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GEOMETRIC AND TOPOLOGICAL PROPERTIES OF 
CERTAIN w* COMPACT CONVEX SETS WHICH 

ARISE FROM THE STUDY OF INVARIANT MEANS 

EDMOND E. GRANIRER 

Introduction. Let E be a Banach space, A a subset of its dual E*. x0 e A 
is said to be a w*G8 point of A if there are xn e E and scalars yn, n = 1,2, 
3 . . . such that 

ixo) = ix* G A\ x*(xn) = an for all n}. 

Denote by w*G8{A } the set of all w*G8 points of A. 
If S is a semigroup of maps on E* and K c E*, denote by 

FK = {x* G w* cl K\ Sx* = x*} 

i.e., the set of points x* in the w*closure of K which are fixed points of 
S (i.e., sx* = x* for each s in S). An operator will mean a bounded 
linear map on a Banach space and Co B will denote the convex hull of 
B a E. 

We introduce hereby the following property for semigroups S: 

Definition. We say that the semigroup S has the w*G8 sequential property 
if whenever a homomorphic image 5' of S acts as a semigroup of w* 
continuous operators on the dual E* of any Banach space E, such that 
S'K c K for some bounded convex K <z E* then 

w*Gô{F^} c w* seq cl K 

Here 

FK = {JC* G w* cl # ; S"x* = x*} 

and w* seq cl K (the w*sequential closure of K) is as usual the set of 
x* e £* such that some sequence x* in K satisfies 

w* lim x* = x*. 

We have proved in part of Corollary 2.1 of [4] p. 29, in slightly different 
terminology, the following: 
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108 EDMOND E. GRANIRER 

THEOREM 1. Countable left-amenable semigroups have the w*G8 sequen
tial property. 

The reason for making the above definition is the following proposition 
which implies that the w*G8 sequential property characterizes amenability 
in the class of countable groups. It is an application of a recent result of 
Losert and Rindler [9] and J. Rosenblatt [12]. 

PROPOSITION 2. Let S be a nonamenable group. Then there exists a 
nonatomicprobability space (X, ^p) on which S acts ergodically as a group 
of measure preserving maps {i.e., "nicely"} such that if 

K' = Co {0 ^ \P e L°°(X)*, i// is multiplicative} 

then 

w*G8{FK) ± 0 but w*G8{FK] n w* seq cl K = 0. 

Hence S does not have the w*G8 sequential property. 

The unifying thread of all the theorems in this paper is that they are 
applications of Theorem 1 and that they characterize amenability for 
countable groups. 

We need some notation before we state them. 
If A is a Banach algebra then 

AA = {0 ¥= <j> e y4*; <j> is multiplicative}. 

We will assume that the Banach space E is canonically imbedded in E**. 
~ denotes set theoretical difference and 

£** — E = {<j> G E**; <j> £ E}. 

If B c E* then the set BQ c B is a w*Gô section of B if there are xn in E 
and scalars an, n = 1, 2, 3, . . . such that 

B0 = {/>* G B; b*(xn) = an for all n). 

If a <E S, 8a e ll(S) denotes the point mass at a. 
The following is Theorem 2.1 of [12]: 

THEOREM. Let S be a countable amenable semigroup of measure 
preserving maps acting ergodically on the nonatomic probability space 
(X, &y p). Then there exists an S invariant mean I on L°°(X, <&, p) such that 
I ¥" p. Necessarily 

i G L°°(xy — L\X\ 

We note that any <J> in L°°(X)* such that <#> ^ 0 and <f>(\) = 1 is called a 
mean. (Analogously for means on function algebras.) 

We apply our Theorem 1 and obtain the following improvement of 
Rosenblatt's theorem: 
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THEOREM 3. Let (X&\i) be a o-finite nonatomic measure space and S a 
countable right amenable semigroup of operators 

s:L°°(X) = L°° -> L°°. 

