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1. Introduction. In this paper a simplified proof of a theorem of Sanov (4) 
is given. No mention is required of Lie elements or of the Baker-Hausdorff 
formula, both of which played central roles in Sanov's proof. 

Let G be a group. Define, for all x, y £ G, 

{y, x]0) = y, (y, x; 1) = (y, x) = y-^yx, 

(y,x;n + 1) = ((y, x; ri), x). 

Define, as usual, 

Gi = G, Gn+i = (G„, G) = {(c, x)\c e Gn, x £ G}. 

Sanov (4) proved that if G is a group of prime-power exponent, pe, then 

(1.1) (ym,x;k(j>k - £*-i))»-* £ Gq, k = l,2,...,e, 

for all ym G Gm and all x Ç G, where 

g = m'm(pm + 1, m + k(pk — pk~l) + 1). 

This is a non-trivial result only if 

(1.2) m > kp*-K 

In particular, if 

y m = (y^x^kp*-1 - 1), 

then (1.1) becomes 

(i.3) (y,x;kp*- iye~k e Gkpk+1. 

In this paper (1.1) is proved with 

(1.4) q = min(£m + p-l,m + k(pk - pk~l) + 1), 

but even with this larger q, (1.1) is still non-trivial only if (1.2) holds. 
In §2 we list some elementary results about commutators and binomial 

coefficients. In §3 we study the ideal in Z[X] associated with the ring of 
endomorphisms of an abelian normal subgroup of a group of prime-power 
exponent. Properties of this ideal yield a commutator relation (3.29) between 
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the subgroup and the group, which is strengthened in §4 and is shown in §5 
to yield (1.1). 

The authors wish to acknowledge their indebtedness to R. C. Lyndon for 
the material of §4, and to R. H. Bruck, whose conversations, lectures, and 
earlier work (1) provided techniques that permeate the present paper. 

The first two authors wish to thank the National Science Foundation for 
support while writing this paper, and the third author wishes to thank Sigma 
Xi for a grant that made travel to Madison possible. 

2. LEMMA 2.1. Let G be a group. Then for all x, y, z £ G, 

(2.1) (xy,z) = (*,*)((*, z),y)(y, *), 

(2.2) (x, yz) = (x, z) (x, y)((x, y),z). 

Proof. See, for example (2, p. 150). 

Let 

n\ 
r\ (n — r)\ 

be the binomial coefficient, i.e., the coefficient of xr in (1 + x)n. 

LEMMA 2.2. Let A be an abelian normal subgroup of a group G; r, n, m be 
positive integers; a, at G A; x Ç G. Then 

(2.3) (17* ah x;r) =Yli (a<> x î r)> 

(2.4) (xa)n = xnanfl (a, x; i)^l\ 
i=i 

mr 

(2.5) (a,xm;r)=ll(a,x-w)E^m-'°\ 
w=r 

where 

and the sum is taken over all distinct (ordered) r-tuples of positive integers 
(si, 52, . . . , sr) such that si + 2̂ + . . . + sr = w and st < m. 

Proof. To establish (2.3) use induction and (2.1). To establish (2.4) use 
induction and the following argument: 

(xa)n+1 = {xafxa = x v f l (a,x;i)^xa. 

Now move the right-most x to the far left by repeated use of the identity 

ux = xu(u, x), 

( : ) 
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to obtain 
n— 1 / n \ n—1 / n \ 

(xa)n+1 = xn+1an+1U (a,x;i)U+l)Y[ (a,x;i+ iy 
1=1 t=0 

= xn+V+1fl(a,x;i)(i"l)+G). 
1=1 

Finally observe that 

One also proves (2.5) by induction; see (3, Lemma 4.1). 

Note. If m = p in (2.5), then 

e.) for all st < p P 

and hence p\E(r, p, w) for all w < rp. 

The following lemma is well known. 

LEMMA 2.3. If p is a prime and e, r, k are positive integers such that e > r, 
kpT < pe and (ky p) = 1, then 

(2.6) p e—r C&) •* *-" * ill)-
3. Let G be a group of exponent pe> let A be an abelian normal subgroup, 

let R denote the ring of endomorphisms of A, and let x be a fixed but arbitrary 
element of G. 

Using (2.3) one verifies that the mapping from A to A defined by 

(3.1) CL-+YI (a,x;i)ri (alla G A), 

where k and the rt are fixed integers, k non-negative, is an endomorphism of A. 
One can also verify that the mapping from Z[X) to R> which sends 

(3.2) f(X)=JZriX
i 

i=0 

into the endomorphism, (3.1), is a homomorphism. Denote by Jx the kernel of 
this homomorphism; denote by J the intersection of all the Jx (x G G). 

