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Abstract

We prove that any simple planar travelling wave solution to the membrane equation in spatial
dimension d > 3 with bounded spatial extent is globally nonlinearly stable under sufficiently small
compactly supported perturbations, where the smallness depends on the size of the support of the
perturbation as well as on the initial travelling wave profile. The main novelty of the argument is
the lack of higher order peeling in our vector-field-based method. In particular, the higher order
energies (in fact, all energies at order 2 or higher) are allowed to grow polynomially (but in a
controlled way) in time. This is in contrast with classical global stability arguments, where only
the ‘top’ order energies used in the bootstrap argument exhibit growth, and reflects the fact that the
background travelling wave solution has ‘infinite energy’ and the coefficients of the perturbation
equation are not asymptotically Lorentz invariant. Nonetheless, we can prove that the perturbation
converges to zero in C2 by carefully analysing the nonlinear interactions and exposing a certain
‘vestigial’ null structure in the equations.

2010 Mathematics Subject Classification: 35L72, 35B35 (primary); 35C07, 53A10 (secondary)

1. Introduction

1.1. Membrane equation. The starting point of our discussion is the
equation

∂

∂xµ

(
mµν∂νφ

√
1+m(∇φ,∇φ)

)
= 0 (1.1)
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on R1,d , the (1 + d)-dimensional Minkowski space equipped with the metric
m, which in standard coordinates is given by the diagonal matrix diag(−1, 1,
1, . . . , 1). In the equation, we used the notation m(∇φ,∇ψ)

def
= mµν∂µφ∂νψ .

This equation is variously known as the membrane equation, the time-like
minimal/maximal surface equation, or the Lorentzian vanishing mean curvature
flow. This is due to the interpretation that the graph of φ in R1,d

×R ∼= R1,d+1 is
an embedded time-like hypersurface with zero mean curvature.

Solutions to (1.1) model extended test objects (world sheets), in the sense
that the case where d = 0 reduces to the geodesic equation that models the
motion of a test particle. (The membrane equation can also be formulated with
codimension greater than one; see [AAI06, Mil08].) The membranes can also
interact with external forces, which manifests as a prescription of the mean
curvature; see [AC79, Hop13, Kib76, VS94] for some discussion of the physics
surrounding such objects and see [Jer11, Neu90] for rigorous justifications that
membranes represent extended particles.

Our interest in the membrane equation arose, however, mainly due to it being
an exceptional model of a quasilinear wave equation that is highly non-resonant.
The exploration of resonant conditions in wave equations proceeded, historically,
through two fronts. In the case of 1 spatial dimension, it has long been
understood that hyperbolic systems with resonance (Lax’s ‘genuinely nonlinear
condition’) lead to shock formation in finite time [Lax64, Lax73, Joh74]. For
higher spatial dimensions, in the small-data regime, resonance has to compete
with the dispersive decay enjoyed by wave equations. By now it is well
understood that quasilinear wave equations enjoy small-data global existence
in dimension d > 4, and also in dimensions d = 2, 3 when versions of
Klainerman’s null condition are satisfied [Kla80, Kla82, Kla84, Ali01a, Ali01b].
More recently, the two fronts have met, where small-data shock formation for
resonant quasilinear wave equations has been studied in spatial dimensions
2 and 3 [Ali01a, Ali01b, Chr07, Spe16, LS18]. For a recent review of the
current understanding of small-data global existence versus shock formation in
quasilinear waves, see [HKSW16].

In a recent paper, the second author, together with Speck, Holzegel, and
Luk, studied the stability of plane-symmetric shock formation for quasilinear
wave equations with resonance, under initial data perturbations that break
the plane symmetry [SHLW16]. More precisely, we start with a background
simple plane-symmetric solution to a quasilinear wave equation that is genuinely
nonlinear, such that it forms a shock singularity in finite time. Such background
solutions can be extracted from, for example, the late-time evolution of any small
compactly supported initial data; we however allow our background solution to
be of arbitrary ‘size’. We were able to show that the shock formation is stable
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under arbitrary initial data perturbations that break the simple plane symmetry,
provided that the perturbation is small compared to the background solution.

A natural follow-up question is as follows: When genuine nonlinearity fails,
in particular when there exist simple plane-symmetric global solutions to the
quasilinear wave equation, is the global existence stable under small, symmetry-
breaking initial data perturbations?

Returning to the membrane equation, we note that the equation is highly
nonresonant. It satisfies a stronger null condition than is typical of quasilinear
waves in 2 or 3 dimensions. This was explicitly exploited to show global well-
posedness of the small-data problem first by Brendle [Bre02] when d = 3 and
then by Lindblad [Lin04] in d = 2 and d = 1. The d = 1 case is surprising as,
there being no dispersive decay for the one-dimensional wave, any resonance,
even arbitrarily high order, can lead to finite-time blowup. The second author
explored this case in more detail geometrically [Won17a] and enlarged the class
of initial data for which global existence holds.

Our focus on the membrane equation in this paper then is due to the fact
that (i) as a consequence of [Lin04, Won17a], there exist robust families of
global plane-symmetric solutions to the membrane equation and (ii) the null
geometry of such solutions is well understood by the analyses of [Won17a].
We remark that, while not explicitly stated, following the same method of proof
of the main theorem in [Won17a], one can show that the global simple plane-
wave solutions described in Section 2.1 are automatically stable under plane-
symmetric perturbations that are not necessarily simple. In a future work, the
authors intend to generalize the results of this paper to more general models of
quasilinear wave equations with strong null conditions.

We state and prove our main result in dimension d = 3; as described in the
previous paragraph, the result is effectively known in d = 1. Our proof also
works in all dimensions d > 3 thanks to the improved dispersive decay of
solutions to the linear wave equation in higher spatial dimensions. Our proof
however does not work in d = 2 due to certain technical losses of decay (see
Remark 19). In [LZ19], the authors were able to prove a similar result in d = 2
with weaker asymptotic control; see Remark 3 for further discussion.

One should note, at this juncture, that the nonresonance of the membrane
equation is only effective in preventing a certain type of singularity formation.
Indeed, far away from the nearly simple plane-wave regime that we consider in
the present manuscript, singularities are known to arise from regular initial data.
In the case where d = 1, these were analysed by Nguyen and Tian [NT13] and
Jerrard et al. [JNO15]; while their analyses concentrate on the case with spatially
periodic domain, by finite speed of propagation the same singularity formation
can be localized and placed in our context. Analogues of [NT13, JNO15]
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in higher spatial-dimensional backgrounds were studied by the second
author [Won18]. In these cases, the singularities are not of shock type, but
rather appear due to the degeneration of the principal symbol of the evolution.

1.2. Our main result and discussions. The answer to the question asked
in the previous section is in the affirmative: we show that simple plane-
wave solutions to the membrane equation are stable under small initial data
perturbations. The precise version of our main theorem is Theorem 4; there
we state the result as a small-data global existence result for the corresponding
perturbation equations, after a nonlinear change of independent variables that
corresponds to a gauge choice. Here we state a slightly less precise version in
terms of the original variables.

THEOREM 1. Fix the dimension d = 3. Let Υ denote a smooth simple plane-
symmetric solution to (1.1) with finite extent in its direction of travel. Fix a
bounded set Ω ⊂ R3. There exists some ε0 > 0 depending on the background Υ
and the domainΩ , such that for any (ψ0, ψ1) ∈ (H 5(R3)∩C∞0 (Ω))×(H

4(R3)∩

C∞0 (Ω)) with ‖(ψ0, ψ1)‖ < ε0, the initial value problem to (1.1) with initial data

φ(0, x) = Υ (0, x)+ ψ0(x), ∂tφ(0, x) = ∂tΥ (0, x)+ ψ1(x)

has a global solution that converges in C2(R3) to Υ as t →±∞.

REMARK 1 (Finite extent in the direction of travel). We ask that Υ essentially
represents a travelling ‘pulse’. For example, taking plane symmetry to mean
constant in the x2 and x3 variables, Υ would be a function of t = x0 and x1

alone. We ask that for any fixed t , the function Υ vanishes for all sufficiently
large x1.

While we make heavy use of this finite-extent property in the course of the
proof (see Lemma 2), as we discuss in Remark 11, the finite-extent property
can be replaced by quantitative decay rates on the background profile Υ up to 7
derivatives. We omit this generalization as it makes the arguments more tedious
and the main mechanisms less transparent.

REMARK 2 (Simplicity). By a simple plane-wave solution we refer to a solution
that is not only constant in the x2 and x3 variables, but one such that the
differential dΥ is null with respect to the dynamical metric. In other words, a
simple plane-wave solution is one that propagates along only one (and not both)
of the characteristic directions of the nonlinear wave equation.

The assumption of simplicity is only to keep the argument simple
(pun intended). In fact, assuming finite extent of the initial data for the

https://doi.org/10.1017/fmp.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.10


Global nearly-plane-symmetric solutions to the membrane equation 5

plane-symmetric background, automatically by the sharp Huygens principle
for one-dimensional waves, after a finite length of time the background will
decouple into two spatially disjoint simple plane waves travelling in opposite
directions. By Cauchy stability of the finite-time initial value problem, we
see that the theorem for the simple plane-wave background also implies the
theorem for general, globally existing plane-symmetric backgrounds such as
those demonstrated to exist in [Lin04, Won17a].

We note here, however, that another feature of simplicity is that simple plane-
wave solutions exist for arbitrary pulse profiles (see Section 2.1). The same is not
the case for nonsimple plane-wave solutions: large interacting waves can form
finite-time singularities.

REMARK 3 (Dimensionality). The theorem above is stated for d = 3. The same
arguments can be used to prove stability for all dimensions d > 3 (in fact, the
arguments can be significantly further simplified when d > 5). One needs to
modify the degree of regularity required. When d = 3, the data is taken to be
small in H k

× H k−1 with k = 5. When d > 4 is even, we will need k = d + 3
and when d > 5 is odd, we will need k = d + 2. Compare to the discussion in
Section 4.

As mentioned before in this introduction, the d = 1 analogue of the result
essentially follows from the arguments in [Won17a]. This leaves the case
d = 2. After circulating our preprint, we were informed by Profs. Jianli
Liu (Shanghai University of China) and Yi Zhou (Fudan University) of their
work on the d = 2 case [LZ19]. They were very kind to share with us a
draft of their manuscript, which adopted a somewhat different approach to the
problem. Aside from minor technical differences in how we approach the energy
and pointwise estimates, a difference appears in how we linearize around the
background solution. In the present manuscript, we used the geometric normal
graphical gauge (see below) adapted to the background travelling wave, while
in [LZ19] they used the gauge adapted to the trivial solution. Our gauge has
the advantage that the perturbation equations contain no linear potential from
the background; the price paid is the appearance of nonlinear contributions of
lower order whose null structures are less apparent. In [LZ19], they were so
far able to show global existence for the perturbation equations but only C0

(and not C1) convergence to the background. The lack of higher derivative
convergence can be attributed, at least in part, to their gauge choice. Based
on our own work, we have high hopes that in fact C2 convergence can be
proven to hold, though at present there are some technical difficulties for even
showing global existence using a direct extension of our method; see also
Remark 19.
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Our main theorem is not a straightforward small-data global existence result
for a quasilinear wave equation. The equations satisfied by the perturbations
around large solutions generally include coefficients contributed by the
background, the effects of which must also be captured. In our problem, to
leading order the perturbation equation looks like

2mφ + φΥ
′′(∂t + ∂x1)2φ + Υ ′′(∂tφ + ∂x1φ)2 = 0. (1.2)

Here 2m is the flat wave operator, and the background pulse is assumed to
be travelling in the +x1 direction; so it has compact support in the (t − x1)

variable.
The first thing to note is that the linearized equation is the linear wave

equation on Minkowski space. This is a special geometric feature of simple
travelling-wave solutions to the membrane equation. To expose this special linear
structure, one needs to make an appropriate gauge choice involving a nonlinear
change of variables adapted to the background Υ , which essentially rewrites our
perturbation equations as a graph in the normal bundle of Υ , interpreted as a
submanifold of R1,1+d . It is well known that the membrane equation has good
structure in such ‘normal graphical gauge’: in this formulation, the linearized
equation can be expressed as the geometric wave operator adapted to the induced
Lorentzian metric on the background Υ plus possibly a potential term. This
gauge was also used, for example, in [DKSW16].