Let M c ALc« be nonvoid such that S*M c M and let K = Co M. Then the 
set 

FK = {*// e w* cl K\ S*^ = ^} 

tf«d in fact any nonvoid w*G8 section FK of FK satisfies 

F°K n {L°°(X)* ~ L\X) } ^ 0. 

If S is any nonamenable group then S acts "nicely" on some nonatomic 
(X, ^ />) yet i ^ c L\X) for # = Co ALoo. 

Theorem 3 does not assert that the set FK is big. It happens even for 
countable abelian semigroups S that S acts on some nonatomic (Xy <%, /x) 
yet card FK = 1 for some K as above. An easy such example is given after 
Theorem 3. 

A convex subset K of E has the Radon Nikodym property (RNP) if for 
any finite measure space (X, £&, \i) any countably additive /x-continuous 
m\&-^ E of bounded variation such that 

li(Aylm(A) <= K whenever [i(A) ¥= 0 

is represented by a Bochner integrable function (see [17], p. 508). 
If this can be done only with Pettis integrable functions then the set K is 

said to have the weak RNP (WRNP) (see for example [14] ). 
Our next results are concerned with the question of when does FK, or 

some w*Gô section F°K of FK have the RNP (WRNP). 
If S acts on L°°(X, fy /i) = L°° and some finite set M0 c ALoo is S* 

invariant and if K0 = Co M0 then clearly FK is finite dimensional and 
afortiori has the RNP. We show that in a certain sense the converse is true 
provided S is a countable right amenable semigroup. We have: 

THEOREM 4. Let (X&ii) be a o-finite measure space, S a right amenable 
countable semigroup of bounded linear maps 

s:L°°(X) = L°° -> L°°. 

Let M c Aroo be such that S*M c M and let K = Co M. 
n 

If some nonvoid w*G8 section FK of FK has the RNP then there is some 
finite subset M0 of M such that S*M0 c M0. 

If S is any nonamenable group then there is some nonatomic (X&p) on 
which S acts "nicely" such that ifK = Co AL«D then FK has the RNP yet for 
no finite subset M0 of M does S*M0 c M0 hold. 

In the end we prove a proposition which reduces the WRNP case to the 
RNP case in case S is a semigroup of positive operators 
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s:L°°(X) -> L°°(X) 

such that si = 1 for all s. This implies then the following. 

COROLLARY 6. Let (X, &, ju) be o-finite S a right amenable semigroup of 
positive operators'. 

LOO/ xr\ T CO . rOO 

(A ) = L —* L 
such that s\ = \ for all s. Let M c AL«> be such that S*M c M and 
K = Co M. If FK has the WRNP then there is some finite M0 c M such 
that S*M0 c M0. 

We have proved in [4] p. 25 much more than Theorem 1 above, and the 
proof in [4] is quite involved. We give hence, at the end of the paper, a 
direct simpler proof of Theorem 1. 

1. The main results. We state for the purpose of applications a 
paraphrased version of our Corollary 2.1 of [4] p. 29: 

THEOREM 1. Countable left amenable semigroups have the w*G8-
sequential property. 

We postpone a direct proof to the end of the paper. 
We apply in the next proposition an interesting result of Losert and 

Rindler [9] and J. Rosenblatt [12] and show that any nonamenable group 
S does not have the w*G5-sequential property. Hence, the w*Gô-
sequential property characterizes amenability in the class of countable 
groups. 

PROPOSITION 2. Let S be a nonamenable group. Then there exists 
a nonatomic probability space (X, ^ p) on which S acts as a group of 
measure preserving maps such that if lsf(x) = f(sx), for s in S and f in 
L°°(X) = L°°, 

K = Co(ALoo) c (L°°)*, 

FK = {^ G w* cl K\ V$ = ^} 

then 

w*G8(FK) * 0 

but 

w*Gô(FK) n w* seq cl K = 0. 

In particular S does not have the w* G ̂ -sequential property. 