If we denote by ax the image of a under the endomorphism assigned to X, 
namely ax = (a, x) ; and if we denote by ar the image of a under the en­
domorphism assigned to r, namely ar — aT\ then it follows that if f(X) is 
given by (3.2), 

(3.3) af{x) = 1 1 (a,x,i)Ti. 
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Hence J can be described as 

/ = \f{X) e Z[X]\af^ = 1 for all a 6 A and all x £ G}. 

For example, note that pe £ J and that by (2.4) 

THEOREM 3.1. Let 

(3.4) G be a group of exponent pe, 
(3.5) A be an abelian normal subgroup of G, 
(3.6) J = {f(X) e Z[X]\afw = i for all a £ A and all x £ G}. 

Then, for each i = 1, 2, . . . , e, J contains a polynomial ft(X) given by 

(3.7) MX) = £ p^X^^-^a^X), 

where the aijiX) have constant coefficients prime to p, and aie(X) = 1. 

Proof. Put n = pe in (2.4) to obtain 

(3.8) MX) =*£(/+UK* £ J-
Use Lemma 2.3 to put (3.8) into the form of (3.7) with i — 1. Assume now 
t h a t ^ ( X ) G J ; i.e., 

(3.9) l = n , (a,x;r)'r 

where 
MX) = ZrSrX'. 

In (3.9) replace x by xp and use (2.5) with m — p. Then 

1 = r i r («> xv\ r)Sr =Ylw (a, x\w)tw. 

We wish to show that 

(3.10) Zw tw Xw = ft+i(X) (mod J). 

By (2.5), and the note preceding Lemma 2.3, 

(3.11) (a,xp;r) = (a,x;pr)f[ faxiw)**; 
w=r 

where the nw are positive integers. Hence ^ tw Xw isft(X) with Xr replaced by 

(3.12) X" + pX'gr(X), r > l ; 

here 

gr(X) =Y,nwXw-r e Z[X}. 
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Making this replacement in each term of (3.7), we obtain 

(3.13) Z LXW = Z pe-j[Xpi+3~pt + pXpi+i'1^i-1hj(X)]a'ij(X)f 

where hj(X) = gpi+j-i_pi-i(X), and afij(X) has the same constant coefficient 
as atj(X). We now use the fact that pe £ J and rearrange terms: 

(3.14) Tlt,X
w^tip

e-1XJ,i+i-]"ai+l,j(.X)=ft+1(X) (mod J), 

where 

(3.15) p^X^'^'a^jiX) 

= p'-^X^^a'^X) +Xpi+i-"i-1hj+1(X)a'1,j+l(X)] ( 1 < j < e - 1), 

and 
ai+i,e(X) = a'u (X) = aie (X) = 1. 

Since atj(X) has constant coefficient prime to p for all 1 < j < ey and since 

(3.16) pi+j - p*-1 > pi+j - p\ 

we conclude that ai+itj(X) has constant coefficient prime to p for all 

1 < j < e. 

We now prove an elimination theorem, which yields the important formula 
(3.29). 

THEOREM 3.2. Let I be an ideal of Z[X] with the property that if a[X] 6 Z[X] 
is invertible (mod / ) , then so is a{X) + Xb(X) for all b(X) Ç Z[X], Suppose 
that I contains the polynomials 

h(X) = i i a i i P 1 1 + A2a12X
m" + . . . + AealeX

m^ 

U (X) = A x a21 X
m" + A2a22X

m» + ...+Aea2e Xm*<, 
(3.17) . . . 

fe (X) = AxanX*" + A2ae2 Xm<> + . . . + AeaeeX
m«y 

where the Aj and a^ are in Z[X]} the atj are invertible (mod / ) , and the rrtij are 
non-negative integers such that 

(3.18) ma < mi2 < . . . < miei 1 < i < e, 

(3.19) mn < rn2\ < . . . < wei, 

(3.20) (mij + mi+itj+t) — (miJ+t + mi+i§j) > 0, 1 < t < e — j , 

1 < iy 3, i + 1 < e. 

Then there exist ck (X) £ Z[X] such that 

(3.21) Ak Xm>< = Xm*+lck(X) (mod / ) , 1 < k < «, 
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r+s=k+l r+s=k 

where 

(3.22) 

(with the understanding that m\ = ran). 