In view of this special geometric feature, we do not need to develop special
methods to perform the linear analysis. On the other hand, the function Υ ′′

is nondecaying and has support within the ‘wave zone’; this significantly
complicates the analysis of the nonlinear terms, especially since these
nonlinearities are not in the shape of classical null forms. This is in contrast with
the analyses in [DKSW16], where the stability of another ‘large-data’ solution
to the membrane equation was considered. The background solution in that case
is the static catenoid solution. The nontrivial catenoid background introduced a
low-frequency correction to the linear evolution (in fact, giving an exponentially
growing mode). But as the background is asymptotically flat, the high-frequency
evolution, especially in the wave zone where it is the most delicate when it comes
to the nonlinear interactions, is entirely captured by classical null structures.
In particular, the nonlinearities do not introduce new difficulties beyond the
adjustments made for the modified linear evolution. Another difference with our
work and [DKSW16] is that they prove that the catenoid is globally stable under
axially symmetric codimension one initial perturbations, whereas we prove
that our plane-wave solution is globally stable under an open set of symmetry-
breaking perturbations. Their symmetry assumptions on the perturbations are
there to avoid the issue of trapped geodesics on the catenoid.
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In the present manuscript, on the other hand, the focus is entirely on the
nonlinearity, with the main difficulty arising precisely from the nondecaying
background Υ ′′. At this point, it may be worth drawing comparison to another
large-data (semi-)global existence result for the membrane equation. In [WW17],
the authors studied the membrane equation with initial data given as a small
perturbation of an outgoing ‘short-pulse’. The (semi-)global existence (note that
by their choice of initial data, the result in [WW17] is not time-symmetric!)
mechanism in this case is essentially still the classical null condition of
Klainerman. The strong nonresonance condition of the membrane equation
means that the ‘large’ short-pulse background does not interact with itself; and in
fact, the pulse itself decays like the solution to the linear wave equation. Putting
this together with the fact that the nonlinearities in (1.1) are cubic, this means
that heuristically we can understand the result of [WW17] as very similar to
the large-data stability result for the wave map system proven in [Sid89], which
also required the ‘background geodesic solution’ to be one with finite (weighted)
energy, and hence decays like finite energy solutions to the linear wave equation.
These types of systems can be modelled by the quasilinear system

2mψ1 = 0,
2mψ2 = m(∇ψ1,∇m(∇ψ2,∇ψ2))+m(∇ψ2,∇m(∇ψ1,∇ψ2)).

Even when ψ1 is a ‘large’ solution, it contributes enough decay so that the
nonlinearities for the second equation decay at an integrable rate. Together with
the fact that the nonlinearity is quadratic in ψ2, we can upgrade the smallness
and close the bootstrap. Note that the decay of ψ1 is crucial as in the second term
of the nonlinearity, we see components like

(∂t + ∂r )
2ψ1 · (∂tψ2 − ∂rψ2)

2.

This is a resonant interaction in ψ2, whose contribution is significantly
ameliorated by the fact that (∂t + ∂r )

2ψ1 should decay like t−3/2 (or better)
in R1,3 or t−1 (or better) in R1,2. If we were to replace the ψ1 factor by a generic
bounded function in R1,3 (or a function decaying no faster than 1/

√
t in R1,2),

this term will lead to finite-time blowup.
Returning to our equation (1.2), we see that we have precisely this type

of resonant interaction with a nondecaying coefficient. Instead of coefficient
decay, we need to exploit a different aspect of the null structure of the
original membrane equation (1.1). What we will use is the fact that Υ ′′ has
compact support in the (t − x1) variable. The resonant interacting terms (∂tφ +

∂x1φ) represent waves travelling in directions transverse to the level sets of
t − x1. (In (1 + 1)-dimensions, the linear wave equation can be expressed as
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(∂t−∂x1)(∂tϕ+∂x1ϕ)= 0, and since (∂t−∂x1)(t−x1)= 2, one sees that ∂tϕ+∂x1ϕ

is a bona fide travelling wave transverse to the level sets of t − x1.) In particular,
we expect the resonant interaction to only take place for a bounded length of
time (for each wave packet). Our main mechanism would therefore be something
similar to that which drives Shatah’s space–time resonance arguments [Sha10],
but captured in a purely physical space manner.

Of course, we have to pay a price for this nondecay. This manifests in
us having to use a polynomially growing energy hierarchy when using the
vector field method. In fact, our higher order energies, starting with the second
(controlling the third derivatives in L2), will grow in time, with each additional
order differentiation growing one order faster in time. One should compare to
classical applications of the vector field method where all but the top order
energies are bounded in time, with the top order typically exhibiting no worse
than a log growth. The upshot of this energy hierarchy is that we lose strong
peeling properties of the solutions (see Remark 23).

To effectively study this energy hierarchy, it turns out to be convenient
to use hyperboloidal foliations. Such foliations were introduced by
Klainerman [Kla85] to study the decay properties of Klein–Gordon equations,
and further developed and refined in [LM14] for use also with wave equations
and coupled systems of Klein–Gordon and wave equations. We will follow
the formulation in [Won17b], which places emphasis on the use of Lorentz
boost commutators; in fact, one interesting technical facet of our argument
is that, throughout, we will only commute our equations with Lorentz boost
vector fields. To help manage the nonlinearities that arise in such arguments in a
systematic way, we introduce in this paper a weighted vector field algebra (see
Section 3.2). The introduced notations help simplify the computation vastly for
the higher order nonlinearities and significantly shorten our arguments.

1.3. Outline of the paper. The remainder of this paper is organized as
follows. We first discuss the background plane-wave solutions Υ . These
solutions are introduced in Section 2.1. Their basic geometric properties and our
gauge choice for studying the perturbations are described in Section 2.2.

We next discuss the basic analytic tools used in our arguments. In Section 3.1,
we recall the global Sobolev inequalities associated to hyperboloidal foliations.
In Section 3.2, we develop a weighted vector field algebra to help simplify our
analyses of the nonlinear terms using more schematic notations.

In Section 4, we study the semilinear model problem 2mφ = Υ ′′(∂uφ)
2,

obtained from dropping the quasilinearity from (1.2). This model problem turns
out to capture already the majority of the difficulty one faces when analysing
the full problem. We prove small-data global well-posedness for the semilinear
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model in all dimensions > 3. In dimension d = 2, however, one expects even the
first-order energy to exhibit polynomial growth in the quasilinear model (1.2),
which loss seems too strong to overcome with the methods described in this
paper. Therefore we also omit a detailed treatment of the d = 2 semilinear model.

The remainder of the paper is devoted to studying the quasilinear problem in
d = 3, and stating and proving a more precise version of Theorem 1. In Section 5,
we perform first some preliminary computations casting the equations for the
perturbation φ and its higher order derivatives in schematic form to prepare
for analysis. As many of the computations are long and involved, we delegate
sketches of the arguments separately to the Appendix A. At the end of the section,
we state our Main Theorem 4. As usual, we will prove our Main Theorem by a
bootstrap argument for our energy hierarchy. In Section 6, we define our energy
quantities, outline our main energy estimate, state our bootstrap assumptions,
and derive some immediate consequences that do not involve the equations of
motion. Section 7 is devoted to proving a priori estimates for our equations of
motion, based on the bootstrap assumptions. These are combined in Section 8 to
show that the bootstrap assumptions can be improved, and thereby hold for all
time and global existence follows.

For convenience, we include in the Appendix B a list of notations that are
introduced and references to their definitions.

2. The background solution

In this section, we first exhibit simple plane-wave solutions to the membrane
equation and describe their geometry. These solutions are travelling waves and
exist for all time; our goal is to analyse their stability under small non-plane-
symmetric perturbations. To do so, we recast the stability problem as a small-
data Cauchy problem for the perturbation. In the second part of this section, we
exploit the geometric interpretation of the solutions as minimal submanifolds
of higher dimensional Minkowski space to make a convenient choice of gauge
and derive the corresponding perturbation equations. The gauge choice allows us
to simplify the analysis of the linearized dynamics. As the membrane equation
itself is a quasilinear wave equation, when linearizing around a fixed nontrivial
background solution, typically the background contributes to the linearized
dynamics (for example, in [DKSW16], where the background contributes a
potential term leading to generic instability of the system). For the membrane
equation in Minkowski space, however, it is known [CB76] that the potential
term in the linearized dynamics for perturbations parametrized by the normal
bundle is given by the double contraction of the extrinsic curvature of the
embedding of the background solution. For simple plane waves, this potential
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term vanishes [Won17a]. The gauge choice below makes this explicit and shows
that the perturbed system can be described by a quasilinear perturbation of the
linear wave equation on Minkowski space, with the background solution only
appearing as coefficients of the nonlinearity.

2.1. Simple plane-wave solutions to the membrane equation. Let Υ ∈
C∞(R;R) be arbitrary. One easily sees that the function

◦

φ : R1+d
→ R defined

by
◦

φ(t, x1, x2, . . . , xd) = Υ (t + x1) (2.1)

solves (1.1), seeing as d
◦

φ(t, x1, . . .) = Υ ′(t + x1) d(t + x1) and hence m(d
◦

φ,

d
◦

φ) ≡ 0 and mµν∂2
µν

◦

φ ≡ 0. (We have made the choice to have our background
travelling waves move ‘to the left’, that is, as a function of t + x1. Note
that for the analyses in [SHLW16], the simple waves move ‘to the right’. We
beg those readers familiar with the previous work to indulge us and mentally
reorient the space–time and relabel the function u as needed.) The simple plane-
wave background will be interpreted as the graph of

◦

φ in R1,d+1, the (d + 2)-
dimensional Minkowski space equipped with the standard Minkowski metric M .
That is to say, we consider the embedding R1+d ↪→ R1,d+1, given by

(t, x1, . . . , xd) 7→ (t, x1, . . . , xd,
◦

φ(t, x))

with the first component fixed as the time-like one. The m(dφ, dφ) 6= −1 implies
that the induced metric on the graph of φ is Lorentzian and nondegenerate. By
the analysis of [Won17a], this induced metric is flat; this fact can also be seen
through the following explicit computations.

Denoting the above embedding by Φ, the induced metric can be in fact given
by the line element

Φ∗M = ds2
= (−1+ (∂t

◦

φ)2) dt2
+ 2∂t

◦

φ∂x1
◦

φ dt dx1
+ (1+ (∂x1

◦

φ)2) d(x1)2

+ d(x2)2 + · · · + d(xd)2.

Using that ∂tφ(t, x) = ∂x1φ(t, x) = Υ ′(t + x1), we see that if we define
u def
= t + x1,

u def
=

1
2

[
t − x1

−

∫ x1
+t

0
(Υ ′)2(τ ) dτ

]
,

(2.2)

then the line element can be alternatively written as the Minkowski metric in
standard double null form

m = ds2
= −2 du du + d(x2)2 + · · · + d(xd)2. (2.3)
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The functions u and u solve the eikonal equation m(∇u,∇u) = m(∇u,∇u)
= 0. For the subsequent analyses, we will parametrize using the coordinates
{u, u, x2, . . . , xd

}.

REMARK 4. Note that there are two Minkowski metrics involved in the
construction: (1) the metric on the ambient space R1,d+1, which is denoted by
M ; (2) the induced Minkowski metric on the plane-wave background given by
double null coordinates (u, u, x̂) ∈ R1,d , denoted by m.

For completeness, we note that the change of variables can be inverted:
t =

1
2

u + u +
1
2

∫ u

0
(Υ ′)2(τ ) dτ,

x1
=

1
2

u − u −
1
2

∫ u

0
(Υ ′)2(τ ) dτ.

(2.4)

For convenience, we note that relative to this coordinate system, our simple
plane-wave solution is given by the embedding

(u, u, x̂) 7→ (t, x1, x̂, Υ (u)) ∈ R1,d+1, (2.5)

where t and x1 are given as functions of u, u by (2.4), and for convenience we
denote by x̂ = (x2, . . . , xd).

We finish this subsection by computing the extrinsic curvature (second
fundamental form) of the embedding (2.5). The change of variables (2.4) implies
that the vector fields

∂u = (1,−1, 0, . . . , 0), ∂u = (
1
2 (1+Υ

′(u)2), 1
2 (1−Υ

′(u)2), 0, . . . , 0, Υ ′(u)).

