f).
Now we suppose that x = 1. Then
(3.28) L=fY+f-a
Differentiating (3.28) and using (3.22) we get

(3.29) P =o(f —a).

o Letzy € E(a; fV) N E(a; L). Then from (3.28) we see that zy € E(a; f). Hence
E(a; fY) N E(a; L) C E(a; f).

* Let zy be a multiple a-point of ') and an a-point of L. Then z, is a simple a-point
of f and so in view of (3.28) z is a simple a-point of L.

* Let zy be a simple a-point of ") and an a-point of L. Then z is a simple a-point
of f, and so by hypothesis z, is not a pole of ¢. Then from (3.29) we get ¥ (z,) = 0,
which is a contradiction.

e Let zy be a multiple a-point of L and an a-point of (V). Then z is a simple a-point
of f and so by hypothesis z, is not a pole of ¢. So from (3.29) we get f?(z) = 0
and z; is a multiple a-point of (. Hence (3.28) implies that z, is a multiple a-point
of f, which is a contradiction.
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Now using (3.27) we get
N(r,a; fY) = N(rya; fV | L=a) + S(r, f) > 2N(r,a; L | fV = a) + S(r, f)
= 2N(r,a; L) + S(r, f) = 2N(r,a; fV) + S(r, f),

and so N(r,a; f1) = S(r, f). This implies that N(r,a; f1) |> 2) = S(r, f).
Since N(r, a; f(l) |> 2) = S(r, f), in view of (3.27) we obtain

(3.30) N(r,a; fV) < N(r, 1;%) +50r, f) < T(r, %) +5(r, f)
_N< L (1)
- r,w) +5(r, f) < N(r, 05 fO) + 8, ).

Using (3.20) we can achieve (2.9). Since m(r,a; fV) = S(r, f), by (2.9), (3.20), and
(3.30), we get T(r, f) = T(r, fV) + S(r, f) < N(r,a; f) + S(r, f), and so m(r,a; f) =
S(r, ). Hence by Lemma 2.1 we get f = L, which is impossible as ¢ # 0. Therefore,
L= fYandsoL = ajL +a LV - +a,L""Vand LV = a;LV + a,L?) + ... +
a,L". Since |1 — a;| + |ay| # 0, we get m(r, L'V /(LY — a)) = S(r, ), which implies
m(r,a; LV) = S(r, f). Since m(r,a; L) = S(r, f), by (3.26) we get

(3.31) N(r,a; L") = N(r,a; L) + S(r, f).
In view of (3.31) we get N(r,a; L |> 2) < N(r,a; L | LV # a) = S(r, f), and so
L(l) L(l)
) ) < . < -
(332)  N(hal) _N(r, = ) +8(r, f) < T(r, . ) +8(r, f)

(1)
- N(r, %) +8(r, f) < N(r,0; L) + S(r, f).

Also by (3.26) we get

L
m(rya; f) < m(r7 —a) +m(r,0; L)

f
=T(r,L) = N(r,0;L) + S(r, f) = T(r, f) = N(r,0;L) + S(r; f)

and so
(3.33) N(r,0;L) < N(r,a; f) + S(r, ).
So using (3.26), (3.32), and (3.33) we obtain
m(r,a; f) = T(r, f) — N(r,a; f) + S(r, f) = T(r,L) — N(r,a; f) + S(r, f)
= N(r,a; L) + m(r,a;L) — N(r, a; f) + S(r, f) < S(r, f).

Hence by Lemma 2.1 we get f = L = «¢?, where « is a non-zero constant. This
contradicts the fact that ¢ # 0 and proves the theorem. [ ]
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