Comments, For our purposes, we shall be using Theorem 3.2 with I = J as 
described in (3.6) and the/ , (X) being the/ , (X) of (3.7); i.e., 

Ai au = aij(X), mtj = p i+J-l _ f,i-l 

For this value of mij} one readily verifies that 

(3.23) mk = k(pk - p*-1). 

Condition (3.20) can be considered as a requirement that all 2 X 2 "deter­
minants" 

mtj Mi,j+t 

be positive. The right-hand side of formula (3.22) can be thought of as the 
"sum" of the "&th diagonal" minus the "sum" of the "(k — l)st diagonal" 
of the matrix of the m^: 

Wi l j t 

mk,i 

Proof of Theorem 3.2. We use induction on e. If e = 1, then (3.17) is just 

h(X) = i i a n P H / . 

But an invertible (mod / ) implies that 

^ i l m i l = 0 (mod / ) ; 

so simply let C\(X) = 0 and (3.21) will be satisfied. 
Now suppose the theorem is true for e — 1 and consider (3.17). We rewrite 

MX) G J a s 

(3.24) AiauX" S ^ i a H X m ' (modi). 
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Using (3.18) with i = 1 and the invertibility of an, we obtain (3.21) with 
k = 1 and 

C\ (X)= -ZAtaïtauX"1™1-1. 

We now essentially strike out the first row and the first column from the 
right-hand side of (3.17). Since the atj(X) are invertible (mod I) and the 
product of two invertible polynomials is invertible, we may assume that 
an = 1 (mod I), 1 < i < e. (This amounts to multiplying each fi(X) by 
aa-l(X).) Let 

(3.25)ft™(X) = X^-^-^f^X) -ft(X) -iAtbvX"»™, 2<i<e, 

where 

z. ywi;(2) _ •ymi\—mi-\ti-\-mi-i,j -ymij 
u ij J\. — tli—itjj\. — (XijJ\. , 

(3.26) w*/2) = ma ~ ^ i - i , i + w 

and hence 

(3.27) btJ = a*_M - aijX
mi-^+mii-m^-mi-i>h 

Observe that (3.20) guarantees that the exponent of X in (3.27) is positive. 
We consider now the following polynomials in I. 

f2
i2)(X) = A2b22X

m^2) + Azb2ZXm2*{2) + . . . + Aeb2eX
mu(2\ 

(3.28) tf*>(X) = A2bZ2X
m^) + ^ 3 &33^ 3 3 ( 2 ) + . . . + AebteX™^, 

fe
(2)(X) = A2be2X

m^2) +AzbeZXmez(2) + . . . +AebeeX
mee{2\ 

It is easy tp verify that the btj and the m*/2\ 2 < i < e, satisfy all of the 
hypotheses of the theorem and hence, by induction, there exist ck (X) £ Z[X] 
such that 

AkX
mk{2) = Xmk(2)+1ck(X) (mod 7) 

for all 2 < k < e, where 

W2)= £ W 2 ) - E W2> (2<f ,s< e ) . 
r+s=k+2 r+s=k+l 

By (3.26), the right-hand side of the above reduces to mk, and the proof is 
complete. 

THEOREM 3.3. Let A be an abelian normal subgroup of a group G of exponent 
pe. Then 

(3.29) (a, x; k(pk - pk-^)ye'k G Gm for all a e A,x Ç G, 
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where 

m = k(pk - pk~l) + 2. 

Proof. As indicated in the comment above equation (3.23), we wish to apply 
Theorem 3.2 with I = J as described in (3.6) and the fi(X) of (3.17) being 
the ft(X) of (3.7), i.e., 

Aj = pe~j, atJ = atj(X), mtJ = pi+j~l - pl~\ 

The only hypotheses of Theorem 3.2 that are not trivial to verify are that the 
dij(X) are invertible, and that the invertibility of a(X) implies that of 
a(X) + Xb(X). Both of these facts will follow if we can show that if a(X) has 
constant coefficient prime to p, then a(X) is invertible (mod J). 

By (3.7) with i = 1 (recall that au(X) = 1), 

(3.30) Xpe~l s ph(X) (mod / ) , h{X) Ç Z[X]. 

Raising each side to the eth power and observing (see (3.4) and (3.6)) that 
pe £ Jy we obtain 

(3.31) Xs e J, 

for s = e(pe — 1). (In general, this is not the minimal 5 for which (3.31) is 
true.) Hence if 

a(X) = a0 + <nX + . . . + ajX> £ Z[X], (a0, p) = 1, 

then one can find a! (X) such that 

a(X)a'(X) s 1 (mod J) 

by solving a finite collection of congruences of the form 

a0 z = w (mod pe) (w Ç Z) 

(which is possible since (ao, pe) = 1); see (1) for a similar argument. 