Denote by n : R1,d
→ R1,d+1 the unit normal vector field (with respect to the

Minkowski metric on R1,d+1) of the embedding (2.5) given by

n(u, u, x̂) = (−1)d−1(−Υ ′(u), Υ ′(u), 0, . . . , 0,−1). (2.6)

Expression (2.6) can be computed from

nα = (M−1)ακεκ,β,γ,σ2,...,σd−1(∂u)
β(∂u)

γ (∂x2)σ2 · · · (∂xd−1)σd−1,

where α, κ, β, γ, σ2, . . . , σd−1 ∈ {0, 1, . . . , d − 1} and εκ,β,γ,σ2,...,σd+1 is the
antisymmetric symbol normalized by ε0,1,2,...,d−1 = 1. The second fundamental
form can then be computed to equal

II = (−1)d−1Υ ′′(u) du2. (2.7)
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(We use the convention II(∂u, ∂u) = 〈∂un, ∂u〉M .) As consequences of the eikonal
equation, we note first that II is indeed trace-free with respect to the induced
metric; and secondly that the double contraction II : II with respect to the
induced metric also vanishes.

2.2. The gauge choice and the perturbed system. Small perturbations of
the embedding (2.5) reside within a tubular neighbourhood of the background.
We parametrize the perturbations as a graph within the normal bundle,
analogously to the analysis in [DKSW16]; that is, we look for embeddings
of the form

(u, u, x̂) 7→ (t, x1, x̂, Υ (u))+ φ(u, u, x̂) · n(u, u, x̂), (2.8)

where φ : R1,d
→ R is the height of the graph and n is the unit normal as defined

in (2.6). The induced metric for this perturbation will be denoted by g; it is given
by the pullback of the Minkowski metric M on R1,d+1 by the embedding (2.8):

g = m+ dφ ⊗ dφ − 2φΥ ′′ du ⊗ du. (2.9)

Its corresponding volume element can be computed to be

dvolg =
√
|g| du du dx̂,

where
|g| def
= 1+m(∇φ,∇φ)+ 2φΥ ′′(∂uφ)

2. (2.10)

We note that g is a perturbation of the Minkowski metric m with terms both
quadratic and linear in φ. For later computations, it is helpful to also record the
perturbations truncated to the linear terms, which we will denote by ◦g

◦g def
= m− 2φΥ ′′ du ⊗ du. (2.11)

The inverses of g and ◦g can be computed explicitly in the double null (relative
to m) coordinates (u, u, x̂). For ◦g, one finds

◦g−1
= m−1

+ 2φΥ ′′ ∂u ⊗ ∂u. (2.12)

Note that this implies
|g| = 1+ ◦g−1(∇φ,∇φ). (2.13)

Using that g = ◦g + dφ ⊗ dφ, we can apply the Sherman–Morrison
formula [SM50] to obtain

g−1
=

◦g−1
−

1
|g|
(
◦g−1
· ∂φ)⊗ (

◦g−1
· ∂φ). (2.14)
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NOTATION 1 (Index raising and lowering). In the computations to follow, one
frequently needs to lower or raise indices with respect to any of g / g−1, ◦g / ◦g−1,
or m / m−1. We will adopt the following conventions.

• The unadorned musical operators [ / ] are used for lowering and raising indices
with respect to the Minkowski metric m of the background simple plane-wave
solution.

• Implicitly lowered / raised indices are always with the Minkowski metric m,
so ∂ jφ refers to m jk∂kφ.

• When it is clear from the context, we will sometimes omit the index −1
denoting inverses for brevity. For example, we write m(∇φ,∇φ) instead
of m−1(∇φ,∇φ) since ∇φ are naturally covariant and so we will need
the contravariant metric m−1. Similarly, if we write gµν∂νφ, it should be
interpreted as (g−1)µν∂νφ.

• Index manipulations with respect to the dynamical metrics g and ◦g will always
be adorned. So, for example, we will write

∂
◦
g]φ =

◦g−1
· ∂φ, ∂g]φ = g−1

· ∂φ

with corresponding index notation

∂
◦
g] jφ =

◦g jk∂kφ, ∂g] jφ = g jk∂kφ.

With the notation announced above, we can equivalently write

g−1
=

◦g−1
−

1
|g|
∂
◦
g]φ ⊗ ∂

◦
g]φ.

For the embedding (2.8) to have vanishing mean curvature (that is, satisfy
the membrane equation), it must be a formal stationary point of the volume
functional φ 7→

∫
dvolg. The perturbation equations satisfied by φ can be derived

as the corresponding Euler–Lagrange equations, as shown below.
Denoting by L =

√
|g| =

√
1+m(∇φ,∇φ)+ 2φΥ ′′(∂uφ)2 the Lagrangian

density, the corresponding Euler–Lagrange equation is

δL
δφ
=

∂

∂u

(
δL
δφu

)
+
∂

∂u

(
δL
δφu

)
+
∂

∂ x̂

(
δL
δφx̂

)
, (2.15)

where we use the subscript on φ to denote partial differentiation. Expanding
m(∇φ,∇φ) = −2∂uφ∂uφ + (∂x̂φ)

2, we compute

δL
δφ
= L−1Υ ′′(φu)

2 δL
δφx̂
= L−1φx̂
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δL
δφu
= L−1(−φu)

δL
δφu
= L−1(−φu + 2Υ ′′φφu).

So the Euler–Lagrange equation reads as

∂µ

( ◦gµν∂νφ
L

)
= L−1Υ ′′(φu)

2. (2.16)

Observe that by (2.14), we have

∂g]φ =
1
|g|
∂
◦
g]φ.

This implies that we can rewrite (2.16) as

2gφ = |g|−1Υ ′′(φu)
2
; (2.17)

here 2g refers to the Laplace–Beltrami operator of the metric g, given in local
coordinates by

2g f =
1
√
|g|
∂µ
(√
|g|gµν∂ν f

)
.

As the metric g depends on the first jet of the unknown φ, the principal part of
(2.17) may be different from gµν∂2

µνφ. For our equation, this turns out not to be
an issue, as can be seen when we take the first coordinate partial derivatives of
(2.16). With the aid of relation (2.14) between g−1 and ◦g−1, we obtain

∂λ∂µ

(
∂
◦
g]µφ

L

)
= ∂µ

(
∂g]µ∂λφ
√
|g|

)
+ ∂µ

(
∂λ
◦gµν∂νφ
√
|g|

−
1
2
∂
◦
g]µφ

|g|3/2
∂λ
◦gρσ∂ρφ∂σφ

)
.

Noting that the derivatives ∂λ
◦g depend only on the first derivatives of φ, and not

the second, we see that the principal terms are all captured in the first term on
the right in the above identity.

We can simplify the identity further. Note that

∂λ
◦g−1
= ∂λ(2φΥ ′′) ∂u ⊗ ∂u.

This implies

∂µ

(
∂λ
◦gµν∂νφ
√
|g|

−
1
2
∂
◦
g]µφ

|g|3/2
∂λ
◦gρσ∂ρφ∂σφ

)
= 2∂u

(
∂λ(φΥ

′′)∂uφ
√
|g|

)
− ∂µ

(
∂
◦
g]µφ

|g|1/2

)
︸ ︷︷ ︸
|g|−1/2Υ ′′(∂uφ)2

1
|g|
∂λ(φΥ

′′)(∂uφ)
2
−
∂
◦
g]µφ

|g|1/2
∂µ

(
1
|g|
∂λ(φΥ

′′)(∂uφ)
2

)
.
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So we conclude

|g|−
1
2−

2
d−1 2g̃∂λφ = ∂λ(|g|−1/2Υ ′′(φu)

2)

− 2∂u

(
∂λ(φΥ

′′)∂uφ
√
|g|

)
+ |g|−3/2Υ ′′∂λ(φΥ

′′)(∂uφ)
4

+ |g|−1/2∂
◦
g]µφ∂µ

(
1
|g|
∂λ(φΥ

′′)(∂uφ)
2

)
, (2.18)

where we have introduced the conformal metric

g̃ = |g|−
2

d−1 · g, (2.19)

where d is, recall, the number of spatial dimensions. The conformal metric g̃ has
its Laplace–Beltrami operator as

2g̃ f = |g|
1
2+

2
d−1 ∂µ

(
1
√
|g|

gµν∂ν f
)
,

which has the same principal part as 2g.

REMARK 5. Observe that (2.17) and (2.18) are geometric quasilinear wave
equations that linearize to the linear wave equation on R1,d . The quadratic
nonlinearities include, as can be seen, the resonant semilinear interaction (∂uφ)

2

as well as the weakly resonant quasilinear interaction φ(∂2
uuφ).

That we will be able to prove global existence for this equation (and not
suffer from shock formation in finite time) is due to the background Υ ′′, which
accompanies the appearance of such resonant terms and localizes the resonant
interactions to the region t ≈−x1; one can think ofΥ ′′ as ∂2

uuΥ , exposing the null
condition that was present in the original membrane equation (1.1). However, as
the background function Υ has noncompact (in the x̂ direction) support, and is
nondecaying (in time), the improved decay we obtain due to this space–time
localization is weaker than in classical studies of nonlinear waves with null
condition. Such issues and their ramifications are discussed in more detail in
Section 4 where we examine a semilinear model that captures the main analytical
difficulties.

3. Main analytic tools

We will approach our analyses of (2.17) using a variant of the vector
field method. In particular, we will make use of the refined global Sobolev
inequalities adapted to hyperboloidal foliations that were developed by the
second author [Won17b]. This method allows us to conclude our estimates using
only the T multiplier (and not the Morawetz K multiplier), as well as using only
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the Lorentz boosts as commutators. In the first part of this section, we will recall
the L2–L∞ type linear estimates that enable us to limit ourselves to the small
selection of vector fields used in the argument. For the full nonlinear problem,
the background simple plane wave contributes coefficients in the form of Υ ′′

in (2.17). To efficiently handle these coefficients using only the Lorentz boosts
as commutators, we will develop in the second part of this section a weighted
vector field algebra. In the final part of this section, we recall elementary energy
estimates for wave equations. The combination of these techniques will be first
illustrated in a model semilinear problem in Section 4, before we state and prove
the main result of this paper.

3.1. A global Sobolev inequality. We will base our argument on a
hyperboloidal foliation of Minkowski space and make use of a version of
the Sobolev inequality for weighted spaces on the hyperboloids, as described
in [Won17b]. The specific family of weights is adapted to be used with
energy estimates for wave equations on Minkowski space. Before recalling the
inequalities, we need to introduce some notations.

Consider Minkowski space as described by our double null coordinate system
(u, u, x̂)with metric (2.3). Consider the set I+ def

= {u > 0, u > 0, 2uu−|x̂ |2 > 0}.
This set corresponds to the interior of the future light cone emanating from the
origin in Minkowski space. On this set, we can define the time function

τ
def
=

√
2uu − |x̂ |2. (3.1)

NOTATION 2. The level set of τ will be denoted by Στ . The Riemannian metric
induced onΣτ by the Minkowski metric m will be denoted by ητ . The geometric
metric g also induces a symmetric bilinear form on Στ ; we will denote it by hτ .
When hτ can in principle be Lorentzian or degenerate, in our application it will
turn out to be always Riemannian.

These hypersurfaces Στ are hyperboloids: the induced metric ητ has constant
curvature, with scalar curvature τ−2 times that of the standard hyperbolic space
Hd . We introduce also the function ρ within this forward light cone I+ by

ρ
def
= cosh−1

(
u + u
√

2τ

)
. (3.2)

We note that relative to the Minkowski metric, the unit normal to Στ is given by
(using an abuse of notation)

−(dτ)] =
1
τ
(u∂u + u∂u + x̂ · ∂x̂). (3.3)
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Relative to the perturbed metric g, the unit normal to Στ takes the form

−
(dτ)g]

√
|g(dτ, dτ)|

= −
(dτ)] + 2( u

τ
)φΥ ′′∂u −

◦g(dφ, dτ)∂g]φ√
1− 2( u

τ
)2φΥ ′′ + |g|−1[

◦g(dφ, dτ)]2
. (3.4)

We define the following vector fields:

T =
1
√

2
(∂u + ∂u); (3.5)

L1
= u∂u − u∂u; (3.6)

L i
=

1
√

2
(u + u)∂x̂ i +

1
√

2
x̂ i(∂u + ∂u), i = 2, . . . , d. (3.7)

They are all Killing with respect to the Minkowski metric; in fact, T is the
standard time translation and the L i s (i = 1, . . . , d) are the standard Lorentz
boosts. Note that the L i (where i = 1, . . . , d) are also all tangential toΣτ . If α is
an m-tuple with elements drawn from {1, . . . , d} (namely that α = (α1, . . . , αm)

with αi ∈ {1, . . . , d}), we denote by Lα the differential operator

f 7→ Lαm Lαm−1 · · · Lα2 Lα1 f.