Proof. There exists by [9] and [12] a nonatomic probability space 
(X, &, p) on which the nonamenable group S acts as a group of measure 
preserving maps s.X—> X such that there exists a unique S-invariant mean 
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on L°°(A:) = L°°. Clearly 

w* cl K = {4* e L°°; ^(1) = 1 } 
is the set of means on L°° and FK = {p} for this measure space. Trivially 
we have 

™*G8(FK) = iP) = FK-

It is enough hence to show that p is not in w* seq cl K. Assume that 

p e w* seq cl ^ 

and let ^n e AT = Co ALc» satisfy 

w* lim ^n = p. 

Then, by Grothendieck's theorem see [2] p. 156, Corollary 12 and the 
theorem on p. 179, we have that even w-lim \pn = p i.e., \pn —>/? in a(L°°*, 
L°°**). It follows that/? G norm cl K since AT is convex. Hence there is a 
sequence Qn e AT = Co AL^ such that 

10, P\\i 0. 

Let 8l9 . . . , 8n e AL^ and a1? . . . , aw be scalars. Then since L°° •« C(AL« 
one gets by a mild Tietze argument that 

2 afiA Loo* = 2l«/l = 2 «A 
1 M 1 ' ' 1 

/'(AH" 

By extending this isometry we get that 

{
oo oo \ 

2 «A; 2kl <oo,sJ. e AL^J 
is a closed subspace of L°°* (and that ALœ is a canonical Z1 basis in L°° ). 
But moreover, the set 

{
oo oo \ 

2 «A; «i = o, 2 « z = i,sz- e ALTOj 
is weakly closed in ^(A^oo) (just by pairing with the constant 1 and by one 
point support, functions in /°° (AL^) ) and o(L°° , L°° ) restricted to E 
coincides with the weak topology of l\kL™) ^ E. It follows hence that 

oo 

there are 8t e ALOO, /}f. > 0 with 2 / ^ = 1 such that 

2 M-
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But then p has to contain atoms. In fact choose N > 1 such that 

oo 

2 Pj < /5,/2 
7V+1 

and choose a set C c X such that 8,( l c) = 1 b u t o , ^ ) = 0 if 2 ^ / ^ N. 
Clearly l c # 0 e L°°. Let D c Cbe in ^ If 8{{\D) = 1 then/?(lD) & j8,. 
If 5,(l f l) = 0 then 

/>Uj>) ^ /8,/2. 

Thus {/?(1D); D c C, D E ^ } i s not convex hence /? restricted to 
(Z) G ^ Z) c C} contains atoms by Sack's theorem. This contradicts the 
fact that (X, ^ p) is nonatomic. 

Remark. This proposition answers in part our question on p. 29 of [4]. 

We will apply in what follows the w*Gô-sequential property to obtain an 
improvement of the following Theorem 2.1 of J. Rosenblatt [12]: 

THEOREM 2.1. Let S be a countable amenable semigroup of measure 
preserving transformations acting ergodically on the nonatomic probability 
space (X, ^ p). Then p is not the unique S invariant mean on L°°(X). 

Rosenblatt's proof of this theorem is not easy and he needs to prove a 
measure theoretical version of a theorem of Folner, using techniques 
developed by I. Namioka. This Theorem 2.1 and more, is in fact an 
immediate consequence of Corollary 2.1 and the proof of Theorem 4, p. 38 
our memoir [4]. In fact, these imply that card Ms i^ 2 ' where Ms denotes 
the set of S invariant means on L°°{Xy &, p) (see also p. 61 of [4] ). 

Let (X, <%, /A) be a a-finite measure space S a semigroup of nonsingular 
measurable maps s:X -> X. Let L°°(X&ii) = L°°, h\x^\x) = Lx and 
ls:L°° -» L°° be defined by 

( / , / ) ( * ) = / ( * * ) • 

(ls is the adjoint of the operator l's:L
] —> l) defined by: if g e L1 and 

Pg(A) = IAS^ Then 

(/>g)04) = ixg(s-]A) 

for A e ^ s <= .S.) 
The operators ls:L°° -> L°° are multiplicative (i.e., ls(fg) = (lj)(lsg) ). 