4. Let G be SL group of exponent pe, let K(y, x) denote the subgroup of G 
generated by y and x, and let Kmtn(y,x) denote the subgroup of K(y,x) 
generated by all (complex) commutators built up from at least m y's and at 
least n x's (and nothing else) (2, p. 138). It is not difficult to show that 
Km,n(y, x) is normal in K(y, x). 

LEMMA 4.1. Let G be a group of exponent pe and let d be a positive integer 
divisible by p — 1. Let t be an arbitrary positive integer. If 

(4.1) (y, x; d)l G Kltd+1{y, x)K2,\(y, x) for all y, x Ç G, 

then 

(4.2) (y, x\d)1 Ç K\,d+1(y, x)KPtP-i(y, x)K2,d{y, x) for oil y, x G G. 

Proof. Assume inductively that 
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(3/, x; d)1 e Kltd+1(y, x)Kn,i(y, x)K2>d(y, x) (2 < n < p - 1). 
Then 

(4.3) (y, X) d)% = Y[ki (mod Xi,d+i(y, x)i£w+i,i(;y, x)i^2,tf(3'> *))> 

where the &* are complex commutators in x and y containing exactly n yys. Let 
m be a primitive root (mod £); i.e., 

(4.4) mv~l = 1 (mod £), mj ?* 1 (mod £) if j < p — 1. 

Replace 3/ by ym in (4.3). Observe that repeated use of (2.1) and (2.2) yields 

KT.,(?*,X) <Kr,,(y,x). 

Further use of (2.1) and (2.2) yields 

(4.5) [(y,x; d) T = (U^)mn (mod Klld+1(y, x)Kn+ltl(y, x)Ks,d(y, x)). 

Next raise both sides of (4.3) to the mnth power to get 

(4.6) [(y, x; d)Tn ^ (Hki)" (mod Kltd+1(y, x)Kn+1§l(y, x)K2td(y, x)). 

A comparison of (4.5) and (4.6) yields 

[(y, x; d)Tn-m = 1 (mod K1§d+1(y, x)KH+ltl(y, x)Kitd(y, x)). 

But, by (4.4), mn — m is prime to p and hence to pe. This means that 

(y, x; d)f = 1 (mod Kitd+i(y, x)Kn+lti(y, x)K2td(y, x)). 

By induction 

(4.7) (y, x; d)l = 1 (mod Xi id+i(y, x)KPtl(y, x)K2,d(y, x)). 

Next we proceed from (4.7) to the inductive assumption 

(y, x; d) ' = 1 (mod Kitd+i(y, x)Kp,n{y, x)K2>d(y, x)) (1 < n < p — 2). 

Then 

(4.8) (y, x; d) ' = n*< ( m o d Ki,d+i(y, x)Kp,n+1(y, x)K2,d(y, x)), 

where the kt are complex commutators in x and y containing exactly n x's. 
Choose m as in (4.4) and replace x by xm in (4.8). Repeat the previous argument 
to obtain 

l(y, x; d) Td~mn = 1 (mod Kltd+1(y, x)Kp,n+1(y, x)K2td(y, x)) 

and hence, using the divisibility of d by p — 1, 

(y, x; d)l s 1 (mod Ki,d+1(yt x)Kp,n+i(y, x)K2>d(y, x)). 

Induction now yields (4.2). 

5. Given the group G of exponent pe
y we are to prove (1.1). We begin by 

taking arbitrary elements y, x £ G and forming the subgroup K = K(y, x) 
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generated by them. We define KMiTl as in §4 and verify that Kit0/K2,i is an 
abelian normal subgroup of K/K2)i. Hence, by (3.29), 

(y, x; k(p* - p*'1))'-* 6 K^k^k-i^K^. 

Since Kr is generated by complex commutators in x and y of weight r and 
greater, 

Kn+2 K2,l = Ki,n+i K2,l = Kl>n+l K2tl K2,n 

for all positive integers n. Hence 

(y, x; &(£* - #fc-1))p"* 6 Z U ( p M - i ) + i X 2 l i . 

Since k(pk — pk~x) is divisible by p — 1, we can apply Lemma 4.1 to obtain 

(y,x;k(p —p ))p € Kitk(pk-pk-i)+iKptp-iK2tk(Pk-pk-1)' 

In particular, if y = ym Ç Gw, then 

where q is given in (1.4). 
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