We introduce also the stress–energy tensors corresponding to a metric:

Q[φ;m] = dφ ⊗ dφ − 1
2m(dφ, dφ)m

Q[φ; g] = dφ ⊗ dφ − 1
2 g(dφ, dφ)g.

(3.8)

Note that Q[φ; g] = Q[φ; g̃]; the (covariant) stress–energy tensors are invariant
under conformal changes of metric.

The main results we will need from [Won17b] are the following.

THEOREM 2 (Sharp global Sobolev inequality). Let ` ∈ R be fixed. For any
function f defined on I+, we have, for any (u, u, x̂) ∈ I+,

| f (u, u, x̂)|2 .d,` τ
−d
0 cosh(ρ0)

1−d−`
∑∫

Στ0

cosh(ρ)`|Lα f |2 dvolητ0 .

The sum is taken over all m-tuples α with elements drawn from {1, . . . , d} with
m 6 b d

2 c + 1. The quantities τ0 and ρ0 appearing on the right of the inequality
are given as

τ0 = τ(u, u, x̂), ρ0 = ρ(u, u, x̂).
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REMARK 6. Note that by the definition of the function ρ, the coefficient in
Theorem 2 can be written as

τ−d
0 cosh(ρ0)

1−d−`
= τ `−1

0

(
u + u
√

2

)1−d−`

.

PROPOSITION 1 (Decomposition of stress–energy). At every point in I+, we
have the pointwise identity

Q[ f ;m](T,−(dτ)]) = 1
2τ 2 cosh(ρ)

d∑
i=1

(L i f )2 +
1

2 cosh(ρ)
(T f )2.

LEMMA 1 (Hardy’s inequality, d > 3). Let d > 3. For any function f defined
on Στ , we have∫

Στ

1
cosh(ρ)

| f |2 dvolητ 6
4

(d − 2)2

∫
Στ

1
cosh(ρ)

d∑
i=1

(L i f )2 dvolητ .

3.2. A weighted vector field algebra. In classical arguments using the vector
field method, one typically commutes the equation with the generators of the
Poincaré group, which consists of the

• translation vector fields ∂t , ∂x i ;

• rotations x i∂x j − x j∂x i ;

• Lorentz boosts t∂x i + x i∂t .

These vector fields form, under the Lie bracket, an R-algebra.
In applying the Sobolev inequality of the previous section, we intend to only

commute with the Lorentz boosts L i . This subset does not form an R-algebra
under the Lie bracket. However, they form an algebra with coefficients drawn
from a space of weights. For convenience, we introduce the y-coordinates

y0
=

u + u
√

2
, y1

=
u − u
√

2
, yi

= x̂ i (i > 2). (3.9)

DEFINITION 1. We denote by W∗ the (commutative) ring of polynomial
expressions in the d + 1 variables { y1

y0 , . . . ,
yd

y0 ,
1
y0 }, with R coefficients. This

ring can be graded according to the degree of the 1
y0 term in the polynomial

expression. We denote by Wi the corresponding set of homogeneous elements.
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REMARK 7. By way of clarification and for example, we have the expression
y1

y0 ∈W0, while ( 1
y0 )

5(
y2

y0 )(
y4

y0 ) ∈W5.

REMARK 8. Note that within the light cone I+, we have that the functions (for
all i = 1, . . . , d) ∣∣∣∣ yi

y0

∣∣∣∣ 6 1

are uniformly bounded.

Now, observe that for i, j ∈ {1, . . . , d},

T
(

1
y0

)
= −

(
1
y0

)2

, T
(

yi

y0

)
= −

1
y0
·

yi

y0
,

L i

(
1
y0

)
= −

1
y0
·

yi

y0
, L i

(
y j

y0

)
= δi j −

yi

y0
·

y j

y0
.

Furthermore,

[L i , T ] = −
1
y0

L i
+

yi

y0
T, [L i , L j

] =
yi

y0
L j
−

y j

y0
L i .

Together these imply that the set of vector fields of the form c0T +
∑

ci L i ,
where the cµ are taken from W∗, forms not only an R-Lie algebra but also an
algebra over the ring W∗, with multiplication being the Lie bracket. We will
denote this algebra by A∗. The following proposition follows immediately from
the computations above.

PROPOSITION 2. For i ∈ Z+, define

A0
def
=

{ d∑
j=1

c j L j
| c j ∈W0

}
, Ai =

{
c0T +

d∑
j=1

c j L j

∣∣∣∣ c0 ∈Wi−1, c j ∈Wi

}
.

Then A∗ is graded, with L i
∈ A0, and T ∈ A1. In particular, given elements

Xa ∈ Aa, Xb ∈ Ab and f ∈Wc, we have that

[Xa, Xb] ∈ Aa+b, f Xa ∈ Aa+c.

REMARK 9. We remark that we also have the commutator relation

[L i , [L j , T ]] = δi j T ∈ A1

as expected.
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Using A∗, we can build an algebra of differential operators, which we label by
B∗,∗
∗

. Consider terms of the form

f X 1 X 2 X 3 . . . X k, (3.10)

where f ∈ W∗ and Xα
∈ {L i , T }. They are differential operators that act on

functions defined on I+ in the usual way. Using the computations above, we see
that terms of such form are closed under composition of differential operators.
Hence we define B∗,∗

∗
as the set of finite sums of terms of the form (3.10), with

addition defined normally and composition as multiplication; B∗,∗
∗

is obviously
a W∗-module.

In exactly the same way as A∗, the algebra B∗,∗
∗

is graded. We will use its
lower index to record this grading.

DEFINITION 2. The weight of a term of the form (3.10), where f is a monomial,
is defined by the number of times T appears among the Xα, plus the number of
times 1/y0 appears in the monomial f . The degree of a term of the form (3.10) is
defined as the number k. The T -degree of a term of the form (3.10) is the number
of times T appears among the Xα. By Bk,s

w we refer to the set of finite sums in
B∗,∗
∗

of elements with weight w and degree at most k, and T -degree at most s.

REMARK 10. The set Bk,s
w is well defined due to Proposition 2. One needs to

check that, for example, f X 1 X 2 and f X 2 X 1
+ f [X 1, X 2

], which are equal as
differential operators, have the same degrees and weight. Proposition 2 implies
that for Xα

∈ {L i , T }, the terms making up [X 1, X 2
] always have the same

weight as X 1 X 2, and with same or lower T -degree.

For example, given any m-tuple α, the operator Lα ∈ Bm,0
0 , while we can

identify W∗ = B0,0
∗

. The set Aw is the set of degree (exactly) 1 elements in
B∗,∗w . The following proposition follows immediately from the definition and
Proposition 2.

PROPOSITION 3. If A ∈ Bk,s
w , and B ∈ Bk′,s′

w′ , then:

(1) AB ∈ Bk+k′,s+s′
w+w′ ;

(2) [A, B] ∈ Bk+k′−1,s+s′
w+w′ .

We remark finally that if f = f (u) is a function defined within the light cone
I+, then

T f =
1
√

2
f ′(u), and L1 f = u f ′(u).
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In particular, if f is smooth and supported within a slab u ∈ (a, b), then both T f
and L1 f are functions of u alone that are smooth and supported within u ∈ (a, b).
Similarly, we see that for i > 2,

L i f =
1
√

2
x̂ i f ′(u).

To estimate functions of this form, we will use the following lemma.

LEMMA 2. Fix f = f (u) a smooth function supported in u ∈ [a, b]. Then on
the set I+, for any m-tuple α, we have

|Lα f | . (1+ u)m/2 · 1{u∈[a,b]}.

The implicit constant depends on the numbers a, b, the degree m, the dimension
d, as well as ‖ f ‖Cm .

Proof. Observe that if i, j ∈ {2, . . . , d},

L i x̂ j
=

1
√

2
δi j(u + u)

and that
L i(u + u) =

√
2x̂ i .

So we have that up to a universal structural constant depending only on the
dimension d and the degree m,

|Lα f | . (1+ |u|m + |u + u|m/2 + |x̂ |m) · ‖ f ‖Cm · 1{u∈[a,b]}.

As on the set of interest, u ∈ [max(a, 0), b], we have that |u| < b. Furthermore,
on I+ by definition, we have 2uu > |x̂ |2. The boundedness of u implies that
|x̂ | . √u. The desired bound follows.

REMARK 11. In the lemma above, we consider only the case of f with compact
support in u for convenience in notation and clarity of argument. One sees easily
that an analogous statement holds for f = f (u) that is Schwartz in u (that is,
smooth with rapid decay of all derivatives in u). In fact, our main results, which
are stated for Υ ∈ C∞0 , will follow if our background function Υ is smooth and
such that Υ ′′ and its higher derivatives have sufficiently fast polynomial decay;
we leave such easy but tedious generalizations to the reader.

3.3. Basic estimates. To close this section, we summarize the basic energy
estimates used to control solutions to wave equations in the vector field method.
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Define the following energy integrals:

Eτ [φ]2
def
= Eτ [φ;m]2

def
= 2

∫
Στ

Q[φ;m](T,−(dτ)]) dvolητ , (3.11)

Eτ [φ; g]2
def
= 2

∫
Στ

1
√
|g(dτ, dτ)|

Q[φ; g](T, (−dτ)g]) dvolhτ . (3.12)

Note that the one corresponding to the Minkowski metric can be written
explicitly as

Eτ [φ]2 =
∫
Στ

1
τ 2 cosh ρ

d∑
i=1

(L iφ)2 +
1

cosh ρ
(Tφ)2 dvolητ . (3.13)

The significance of these integrals stems from the fact that, denoting by
J [φ; g] the vector field defined by

J [φ; g](ω) def
= Q[φ; g](T, ωg]),

where ω is an arbitrary one-form, we have that its divergence

divgJ [φ; g] = 1
2Q[φ; g] :g LT g +2gφ · T (φ),

where :g denotes the double contraction of a pair of symmetric two-tensors using
the metric g. Recall that vector fields are uniquely determined through their dual
pairing with a basis of one-forms. The tensor LT g is the Lie derivative of the
metric g by the vector field T . We call J the T -energy current associated to φ
and g. Integrating the divergence between two level sets τ0 < τ1 of τ , one obtains
the energy inequality

Eτ1[φ; g]
2 6 Eτ0[φ; g]

2
+

∫∫
τ∈[τ0,τ1]

|Q[φ; g] :g LT g| + 2|2gφ · T (φ)| dvolg.

(3.14)
Note that the perturbed metric g in (3.14) can be replaced with m, and in that
case, as a consequence of LTm= 0, the inequality reduces to the standard energy
estimate on hyperboloids

Eτ1[φ]
2
− Eτ0[φ]

2 .
∫∫

τ∈[τ0,τ1]

|2φ| · |Tφ| dvolm. (3.15)

The following proposition is how one obtains pointwise control for terms
appearing on the right-hand sides of (3.14) and (3.15).
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PROPOSITION 4. For any function f defined on I+, we have, for any (u, u,
x̂) ∈ I+,

| f (u, u, x̂)| .d τ
1− d

2 cosh(ρ)1−
d
2

∑
|α|6b d

2 c

Eτ [Lα f ],

|L i f (u, u, x̂)| .d τ
1− d

2 cosh(ρ)1−
d
2

∑
|α|6b d

2 c+1

Eτ [Lα f ],

|T f (u, u, x̂)| .d τ
−

d
2 cosh(ρ)1−

d
2

∑
|α|6b d

2 c+1

Eτ [Lα f ].