So are the operators of type/—»/ï c where C e & All such multiplicative 
operators l:L°° -> L°° satisfy 

/*(ALoo) c ALoo u {0}. 

Clearly, for all s, t in S, ljt = /^ thus /*/* = /*. Hence, if S if left amenable 
/$. is right amenable while / | is again left amenable. We have now the 
following improvement of Rosenblatt's Theorem 2.1 of [12]. 
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THEOREM 3. Let (X, âiï> JJL) be a o-finite nonatomic measure space and S a 
right amenable countable semigroup of bounded linear maps 

s:L°°(X) = L°° -> L°°. 

Let M c ALoo be non void, such that S*M c M and K = Co M. Then the 
set 

FK = fy G w* cl K; S*\P = i//}, 

««J in fact any nonvoid w*G8 section FK of FK satisfies 

F°K n {L°°(Z)* ~ L](X) } ^ 0. 

Remarks, (a) The property described in Theorem 3 characterizes 
amenable groups in the class of countable groups: if S is a nonamenable 
group let (X, <%, p) be the Losert-Rindler, Rosenblatt nonatomic 
probability space described in Proposition 2. Then the group ls acts on 
L°°(X). Let K = Co ALoo. Then 

{p} = FK c L 1 ^ ) and i ^ n {L°°* - L1} = 0. 

(b) Theorem 3 does not assert that FK is a "big set" if S is left amenable. 
It may in fact happen that card FK = 1 even if S is abelian and arises from 
nonsingular point maps on {X&\£) (see example at the end of this 
proof). 

Proof. Clearly FK ¥= 0 by the Markov-Kakutani-Day fixed point 
theorem. Let/„ e L°° and an be scalars n = 1, 2, . . . and assume that 

F°K c L V * ) = L ] where fn, an determine F°K. 

We show then that (X^fx) contain atoms, which cannot be. If FK c L1 

then F°K is a weakly (i.e., a(Ll, L°°) ) compact subset of L1 and as such has 
to contain an exposed point, by a theorem of Amir and Lindenstrauss 
( [8] Theorem 6.4, p. 267). Kence there is some/0 e L°°(X) and a scalar 
a0 and some \p0 e F ^ such that 

{^} = {* e Fo.; ^/0 = a0} = {^ G F*; */„ = a„ for all n i£ 0}. 

Hence ^0
 G w^GgCF^). But the countable semigroup S is right amenable, 

hence 5* (which operates on L°° ) is left amenable. By our Theorem 1, S* 
has the w*Gô-sequential property, thus 

\p0 e w* seq cl K. 

Hence there is a sequence \pn <E K = Co M such that 

w* lim ^ - i//0. 

But the argument used in the proof of Proposition 2 shows that there are 
then p. > 0 with 2 /?• = 1 and ôy G M such that 
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oo 

1 

and \p0 has to contain atoms. But ^0 G Ll(X) and (X, &, ju) is nonatomic, 
hence \p0 does not contain atoms, which finishes the proof. 

Remarks, (a) We only need in the above proof that the measure space 
(X3?\x) is nonatomic and localisable, i.e., (see [16] Theorem 5.1 or [7] ) that 
it is a direct sum of pairwise disjoint finite nonatomic measure spaces 

(b) We show by an example that the set FK may contain a unique 
element and certainly may have the RNP, in marked contrast with the 
results in [6] where analogous sets which arise from sets K c L (X) 
with 

FK = {i// G w* clK; /|*i// - ^} 

do not have even the WRNP. 

Example. Let R be the real line with Lebesgue measure X. Let S be the 
rationals with the multiplication 

r • t = max {r, / } . 

Let S operate on R by r - x = max {r, x}. Then S is an extremely 
amenable abelian semigroup (see [5] ) and as such has the fixed point 
property on compacta, by T. Mitchell's theorem (see for example [5] ). 
Let 

lr\ L°°(R) -> L°°(R) 

be given by 

0 / > = f(T ' x) for r G S. 

If \p G ALoo^ then there is some \p0 G W* cl {/|^} c hL°°(R) such that 

If M = {xp0} then 

K = Co M = {xp0}. 