Proof. We provide the proof of the estimates for f and T f , as the estimate for
L i f is similar and simpler to deduce. Using Theorem 2 with ` = −1, we find

| f (u, u, x̂)|2 .d τ
−d cosh(ρ)2−d

∑
|α|6b d

2 c+1

∫
Στ

1
cosh(ρ)

|Lα f |2 dvolητ ,

.d τ
2−d cosh(ρ)2−d

∑
|α|6b d

2 c+1

∫
Στ

1
2τ 2 cosh(ρ)

|Lα f |2 dvolητ ,

where we used the fact that τ is constant on Στ . Using Lemma 1 to control the
|α| = 0 case and Proposition 1 to control the right-hand side by Eτ , we see

| f (u, u, x̂)|2 .d τ
2−d cosh(ρ)2−d

∑
|α|6b d

2 c

Eτ [Lα f ]2.

This concludes the proof for f .
Using again Theorem 2 with ` = −1, we see

|T f (u, u, x̂)|2 .d τ
−d cosh(ρ)2−d

∑
|α|6b d

2 c+1

∫
Στ

1
cosh(ρ)

|LαT f |2 dvolητ .

By the computations leading up to Proposition 2 (specifically the expression for
[L i , T ] and Remark 8), we can estimate

|LαT f | .
∑
|β|6|α|

|T Lβ f | +
∑

|β|6|α|−1

d∑
i=1

1
τ cosh(ρ)

|L i Lβ f |.

In the above inequality, L i Lβ f def
= L i f when |α| = 1. The terms in the second

sum can be controlled by
1
τ
|L i Lβ f |
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because cosh(ρ) > 1. Putting these estimates together, we find that∑
|α|6b d

2 c+1

∫
Στ

1
cosh(ρ)

|LαT f |2 dvolητ .
∑

|α|6b d
2 c+1

∫
Στ

1
cosh(ρ)

|T Lα f |2

+
1

τ 2 cosh(ρ)

d∑
i=1

|L i Lα f |2 dvolητ . (3.16)

By Proposition 1, the right-hand side is bounded by∑
|α|6b d

2 c+1

Eτ [Lα f ]2,

as desired.

REMARK 12. A feature of (3.13) is its anisotropy. The classical energy
estimates of wave equations control integrals of |∂tφ|

2
+ |∇φ|2, where all

components appear on an equal footing. Here, however, the transversal (to Στ )
derivative Tφ has a different weight compared to the tangential derivatives L iφ.
Note that by their definitions, T has unit-sized coefficients when expressed
relative to the standard coordinates of Minkowski space. The coefficients for
L i (within the light cone I+) have size ≈ t . Therefore an isotropic analogue
would be expected to contain integrals of 1

t2 (L iφ)2 along with integrals of Tφ.
Noting that t = τ cosh ρ, this indicates that an isotropic analogue would contain,
instead of the integral given in (3.13), the integral∫

Στ

1
τ 2 cosh(ρ)3

∑
(L iφ)2 +

1
cosh(ρ)

(Tφ)2 dvolητ .

In other words, the integral for L iφ in the energy has a better ρ weight than
would be expected from an isotropic energy, such as that controlled by the
standard energy estimates.

This improvement reflects the fact that the energy estimate described in this
section captures the peeling properties of linear waves within the energy integral
itself. It is well known that derivatives tangential to an outgoing light cone
decay faster along the light cone than derivatives transverse to the light cone.
As asymptotically, hyperboloids approximate light cones, we expect the same
peeling property to survive. Indeed, the energy inequality (3.14) shows that we
can capture this in the integral sense.

4. A semilinear model

Before stating and proving our main results, we will illustrate both our
method of proof and the main difficulties encountered in the simpler setting
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of a semilinear problem. Recall that the small-data global existence problem
for the membrane equation (1.1) in dimension d > 3 follows from a direct
application of Klainerman’s vector field method, after noting that the equation
of motion is a quasilinear perturbation of the linear wave equation with no
quadratic nonlinearities. In particular, Klainerman’s null condition plays no role
in establishing this result. As indicated in Remark 5, the perturbation problem for
simple plane waves introduces resonant quadratic terms to which Klainerman’s
null condition does not directly apply. On the other hand, as observed in that
same remark, there is a hidden null structure from which we can expect to recover
some improved decay rates.

The main difficulty however is that Klainerman’s null condition is built upon
the expected decay rates corresponding to solutions to the linear wave equations
with strongly localized initial data. In particular, the heuristic for the null
condition is based on the expectation that, for generic first derivatives of such
a solution, ∂φ decays like t (1−d)/2, while for ‘tangential’ (to an outgoing null
cone foliation) derivatives, the corresponding derivatives decay like t−d/2.

In our setting, however, one of the waves in the interaction is a simple plane
wave, which does not decay at all. This reduces the effectiveness of the null
structure in improving decay. As will be shown, this difficulty manifests already
in the model problem to be discussed in this section. For example, when applying
the vector field method, one studies the equations of motion satisfied by higher
derivatives of the solution. After commuting the equation with the Lorentz
boosts, one sees that when the boost hits Υ ′′, we obtain a coefficient that, while
still localized to t ≈ −x1, is growing in time. On an intuitive level, one can
interpret this as a transfer of energy from the (infinite energy) background simple
plane wave to the perturbation. The null structure in our context then serves to
cap the rate of this energy transfer, ensuring (in our case) global existence of the
perturbed solution.

The specific semilinear model problem we consider takes (2.17) and drops
from it the quasilinearity. That is to say, we consider the small-data problem for
the semilinear wave equation

2φ = Υ ′′(u)(φu)
2 (4.1)

on R1,d , where 2 is the usual wave operator corresponding to the Minkowski
metric m. To approach this problem using a vector field method, one commutes
(4.1) with the Lorentz boosts to derive equations of motions for higher order
derivatives. The energy estimates for these higher order derivatives are then
combined with the global Sobolev inequality to get L∞ decay estimates for the
solution. The main difficulty one encounters here, however, is when the vector
fields hit the background Υ ′′. We have
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2Lαφ = Lα(Υ ′′)(φu)
2
+ · · · ,

where Lα(Υ ′′) can have growing L∞ norm.
This potential growth of the coefficients is the main technical complication

in this problem. The best uniform estimate we have for Lα(Υ ′′), assuming for
convenience Υ ∈ C∞0 and the initial data for φ is compactly supported, is via
Lemma 2, which gives

2Lαφ ≈ (1+ u)m/21{u∈[a,b]} · (1+ u + u︸ ︷︷ ︸
∂uφ

)−d/2∂φ,

where we have made the optimistic assumption that φu decays like (1+u+u)−d/2,
as would be the case for a linear wave.

At this point, two different complications present themselves. First, one may
naively hope that the (higher order) energies always stay bounded, in analogy
with the linear case. This hope is rapidly dashed when we examine the energy
estimate for |α| = d . After commuting with d derivatives, we see that

2Lαφ ≈ ∂φ

with no decay! Even assuming that we can prove the boundedness of the lowest
order energy (which controls ∂φ in L2), the best we can obtain is then that
energy for Lαφ grows linearly in time. This first difficulty can be overcome with
a modified bootstrap scheme where the expected (polynomial in time) energy
growth is incorporated into the assumptions.

REMARK 13. Several remarks are in order concerning this energy growth:

(1) This growth is different from what appears in typical applications of
the vector field method to nonlinear wave equations with null condition
satisfying nonlinearities in d = 3. In those cases, the equation takes the
schematic form

2φ = LφLφ,

where Lφ is a ‘good’ derivative that is expected to decay like t−d/2 and
Lφ is a ‘bad’ derivative that is expected to decay like t (1−d)/2. When
considering the energy estimates for the top order derivatives, one must face
the possibility of needing to control

2∂αφ = ∂αLφ · Lφ + · · · .

To close the energy estimate, one must estimate ∂αLφ in L2 and thereby
bound Lφ in L∞ by 1/t , whereupon the time integration gives a small
energy growth of the top order derivatives.
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This difficulty is already largely avoided in hyperboloidal energy methods,
exploiting the anisotropic inclusion of ‘good’ versus ‘bad’ derivatives in the
energy (see Proposition 1 and Remark 12), and is not the cause of the energy
growth in our argument.

(2) That the two energy growths are distinct can be seen in the fact that for the
classical applications of the vector field method, the energy growth occurs
only for the highest order derivatives used in the argument. The more the
derivatives one uses in the bootstrap, the more the levels of energy that
remain bounded. In our case, the energy growth starts appearing at a fixed
(depending on the dimension d) level of derivatives, regardless of how many
derivatives are used in the bootstrap argument. The reason for this is because
there are terms in the equation that do not enjoy the boost symmetries, and
every time you differentiate them with a boost, one gets another growth of
u (see Lemma 2).

(3) Similarly, this energy growth is also different from the µ-degeneracy of
the highest orders of energies (and the associated ‘descent scheme’) that
appears in the study of formation of shocks [Chr07] (see also discussion
in [HKSW16]).

The second difficulty is more sinister. To close the energy estimate, and
estimate φu in L∞, we need to commute with at least d/2 derivatives in order
to make use of Sobolev, implying that m > d/2. But then the coefficients on the
right-hand side are of size (1 + u)−d/4+ε , which is not integrable when d = 2,
3, 4. This seemingly prevents us from even closing any bound for |∂φ|. Take for
example the case d = 3.

• Assuming L∞ control on |∂φ| of the type (1 + u + u)λ, the coefficients in
the equation for L Lφ grow like (1 + u)1−λ. This implies that, even assuming
the lowest order energy remains bounded, the energy for L Lφ grows like
(1+ u + u)2−λ.

• In the best case, we expect that the growth of the L Lφ energy means a
weakened L∞ control on |∂φ|, to the tune of (1 + u + u)2−λ−3/2, with the
power (−3/2) coming from the global Sobolev inequalities.

• Thus, we see that at every iteration, one would increase the growth rate of
|∂φ| by (1+ u + u)1/2.

To handle this difficulty, we will make use of the hyperboloidal foliation and
its associated sharp global Sobolev inequalities. In particular, the anisotropy
discussed in Remark 12 allows us to exploit an additional vestige of the null
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structure of the membrane equation to gain, effectively, an additional (1+u+u)−1

decay in the most difficult terms and close the argument also in d = 3 and 4. This
is accomplished by essentially ‘borrowing’ a weight from the |∂uφ| term when
we put it in L2, using the fact that the term we are trying to control is also a ‘good
derivative’ and benefits from the anisotropic energy. The vestigial null structure
is explained in Remark 20.

REMARK 14. This improvement is not sufficient for the d = 2 case, even at the
heuristic level, due to logarithmic divergences when integrating (1+s)−1. As the
stability of plane waves is trivial in d = 1 (using either the integrability of the
membrane equation in this case or via an easy modification of the arguments
in [Won17a]), we have reasons to expect that the stability result also holds
for d = 2. This turns out to be indeed the case, if we factor in the additional
improvements we used in the more detailed analyses for the quasilinear problem
in Section 5. See also Remark 19.

Note that these difficulties are essentially due to the fact that the background
function Υ (u), while being a solution to the linear wave equation 2Υ (u) = 0,
is not one that is associated to localized initial data. Hence its derivative with
respect to Lα has worse decay rates. (In fact, it grows in time.)

Concerning this semilinear model, we will study the initial value problem for
(4.1) with initial data prescribed on the hypersurface {y0

= 2} (here y is defined
as in (3.9)),

φ|y0=2 = φ0, ∂y0φ|y0=2 = φ1.

The remainder of this section is devoted to proving the following theorem.

THEOREM 3. Let d > 3 and assume Υ ′′(u) is smooth and has compact support
in u. Consider the initial value problem for (4.1), where φ0 and φ1 are smooth
compactly supported functions on B(0, 1) ⊂ Rd . Let s = d if d is odd, and
s = d + 1 if d is even. Then provided ‖φ0‖H s+1 +‖φ1‖H s is sufficiently small, the
initial value problem has a global-in-time solution.

4.1. Preliminaries. Using the standard local existence theorem with finite
speed of propagation, we can assume the solution exists up to at least Σ2.
Furthermore, by finite speed of propagation, the solution must vanish when√√√√ d∑

i=1

|yi |2 > |y0
− 2| + 1.
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In particular, this implies
√

2(u + u) 6 τ 2
+ 1 (4.2)

on the support of φ.
By the blowup criterion for wave equations, it suffices to show ‖φ‖W 1,∞(Στ ) <

∞ for every τ ∈ (2,∞). The general approach, which we will take also for
studying the quasilinear problem, is that of a bootstrap argument.

(1) We will assume that, up to time τmax > 2, the energy Eτ of the solution φ
and its derivatives Lαφ verify certain bounds.

(2) Using Proposition 4, this gives L∞ bounds on φ and its derivatives of the
form Lαφ and T Lαφ.

(3) We can then estimate the nonlinearity using these L∞ estimates, which we
then feed back into the energy inequality (3.14) to get an updated control
on Eτ for all τ ∈ [2, τmax].

(4) Finally, we show for sufficiently small initial data sizes, the updated control
improves the original control, whereupon by the method of continuity the
original bounds on Eτ must hold for all τ > 2, implying the desired global
existence.

Before implementing the bootstrap in the following two sections (one each for
the cases d being odd or even), we record first basic pointwise bounds on the
nonlinearity. For estimating the nonlinearity, we observe that

∂u =

√
2u

u + u
T −

1
u + u

L1
=

1
u + u

(
√

2uT − L1). (4.3)

This allows us to decompose

Υ ′′(u)(φu)
2
=

1
(u + u)2

[A(u)(L1φ)2 + B(u)L1φ · Tφ + C(u)(Tφ)2],

where A, B,C are all compactly supported smooth functions of u. By
Proposition 2, we can rewrite LαTφ as

LαTφ =
∑
|β|6|α|

1
u + u

cβLβφ +
∑
|γ |6|α|

c′γ T Lγφ,

where cβ, c′γ ∈W0 and hence are bounded. Additionally on the region τ > 2 that
we are interested in, u + u is bounded from below. So finally using Lemma 2 on
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the coefficients A, B,C above, we obtain the following uniform pointwise bound
on the region {τ > 2}

|Lα[Υ ′′(u)(φu)
2
]| .

∑
k+`1+`26|α|

(1+ u)
k
2−2
· 1{u∈supp Υ ′′}

· |(L6`1+1φ)(L6`2+1φ)+ (T L6`1φ)(T L6`2φ)+ (L6`1+1φ)(T L6`2φ)|.

(4.4)

NOTATION 3. Here we denote schematically by L6`φ terms of the form Lβφ
with β an m-tuple with m 6 `.

By Proposition 4, we can replace the term with the smallest of `1, `2 using an
energy integral:

|(L6`1+1φ)(L6`2+1φ)| . τ 1− d
2 cosh(ρ)1−

d
2 Eτ [L6`1+b

d
2 c+1φ] · |L6`2+1φ|,

|(L6`1+1φ)(T L6`2φ)| . τ 1− d
2 cosh(ρ)1−

d
2 Eτ [L6`1+b

d
2 c+1φ] · |T L6`2φ|,

|(T L6`1φ)(L6`2+1φ)| . τ−
d
2 cosh(ρ)1−

d
2 Eτ [L6`1+b

d
2 c+1φ] · |L6`2+1φ|,

|(T L6`1φ)(T L6`2φ)| . τ−
d
2 cosh(ρ)1−

d
2 Eτ [L6`1+b

d
2 c+1φ] · |T L6`2φ|.

This allows us to condense (4.4) as

|Lα[Υ ′′(u)(φu)
2
]| .

∑
k+`1+`26|α|

`16`2

(1+ u)
k
2−2
· 1{u∈supp Υ ′′}

· (1+ u︸ ︷︷ ︸
≈τ cosh(ρ)

)2−
d
2 · Eτ [L6`1+b

d
2 c+1φ]

[
1

τ cosh(ρ)
|L6`2+1φ| +

1
cosh(ρ)

|T L6`2φ|

]
.

(4.5)

Here we used that τ cosh(ρ) = 1
√

2
(u+u) ≈ (1+u) using the support properties

of Υ ′′. Next we note that 2uu > τ 2 in I+. On the support of Υ ′′, this means
u & τ 2. On the other hand, from (4.2), we also get u . 1+ τ 2. This allows us to
replace (1+ u) by (1+ τ)2 in (4.5).

Observe next that since L i is Killing with respect to m, we have that first,
LTm = 0 and second,

|2Lαφ| 6 |Lα[Υ ′′(u)(φu)
2
]|.

So from the energy identity (3.14), we get

Eτ1[L
αφ]2 − Eτ0[L

αφ]2 .
∫∫

τ∈[τ0,τ1]

|2Lαφ| · |T Lαφ| dvolm.
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Applying (4.5), we finally arrive at our fundamental a priori estimate

Eτ1[L
αφ]2 − Eτ0[L

αφ]2

.
∫ τ1

τ0

∑
k+`1+`26|α|

`16`2

(1+ τ)k−d
· Eτ [Lαφ] · Eτ [L6`2φ] · Eτ [L6`1+b

d
2 c+1φ] dτ.

To simplify notation, let us write

Ek(τ ) = sup
σ∈[2,τ ]

Eσ [L6kφ]. (4.6)

Our a priori estimate reads as

Ek(τ )
2
− Ek(2)2 .

∑
`0+`1+`2=k

`16`2

∫ τ

2
s`0−dEkE`1+b

d
2 c+1E`2 ds. (4.7)

In the remainder of this section, we will discuss the bootstrap scheme that allows
us to control Ek , for all k 6 d + 1 when d is even and all k 6 d when d is odd,
for all time τ > 2. Note that the implicit constant in (4.7) depends only on the
dimension d , the order k of differentiation, and properties of the background
function Υ , and is in particular independent of φ.

4.2. Bootstrap for d > 6 even. When d > 6 is even, we will denote by m
the value d/2. Note that m > 3. We will assume a uniform bound on the initial
data

Ek(2) 6 ε, k 6 d + 1. (4.8)

Our bootstrap assumption is that for some δ > ε and for all 2 6 τ 6 τ̃ ,

Ek(τ ) 6

{
δ k 6 d − 2
δτ k−(d−1) ln(τ ) d − 1 6 k 6 d + 1.

(4.9)

We note that under (4.7) this system is closed: if `0 + `1 + `2 6 d + 1 and
`1 6 `2, then `1 6 m. This means that `1 + bd/2c + 1 6 2m + 1 = d + 1.
Our goal is to show that the bootstrap assumptions (4.9) can be used to prove
improved versions of themselves, under a smallness assumption on δ and ε.

Under our bootstrap assumptions, we can expression every term of the form

s`0−dEk(s)E`1+m+1(s)E`2(s) = w`0,`1,`2(s)δ
3,

noting that `1 6 `2 by assumption and `0 + `1 + `2 = k 6 d + 1. Observing
that at most one of `0, `1 + m + 1, and `2 can be > d under these conditions,
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Table 1. (d > 6, even) List of admissible `0, `1, `2 values as well as the corresponding
upper bounds for w`0,`1,`2 . The value of ‘—’ means any value compatible with the
prescribed columns. The shaded rows are those with nonintegrable upper bounds for
w`0,`1,`2 .

k `0 `1 `2 w`0,`1,`2(s) 6 Comment

6 d − 2 — < m − 2 — s−2
H⇒ `0 6 k

6 d − 2 — m − 2 — s2−d ln(s) H⇒ `0 6 2
6 d − 2 — m − 1 — s−d ln(s) H⇒ `0 = 0

d − 1 6 d − 2 6 m − 3 6 d − 2 s−2 ln(s)
d − 1 — m − 2 — s3−d ln(s)2 H⇒ `2 6 m + 1, `0 6 3
d − 1 — m − 1 — s1−d ln(s)2 H⇒ `0 6 1
d − 1 — — d − 1 s−d ln(s)2

d − 1 d − 1 — — s−1 ln(s)

d 6 d − 2 6 m − 3 6 d − 2 s−1 ln(s)
d — m − 2 — s4−d ln(s)3 H⇒ `2 6 m + 2, `0 6 4
d — m,m − 1 — s2−d ln(s)2 H⇒ `0 6 2
d — — d, d − 1 s2−d ln(s)2

d d, d − 1 — — s ln(s)

d + 1 6 d − 2 6 m − 3 6 d − 2 ln(s)
d + 1 — m − 2 — s5−d ln(s)3 H⇒ `2 6 m + 3, `0 6 5
d + 1 — m,m − 1 — s3−d ln(s)3 H⇒ `2 6 m + 2, `0 6 3
d + 1 — — d, d ± 1 s4−d ln(s)2

d d, d ± 1 — — s3 ln(s)

we tabulate upper bounds for the weight functions w`0,`1,`2(s) in Table 1. From
this table, we see immediately that Ek(τ )

2
− Ek(2)2 . δ3 whenever k 6 d − 2.

Furthermore, using that for p > −1∫
s p ln(s) ds =

1
p + 1

s p+1 ln(s)−
1

(p + 1)2
s p+1 . s p+1 ln(s)2,

and ∫
s−1 ln(s) ds =

1
2

ln(s)2,

we conclude that for k = d − 1, d, d + 1

Ek(τ )
2
− Ek(2)2 . δ3τ 2(k−(d−1)) ln(τ )2.

Thus for δ sufficiently small (depending on the implicit constants in the
inequalities above), we have that our bootstrap assumptions (4.9) together with
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initial data assumptions imply

Ek(τ ) 6


√
ε2 +

1
2δ

2 k 6 d − 2√
ε2 +

1
2δ

2τ 2(k−(d−1)) ln(τ )2 d − 1 6 k 6 d + 1.
(4.10)

By choosing ε sufficiently small relative to δ, we can guarantee

Ek(τ ) 6


√

3
4δ k 6 d − 2√
3
4δτ

k−(d−1) ln(τ ) d − 1 6 k 6 d + 1,
(4.11)

thereby closing the bootstrap and proving global existence.

4.3. Bootstrap for d > 5 odd. When d > 5 odd, we will take our bootstrap
assumption to be

Ek(τ ) 6

{
δ k 6 d − 2
δτ k−(d−1) ln(τ ) k = d − 1, d.

(4.12)

That we can close with one fewer derivative is due to bd/2c < d/2 in this case.
Define m = bd/2c for convenience; note that 2m = d − 1. By our assumption
then `1 6 `2 H⇒ `1 6 m, and hence `1 + m + 1 6 d , allowing the system to
close. The bootstrap argument here is largely similar to the case d > 6 even. In
Table 2, we record upper bounds for the weight functions w`0,`1,`2(s) and omit
the straightforward remainder of arguments.

4.4. Bootstrap for d = 4. We will assume a uniform bound on the initial
data

Ek(2) 6 ε, k 6 5, (4.13)

with an additional bootstrap assumption for some δ > ε

Ek(τ ) 6

{
δ k 6 2
δτ k−3+γ 3 6 k 6 5.

(4.14)

The number γ is assumed to be � 1 and arbitrary; in particular, we will
throughout take γ < 1

3 . The smallness of γ will impact the smallness of the
initial data allowed: the smaller the γ , the smaller the initial data needs to be.
We consider γ as fixed once and for all.

https://doi.org/10.1017/fmp.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.10


L. Abbrescia and W. W. Y. Wong 34

Table 2. (d > 5, odd) List of admissible `0, `1, `2 values as well as the corresponding
upper bounds for w`0,`1,`2 . The value of ‘—’ means any value compatible with the
prescribed columns. The shaded rows are those with nonintegrable upper bounds for
w`0,`1,`2 .

k `0 `1 `2 w`0,`1,`2(s) 6 Comment

6 d − 2 — 6 m − 2 — s−2
H⇒ `0 6 k

6 d − 2 — m − 1 — s1−d ln(s) H⇒ `0 6 1

d − 1 6 d − 2 6 m − 2 6 d − 2 s−2 ln(s)
d − 1 — m − 1 — s2−d ln(s)2 H⇒ `0 6 2
d − 1 — — d − 1 s−d ln(s)2

d − 1 d − 1 — — s−1 ln(s)

d 6 d − 2 6 m − 2 6 d − 2 s−1 ln(s)
d — m,m − 1 — s4−d ln(s)3 H⇒ `0 6 3
d — — d, d − 1 s2−d ln(s)2

d d, d − 1 — — s ln(s)

We argue similarly to the case when d > 6, and record in Table 3
the corresponding weight functions w`0,`1,`2 . Note, however, an additional
complication arises since d/2 + 1 = 3 = d − 1 in this setting (which is why
instead of a logarithmic growth of energy Ed−1, we see a small polynomial
growth).

Based on the weights derived in the table, we see clearly that by (4.7), we have

Ek(τ )
2
− Ek(2)2 .