Hence 

i ^ = {<ï> G w* cl # ; / | 0 = $} = {i//0} c L°°(R)* ~ L 1 ^ ) -

Our Theorem 3 hence cannot insure that the set FK is necessarily "big" 
but just that 

FK c {L°°* - L 1 } * 0. 

This last fact can be put to special use in conjunction with Theorem 2.6 of 
our paper [6]. 
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This example brings us to the following situation. Let (X&\i) be 
a a-finite measure space and assume that S is a semigroup of maps 
s:L°°(X) —> L°°(X) which leaves invariant some finite set M0 c ALœ(X), 
i.e., s*M0 = M0 for each s in S. If K = Co M0 then 

FK = {xp e w* cl ^ ; £*;/, = ^} 

is finite dimensional and afortiori has the RNP. We prove in the next 
theorem that whenever a countable right amenable semigroup S is such 
that S*M c M for some M c AL^ and some w*Gg-section of 

FK = & e w* cl # ; S*^ - *//} 

has the RNP (where K = Co M) then there exists some finite set M0 c M 
such that S*M0 c M0. Furthermore, we show that this "RNP-finite 
invariant property" characterizes amenability in the class of countable 
groups. 

THEOREM 4. Let (X, &, fi) be a o-finite measure space, S a right amenable 
countable semigroup of bounded linear maps s:L°°(X) —» L°°(X). Let 
M c ALcx>^ be such that S*M c M and let K = Co M. If some nonvoid 
w*G8-section FK of 

FK = {xp e w* cl K, S**p = x^} 

has the RNP then there is some finite subset M0 of M such that s*M0 = M0 

for each s e S. 

Remarks, (a) If S is any nonamenable group let (X, &, p) be the 
Losert-Rindler Rosenblatt nonatomic probability space on which S acts 
and for which/? is the unique S-invariant mean on L°°(X) (see Proposition 
2). Let M = ALoo(X), K = Co M. Then FK = {p} has the RNP but no 
finite subset M0 of M satisfies / |M0 c M0. Since such M0 would imply 
that 

k 

p = k~x 2 fiz- for some {fil5. . . , ô^} c M0 
l 

i.e., that {/?(yi); A e ^ } is finite. This contradicts the fact that p is 
nonatomic. 

(b) The assumptions of Theorem 4 imply that if for each 8 <= M, the 
orbit {£*£} is infinite, then no nonvoid w*Gô-section FK of F^ can have 
the RNP. 

(c) Norm separable w* compact convex sets have the RNP (see [17] 
Proposition 1.10). 

Proof Assume that 
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^ = {* e F*; */„ = «„ for « i= 1} 

has the RNP. Then rK has a w*G8 point (see Lemma 9, p. 13 of [11] ). For 
completeness here is a short proof: If FK has the RNP then Corollary 
1.17 of [17], p. 512 implies that FK is affinely homeomorphic in the w* 
topologies to a w* compact convex subset Kx of a dual Banach space Z* 
which has the RNP. Hence Z is an Asplund space ( [17], Theorem 2.8) and 
hence Kx has w* strongly exposed points ( [2], p. 213). If k0 G ^ is such, 
then k0 is a w*G5 point of X^. Hence its inverse image \p0 in FK (by the 
above w*-w* homeomorphism) is a w*Gô point of FK (this being a topo
logical concept). 

It follows that by adding a sequence/^ e L°° (X) and scalars a'n we can 
assume that 

{*„} = {* G F ^ ; yf„) = < for « S i } . 

However S* is left amenable, hence has the w*G5-sequential property. 
Hence there is a sequence \pn e Co M such that 

w* lim xf,n = i//0. 