{
δ3 k 6 2
δ3τ 2γ+2k−6 k = 3, 4, 5

and hence taking δ sufficiently small and ε even sufficiently smaller will allow
us to close the bootstrap and obtain global existence.

REMARK 15. Applying Proposition 4, we see that the corresponding solution
has the following decay rates:

|φ| . (y0)−1,

|L iφ| . (y0)γ−1, |L i L jφ| . (y0)
γ ,

|Tφ| . (y0)γ−1τ−1, |T L iφ| . (y0)γ τ−1.

The difference between the decay rate for |φ| and the expected (y0)−3/2 is due
to us not using the Morawetz K multiplier (see [Won17b]), and this is purely
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Table 3. (d = 4) List of admissible `0, `1, `2 values as well as the corresponding upper
bounds for w`0,`1,`2 . The value of ‘—’ means any value compatible with the prescribed
columns. The shaded rows are those with nonintegrable upper bounds forw`0,`1,`2 . (Recall
that 3γ < 1 by fiat.)

k `0 `1 `2 w`0,`1,`2(s) 6

6 2 — 0 — sγ−2

2 0 1 1 sγ−3

3 6 2 0 6 2 s2γ−2

3 — 1 — s2γ−2

3 0 0 3 s3γ−4

3 3 0 0 s2γ−1

4 4 0 0 s2γ+1

4 — — 1 s2γ

4 — — 2 s2γ−1

4 — — 3, 4 s3γ−2

5 5 0 0 s2γ+3

5 — — 1 s2γ+2

5 — — 2 s2γ+1

5 — — 3,4,5 s3γ

technical. The remaining modifications are due to the equation. We see at the
first derivative level, the decay rates shown are modified from the standard linear
rate by (y0)γ , while at the second derivative level, the decay rates are worse by a
factor of (y0)γ+1. (For linear waves in d = 4, |L i L jφ| should decay like (y0)−1.)
This worsened decay is a consequence of the background Υ ′′ that appears in the
equation.

REMARK 16. Note that we do not make use of fractional Sobolev spaces. In the
integer setting, to close the L2–L∞ Sobolev estimate, in 4 dimensions we need to
take 3 derivatives. Returning to the schematics described in the introduction of
this section, we expect the equation satisfied by L63φ to have a right-hand side
growing like (1 + u)−1/2. Our bootstrap assumptions (as well as was shown in
Table 3) indicate, on the other hand, that the inhomogeneity can take a coefficient
growing like (1+ u)−1+ε (remember that γ < 1

3 is fixed and arbitrary). This gain
of effectively a power of 1/2 is due to our use of an anisotropic energy (see
Remark 12) and that on the support of Υ ′′ the derivative ∂u is well approximated
by a ‘tangential derivative’.

https://doi.org/10.1017/fmp.2020.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.10


L. Abbrescia and W. W. Y. Wong 36

Table 4. (d = 3) List of admissible `0, `1, `2 values as well as the corresponding upper
bounds for w`0,`1,`2 . The value of ‘—’ means any value compatible with the prescribed
columns. The shaded rows are those with nonintegrable upper bounds forw`0,`1,`2 . (Recall
that 3γ < 1 by fiat.)

k `0 `1 `2 w`0,`1,`2(s) 6

6 1 — — — sγ−2

2 2 0 0 s2γ−1

2 — — 1 s2γ−2

2 0 0 2 s3γ−3

3 3 0 0 s2γ+1

3 — — 1 s2γ

3 — — 2,3 s3γ−1

4.5. Bootstrap for d = 3. We close this section by recording the bootstrap
argument for d = 3. Here the bootstrap assumptions will be taken to be

Ek(τ ) 6

{
δ k = 0, 1
δτ k−2+γ k = 2, 3.

(4.15)

Here again γ � 1 is fixed to be < 1
3 . The weight bounds are shown in Table 4.

Arguing similarly to the case d = 4, we see that the bootstrap assumptions imply

Ek(τ )
2
− Ek(2)2 .

{
δ3 k 6 1
δ3τ 2γ+2k−4 k = 2, 3

and hence for sufficiently small δ and ε, the bootstrap argument closes and we
have global existence.

For convenience, we record here the corresponding L∞ decay rates relative
to the y coordinates. These can be obtained by applying Proposition 4 to the
bootstrap assumptions above.

|φ| . (y0)−1/2,

|L iφ| . (y0)γ−1/2, |L i L jφ| . (y0)
γ+1/2,

|Tφ| . (y0)γ−1/2τ−1, |T L iφ| . (y0)γ+1/2τ−1.

REMARK 17. An examination of Tables 1–4 shows that, exactly as discussed in
the introduction to this section, the nonlinear terms that cause the main difficulty
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are those where the commutator vector fields hit entirely the background plane-
wave Υ ′′. This shows that even if we start by considering initial data with higher
degree of regularity, the loss of decay will always appear in the energy Ek starting
from k = d − 1.

REMARK 18. In the arguments given above, when d is odd we only commuted
with up to d vector fields, and when d is even we used d + 1 vector fields. It is
fairly straightforward to check, in fact, that for initial data of higher regularity,
the higher regularity is preserved in the solution. However, for each additional
derivative, the energy growth speeds up by another factor of τ . So for example,
in dimension d = 3, the higher energy E11(τ ) will have controlled growth like
τ 9+γ in our bootstrap scheme.

5. Commuted equations

We now return to the membrane equation. As discussed in Section 2.2, to
handle the quasilinearity, it is convenient to consider not just (2.17) but also the
prolonged system (2.18) for its first derivatives. As seen in Section 4 previously,
we will prefer to work with the weighted vector field derivatives L iφ instead
of the coordinate partials ∂λφ. In this section, we will first write down the
corresponding propagation equations for L iφ.

While the arguments in Section 4 sum up neatly our approach towards the
semilinear inhomogeneity in the equation, the quasilinear nature of (2.17)
introduces additional complications. Whereas in the semilinear case the
commutation relations [L i ,2m] = 0 hold, in the quasilinear case [L i ,2g]

or [L i ,2g̃] are generally nonvanishing second-order differential operators,
whose coefficients depend on the unknown φ itself. In the second part of this
section, we perform these basic commutation computations and systematically
record the additional terms that arise, which would also need to be controlled.

In the final part of this section, we give a statement of our main stability
theorem for simple plane-wave solutions to the membrane equation. We will
state and prove our theorem in the most critical case d = 3. Returning to the
results of Section 4, we see that when d > 5, the solution φ to the semilinear
equation is such that φ and its first-order weighted derivatives L iφ, Tφ all
enjoy pointwise decay at rates identical to the solution to the linear wave
equation. For the corresponding quasilinear problem, the dynamical metric g
also has fast decay towards m, and the quasilinearity poses almost no additional
complications compared to the semilinear case.

As already discussed in the introduction to Section 4, in lower spatial
dimensions, even the semilinearity causes additional difficulties compared to
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d > 5; this requires, in particular, that the decay rates of even the lowest order
derivatives L iφ and Tφ be modified from their expected linear rates. In the
quasilinear setting, this causes additional complications. In 3 dimensions, in
particular, the appearance of terms of the form

Υ ′′(u)φ∂2
uuφ

in (2.18) is potentially troublesome. Based on purely the linear peeling estimates,
which follows from applying Proposition 4 to a solution of the linear wave
equation, and which would give (on the support of Υ ′′)

|φ| . (y0)−1/2, |∂uφ| . (y0)−3/2, |∂2
uuφ| . (y0)−5/2,

one may naively expect that Υ ′′(u)φ∂2
uuφ has similar decay properties to the

semilinear nonlinearity Υ ′′(u)(φu)
2 that we already treated. However, if we

instead examine the decay rates proven in Section 4 (which we should not expect
to be better), we have

|φ| . (y0)−1/2, |∂uφ| . (y0)−3/2+γ , |∂2
uuφ| . (y0)−3/2+γ ,

making the decay for Υ ′′(u)φ∂2
uuφ slower by a factor of y0 compared to the

semilinear term.
This potential difficulty is significantly ameliorated in d > 5; doing a similar

analysis using the proven decay rates in Section 4 shows that the difference
between the quasilinear Υ ′′(u)φ∂2

uuφ term and its semilinear counterpart when
d = 5, 6 is merely a factor of ln(τ ), which does not impact the bootstrap
argument; when d > 7, no difference is present. Hence, both for brevity of
presentation and clarity of argument, we shall concentrate the remainder of this
paper on the most difficult case d = 3. The higher dimensional cases can all be
handled similarly, with the difference being mainly one of bookkeeping.

Overcoming this potential difficulty with the Υ ′′φ∂2
uuφ terms in dimension d =

3 relies, unsurprisingly, on the ‘null structure’ of the equation. In Section 4 for
brevity of argument, the derivatives L1φ and L iφ for i = 2, . . . , d are estimated
isotropically. However, the equations that they satisfy are not the same: recalling
that the worst term of the inhomogeneity arises when the weighted vector fields
hit the background Υ ′′, we expect

2L1φ ≈ (L1Υ ′′)(φu)
2

in the semilinear argument. However, a direct computation shows that

L1Υ ′′ = uΥ ′′′
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is again a smooth function with compact support in u. In particular, while for
i = 2, . . . , d we have the growing weights as described in Lemma 2, this loss
is not seen by pure L1 derivatives. Therefore we expect L1φ to actually enjoy
better decay compared to L iφ for i 6= 1. Finally, returning to the difficult
term φuu , we see that the ∂u derivative lies in the span of T and L1 (see
also (5.8) and Remark 20); hence we will expect ∂2

uuφ to decay faster than
the generic tangential second derivative, allowing us to eventually close our
estimates.

REMARK 19. In d = 2, this observation is in fact enough to allow us to close
the energy estimate for the semilinear model. However, additional difficulties
come up in the analysis of the full quasilinear problem that cannot be treated
using only this method; hence we omit its discussion below. For the semilinear
problem (4.1), let us denote by Ek the kth order energies for φ and by Fk the
kth order energies for L1φ (analogously to how we proceed in Section 6 for the
quasilinear problem in d = 3). This way of treating the equations for φ and L1φ

separately allows us to close the global-existence bootstrap in a manner similar
to that described in Section 4 with the energy bounds

E0,F0 . δ,

E1,F1 . δτ γ ,

E2,F2 . δτ 1+γ ,

E3 . δτ 2+γ .

For the quasilinear problem, this scheme breaks down when dealing with the
T Tφ derivatives that crop up.

In dimension d > 3, the cubic and higher nonlinearities are essentially
harmless, even with the slightly reduced decay rates. (In the linear case, the terms
placed in L∞ combine to decay at least as fast as (y0)−3/2; a loss of γ < 1

3 can
be easily absorbed.) This fact allows us to essentially ignore all ‘null structure’
when handling the cubic and higher order terms, which allows us to significantly
simplify the bookkeeping involved.

5.1. The perturbed system, restated. Our goal in this section is to derive
the evolution equations for L iφ. Some of the computations are lengthy and not
entirely transparent; they are recorded in Appendix A.1. We start with (2.17),
which we rewrite as √

|g|∂µ
◦gµν∂νφ
√
|g|
= Υ ′′(φu)

2.
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We expand the left-hand side as

2mφ + 2∂u(φΥ
′′∂uφ)+

√
|g| ◦g(dφ, d|g|−1/2)

= 2mφ + 2∂u(φΥ
′′∂uφ)−

1
2|g|

◦g(dφ, d( ◦g(dφ, dφ))).

Note, on the other hand, that

2gψ = 2mψ + 2∂u(φΥ
′′∂uψ)−

1
|g|

◦g(dφ, d( ◦g(dφ, dψ)))

−
1
|g|
Υ ′′(φu)

2
·
◦g(dφ, dψ)+

1
2|g|

◦g(d|g|, dψ). (5.1)

Together this implies that if X is a Killing vector field of the Minkowski metric
m,

2g Xφ = X (Υ ′′(φu)
2) −

1
|g|
Υ ′′(φu)

2 ◦g(dφ, d(Xφ))+
1
|g|

◦g(d|g|, d(Xφ))

− 2[X, ∂u](φΥ
′′φu) − 2∂u(X (φΥ ′′)φu) − 2∂u(φΥ

′′
[X, ∂u]φ)

−
1

2|g|2
X (|g|) ◦g(dφ, d|g|)+

1
2|g|

LX (
◦g−1)(dφ, d|g|)

+
1

2|g|
◦g(dφ, d(LX (

◦g−1)(dφ, dφ))). (5.2)

Here, LX
◦g−1 is the Lie derivative of the inverse metric ◦g−1 by the vector field X .