It follows (as in the proof of Proposition 2) that there are cn > 0 with 
2 c„ = 1 and 8n e M such that 

oo 

^o = 2 ^£„ and ô„ ^ ôm if « ^ m. 
l 

That same argument shows that the norm closed subspace L(M) generated 
by M is isomorphic to ll(M). By the Hahn-Banach theorem, for any 
/ G l°°(M) there is some O G L°°(X)** such that 

( CO \ CO 

2 «A ) = 2 <Xif(8i) whenever 21 a, I < oo and 5Z G M. 
i ' i 

Assume that we rearrange the above ci (which appear in i//0) such that 

cx = c2 = . . . = cN > ct if / ^ N + 1. 

Since s*i^0 = \p0 we have 

CO OO 

2 cn8n = 2 cns*(8n) and s*ôz G M. 
i i 

We claim that the set M0 = {Sl9 . . . , 8N] c M satisfies 

s*M0 = M0 for all s in S. 

In fact assume that /, j = N are such that 

s*8t = s*8: = 8k. 
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Let then 0 G L°°(*)** satisfy 

<$, Sk) = 1 and 0(8) = 0 if S ^ 8 ,̂ S G M. 

Then 

<$, s**0> â C/ + cr 

However (O, * 0) = c .̂ Thus ck ^ cz + c•. This implies that / = 7 and s* is 
one to one on M0 and since ck ^ cz it follows that k ^ N i.e., 

s**z- G M0 for each /' ^ TV. 

Since M0 is finite ^ M Q = M0 for all s* in S*, which finishes the proof. 

PROPOSITION 5. Let S be a set of positive linear operators s:L°°(X) —» 
L°°(X) with s\ = 1 where (X3?\i) is a-finite {or localisable). Let M c 
ALcx> == A be such that S*M c M. Let K = Co M. If the set 

FK = {* G w* cl K\ S*\P = *} 

has the WRNP then it has the RNP. 

Proof Identify L°°(X) « C(A) = C where A = ALoo. Let 

Mx = w* cl M. 

If * G C*, let /jfy be the Borel measure on A corresponding to * by the 
Riesz representation theorem. 

We show at first that 

L = {* G C*(A); S** = *, /xw(M,) = |*| (1) } 

is a w*-closed subspace of C* which is closed under the lattice operations. 
Here 

|*| ( / ) = sup { \Mg) I; 0 ë |g| ^ / } i f O ë / G C 

(see [15], Corollary 1, p. 72). Clearly ^JM{) •= |*| (1) is equivalent to 
M|̂ |(f/) = 0 where U = A ~ Mx is open. 

Let 

Bu = {g G C ; s u p p g c f/, |g| g 1} 

where supp g = cl {x; g(x) ^ 0}. Then 

/xw(£/) = sup { |*| ( / ) ; 0 ^ / ^ 1, s u p p / c U), 

see [13]. It follows that 

L = W e C*; S** = *, 4ig) = 0 if g e 5^} 

and L is clearly a w*-closed linear subspace of C*. Fix now some * in L. 
Then 

0 = |*| ( \g\ ) ^ | |*|(g) | for all g G £„ . 
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Hence 

t+(g) = \ ( M + *)(g) = 0 and 

*T(g) = \(\M- *)(g) = 0 for ail g G ^ 

(and xp+ = y\j V 0, ,/T = (-i/,) V 0, [15], p. 72). 
We still have to show that s*\^+ = ^ , s*\p~ = ^ , and here we use an 

idea of Namioka: ^ + è ^ hence 

Since s*^+ ^ Owe have 

thus ^*^/+ - ^ + ^ 0. But then 

i l ^ + - ^+ll = ( ^ + - *+)(l) = ^+(1) - ^+(1) = 0. 

We have shown that if ^ is in L so are ip+ and \p~. 
Assume now that FK has the WRNP. The canonical identification 

L°°(X) « C(A) = C identifies (see [4], Lemma 4, p. 31) 

FK~Lf= {0 ^ G L;i/<1) = 1} 

= {0 ^ G C*; # 1 ) = 1, H(U) = 0, S** = i/,}. 

Thus L}, the positive face of the unit sphere of L, has the WRNP and 
hence so does L"[— L\ by [14], Theorem l(i). It follows that {$ G L; ||^|| 
^ 1} has the WRNP i.e., by definition L has the WRNP. However, L is a 
Banach lattice and for such the WRNP implies the RNP by Proposition 8 
of [3]. Thus Lj+ has the RNP and so does FK. Theorem 4 and Proposition 5 
yield now 

COROLLARY 6. Let (X&\£) be o-finite S a right amenable countable 
semigroup of operators 

s:L°°(X) -> L°°(X) = L°°, 

such that s ^ 0 s\ = I. Let M c ALoo be such that S*M c M and let 
K = Co M. If 

FK = {xp G w* cl K\ S*xP = ^} 

has the WRNP then there is some finite set M0 c M such that s*M0 = M0 

for all s in S. 

We will give now a self-contained 
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Proof of Theorem 1. Let E be a Banach space. Let S be a countable left 
amenable semigroup of linear maps s:E* —> E which are w*-w* continuous 
and let ^ c £* be bounded convex and such that sK c K for each s in S. 
Let 

F* = {^ G w*c\K- Sy = y) 

and let 

Let xM G £, a^ be scalars such that 

{Jo} = (^ e w* cl K.Sy = y,y(xn) = a„ for all « ^ 1}. 

If O G l\S) has finite support i.e., 

n 

* = 2 «A 
i 

with Sj G S, ô5 ¥= 8S. if / ^ j , define 7V£* -» £* by 

n 

T$y = 2 <W. 
l 

If 

M = s u p { | | j | | ; j e 7^} 

then for each y in AT we have 

117^11 Si S Kl|5;y\I S M 2 | a , . | = Af | |$| | . 

If 

* = i «A,. 
1 

and 5 G S define 

/,* = 2 «A.,-
1 

Clearly \\l/b\\ ^ | |$ | | for all O. 
5" is left amenable, hence there is, by Day's convergence to left 

invariance theorem [1], a sequence $n e Co {8S\ s ^ S} a ll(S) such 
that 

\\ls$n - OJ| -> 0 for each s in S 

(the countability of S is used). It then follows that 

|| (sT* - T*)y\\ = WT^-^y) II ^ ||/,*„ - *„ll M 
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for each y in w* cl K. Thus 

WisTç - T<t)y\\^0 i f n - > o o 

uniformly in y e W* cl K. 
Let v^ be a net in K such that va —» j ^ 0 in w*. Then for fixed « and / we 

have 

(T*„va)(xi) -^ (T^yo)(xi) = yo(xi) = ar 

Choose hence fin such that 

I (TQV* )(xt) - az-| < - if /, k ^ n. 
k rn n 

Then 

â \\lsQn - $ J | M - > 0 if n^oo. 

Also 

I (7$ v^ )(xz) — OLJ\ —> 0 if « —» oo for each fixed /. 

Let un = T$ vp . Then un belongs to K. We claim that un —> j ^ 0 in w*. If 
not there is some x0 in E, 8 > 0 and a subsequence ww such that 

| (u„k - y0)(x0) | ^ 8 > 0 for each fc. 

And there is a subnet 

in w* for somej^ in is*. Thus 

I O i - yo)(x0) | ^ S and j ^ ¥= y0. 

However sw^ —» ^ in w* since each s is w* continuous. And 

\\swp — ŵ H —> 0 for each s in S. 

Hence for each x in E 

(sy\ ~ y\)(x) = \im(swp - wp)(x) = 0. 

Thus Sy{ = yx. However un(xt) —> a /if n —» oo for each fixed /. Hence this 
will hold also for the subnet Wp i.e., 

WygC*/) ~^ a / f° r f lxed /. 

But wp(xt) —» j>i(x/) for fixed z. It follows that 

y\(xi) = at f° r e a c n z a n ( i 

Syx = yx G w* Cl # . 
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Thus 

yx G {y G w* cl K; Sy = y, y(xt) = a/9 / ^ 1} = {^0}. 

This contradicts the fact that yx ¥= y0. It follows that 

Ĵ o = w* l i m un a n d Ĵ o e w* secl °1 ^-
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