It can be given as

LX
◦g−1
= 2X (φΥ ′′)∂u ⊗ ∂u + 2φΥ ′′[X, ∂u] ⊗ ∂u + 2φΥ ′′∂u ⊗ [X, ∂u]. (5.3)

The boxed terms in (5.2) are those with quadratic nonlinearity and are the ones
for which the null structure plays an important role. The remaining terms on the
right-hand side all have cubic or higher nonlinearities, and will be treated more
roughly in the estimates.

Later on, we will take X to be one of L i ; we can compute the commutators
(see (3.6) and (3.7) for definitions)

[L1, ∂u] = −∂u; (5.4)

[L i , ∂u] = −
1
√

2

1
y0
(L i
− yi T ), i ∈ {2, . . . , d}. (5.5)

For convenience, we will introduce the following schematic notations.
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NOTATION 4. First, in view of Lemma 2, we will denote by Pm any finite sum
of terms of the form

(Polynomial in {u, x̂}) · (Compactly supported smooth function of u) (5.6)

such that on I+ it is bounded by (1 + u)m/2. Our assumptions imply Υ ′′ = P0.
The computations surrounding the proof of Lemma 2 imply that

TPm = Pm, L1Pm = Pm, L iPm = Pm+1 for i ∈ {2, . . . , d}. (5.7)

We will denote by Wm any element of Wm .

With these notations, we can rewrite schematically

Pm∂u =W1Pm(L1
+ T ). (5.8)

REMARK 20 (Vestige of null condition). As discussed in Remark 5, the presence
of the Υ ′′ factor in Υ ′′(φu)

2 helps to ameliorate the resonant interaction. This
improvement is a vestige of the null condition of the original membrane equation.
In our reformulation here, this improvement is captured in (5.8). Observe that a
generic coordinate derivative ∂u , ∂u , or ∂x̂ can be written only as an element of
the commutator algebra A1, which means that the transversal factor T is not
accompanied by a decaying weight. From this, one can see that quadratic terms
of the form (Tφ)2 will serve as a severe obstacle to global existence. In our
setting, however, the P0 weight Υ ′′ provides a spatial localization and gives an
anomalous weighting: the term W1T ∈ A2 and has improved decay, and this
improvement is, fundamentally, what allows our argument to close in this paper.

NOTATION 5. We will frequently denote by Bk,s
w an element of Bk,s

w′ withw′ > w.
When |g| appears in a higher order term, it is often sufficient to control it as

|g| = 1+ (B1,1
1 φ)2(1+ P0φ), (5.9)

and similarly we can write

◦g(dϕ, dψ) = (B1,1
1 ϕ)(B1,1

1 ψ)(1+ P0φ). (5.10)

REMARK 21. Observe that in (5.2), the inhomogeneity depends on up to
second-order derivatives of φ. If we decompose nonlinearities, the second-order
derivatives that appear are generic, in the sense that derivatives with principal
parts T Tφ, T L iφ, and L i L jφ all appear. (Note that {T, L i

} span the tangent
space R1,d .) To control T L iφ and L i L jφ in L∞, by Proposition 4, it suffices to
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control the energies of Lαφ. The term T Tφ, however, is not controlled by these
energies. There are two approaches to address this. The first is to enlarge the
set of commutators required; instead of only commuting with the boosts Lα, one
can commute with also the T vector field. Checking the commutator relations, to
close this argument, one would have to commute with all differential operators of
the form LαT k , where |α|+k is bounded by some k0. For our problem, it appears
slightly simpler computationally to take the second (essentially equivalent)
alternative. By decomposing 2g, we can solve (2.17) for T Tφ in terms of T L iφ

and L i L jφ and lower order derivatives. This implies T T Lβφ can be estimated in
terms of T Lγφ and Lαφ, where |γ |6 |β|+1 and |α|6 |β|+2. See Appendix A.1
for the details of this computation.

NOTATION 6. We will denote by G = G(φP0,B1,0
0 φ,B1,1

1 φ) an arbitrary smooth
function of its arguments. In particular, |g| = G in this notation, as well as
|g|−1

= G when the φ,B1,0
0 φ, and B1,1

1 φ are all sufficiently small.

It is convenient to simplify (5.2) a bit more.
With the aid of these schematic notations, we find that L1φ satisfies

2g L1φ = P0W2 · [(L1φ + Tφ)2 + Tφ(L1 L1φ + T L1φ)

+φ(L1φ + Tφ)+ (φ + L1φ)(L1 L1φ + T L1φ + T Tφ)]
+G(B1,1

1 φ)(B1,1
1 L1φ)(B2,2

2 φ)+ GP0(B1,0
0 φ)(B1,1

1 φ)2(B2,2
2 φ)

+GP0(B1,1
1 φ)3(B2,1

1 φ)+ GP0(B1,1
1 φ)5(B2,2

2 φ)+ GP0(B1,0
0 φ)(B1,1

1 φ)4

+GφW1P1(B1,1
1 φ)2(B2,1

1 φ)+ Gφ2W2P2(B1,1
1 φ)4(B2,1

1 φ)

+GφW1P1(B1,1
1 φ)5(B2,2

2 φ)+ GW1P1(B1,0
0 φ)(B1,1

1 φ)3; (5.11)

all the quadratic nonlinearities are captured within the first brackets, after which
follow schematic descriptions of the cubic and higher nonlinearities. For i 6= 1,
the term L iφ satisfies the equation

2g L iφ = P0W1(φ + L1φ + Tφ)(B1,1
1 L1φ + B2,2

2 φ + B1,1
1 φ)

+W2(P0 L iφ + P1φ)(L1 L1φ + T L1φ + T Tφ + L1φ + Tφ)
+P1W2(φ + L1φ + Tφ)(L1φ + Tφ)
+G(B1,1

1 φ)(B2,1
1 φ)(B2,2

2 φ)+ GP0(B1,0
0 φ)(B1,1

1 φ)2(B2,2
2 φ)

+GP0(B1,1
1 φ)3(B2,1

1 φ)+ GP0(B1,1
1 φ)5(B2,2

2 φ)+ GP0(B1,0
0 φ)(B1,1

1 φ)4

+GφW1P1(B1,1
1 φ)2(B2,1

1 φ)+ Gφ2W2P2(B1,1
1 φ)4(B2,1

1 φ)

+GφW1P1(B1,1
1 φ)5(B2,2

2 φ)+ GW1P1(B1,0
0 φ)(B1,1

1 φ)3

+GφP1(B1,1
1 φ)2(B2,2

2 φ)+ GφW1P2(B1,1
1 φ)3 + GP1(B1,1

1 φ)4. (5.12)
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Note that the cubic and higher order terms are schematically represented largely
in the same way, with the main differences coming in the quadratic terms. The
key observation, as already mentioned in the introduction to this section, is that
the quadratic terms in the equation for L1φ do not see the growing weight term,
and therefore behave like φ instead of a generic Lφ term. This improvement then
also propagates into the analysis of the quadratic terms of equation (5.12) of the
general L derivatives.

For convenience, we record (2.17) here in the schematic notation.

2gφ = GP0W2(L1φ + Tφ)2. (5.13)

5.2. Commutator relations. To use the vector field method, we will be
commuting our equations with the L i derivatives. More precisely, we study the
wave equations satisfied by Bk,0

0 (L1φ, L iφ) by writing

2g(Bk,0
0 Lφ) = Bk,0

0 (2g Lφ)+ [Bk,0
0 ,2g](Lφ).

Note that after applying (5.11) and (5.12), the right side does not contain
principal terms. Differentiation of the schematic relations in (5.11)–(5.13)
is straightforward. To implement our strategy, we need to compute the
commutators [X,2g] acting on a smooth scalar ψ , where X = L1 or
L i . We merely record the results here, and defer the actual computation to
Appendix A.2.

[X,2g]ψ = P0W1(B1,1
1 φ)(L1ψ + Tψ)+ P0W1(φ + L1φ + Tφ)(B1,1

1 ψ)

+P0W1(B1,0
0 φ)(B1,1

1 L1ψ + B1,1
1 Tψ)

+P0W2(B1,0
0 L1φ + B1,0

0 Tφ)(L1ψ + Tψ)
+P1W2(φ + L1φ + Tφ)(L1ψ + Tψ)
+P1W2φ(L1 L1ψ + T L1ψ + T Tψ)
+ (XG) · [(B1,1

1 φ)(B2,2
2 φ)(B1,1

1 ψ)+ (B1,1
1 φ)2(B2,2

2 ψ)

+P0(B1,1
1 φ)3(B1,1

1 ψ)+ P1W1φ(B1,1
1 φ)2(B1,1

1 ψ)]

+G · [(B2,1
1 φ)(B2,2

2 φ)(B1,1
1 ψ)+ (B1,1

1 φ)(B3,2
2 φ)(B1,1

1 ψ)

+ (B1,1
1 φ)(B2,1

1 φ)(B2,2
2 ψ)+ P0(B1,1

1 φ)2(B2,1
1 φ)(B1,1

1 ψ)

+P1(B1,1
1 φ)3(B1,1

1 ψ)+ P1W1φ(B1,1
1 φ)(B2,1

1 φ)(B1,1
1 ψ)

+P1W1(B1,0
0 φ)(B1,1

1 φ)2(B1,1
1 ψ)+ P2W1φ(B1,1

1 φ)2(B1,1
1 φ)]. (5.14)

Note that the quadratic terms (linear in both φ and ψ) are listed explicitly, as we
expect to need to use the null structure to extract sufficient decay. The cubic and
higher terms (which are at least quadratic in the background φ) are listed purely
schematically.
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REMARK 22. Now and in the sequel, HO1 constitutes the cubic and higher
order terms that arise on the right-hand side of (5.11); see also Appendix A.1.4.
Similarly is the case of HOi for equation (5.12); see also Appendix A.1.5. A key
thing to note about the commutator relation (5.14) is that, with ψ = LαL1φ for
some multi-index α, every cubic and higher term that appears in the schematic
decomposition above can be obtained schematically as a term that appears in an
L6|α|+1 derivative of HO1. And similarly with ψ = Lαφ, every cubic and higher
term in the schematic decomposition is a term that appears in an L6|α| derivative
of HOi . (The only difference is our schematic treatment of the purely cubic term;
see Remark 33.). Thus we will not separately treat the cubic and higher terms
that arise from the commutator in our analyses later, and absorb them as part of
the general discussion of higher order terms.

Similarly, with ψ = Lαφ, all the quadratic terms that appear in (5.14) can be
obtained from L6|α| derivatives hitting QNi , which are defined as the quadratic
inhomogeneity of (5.12). However, as we can see in the case ψ = LαL1, the final
quadratic commutator term of the form P1W2φ(L1 L1ψ+T L1ψ+T Tψ) cannot
be obtained as an L6|α|+1 derivative of QN1, which is defined as the quadratic
homogeneity of (5.11) (note the differing weights P0 and P1). These turn out to
be the most delicate terms in the analysis, and in Section 7.2.4 will be the main
terms to saturate the polynomial growth in the energy estimates.

5.3. Statement of the main theorem. Our main theorem asserts that when
the initial plane wave Υ has bounded width, then this travelling wave solution
is stable under small compactly supported perturbations. By rescaling and
translating, we can assume the perturbation is supported in the unit ball B(0,
1) ⊂ R3 on the spatial slice {y0

= 2}.

THEOREM 4. Let d = 3 and assume Υ (u) is such that Υ ′′ has compact support
in u. Consider the initial value problem for (2.17), where the dynamical metric
is given by (2.9). We assume the initial data is prescribed on the spatial slice
{y0
= 2} by

φ|y0=2 = φ0, ∂y0φ|y0=2 = φ1,

where φ0, φ1 ∈ C∞0 (B(0, 1)). Then for any γ > 0, there exists some ε0 > 0
(which we allow to depend on Υ and on γ ) such that whenever

‖φ0‖H5 + ‖φ1‖H4 6 ε0,

the solution φ exists for all time y0 > 2. Furthermore, we have the following
uniform bounds on the solution and its derivatives:

|φ| + |L1φ| . (y0)−1/2,
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|Tφ| + |T L1φ| . τ γ−1(y0)−1/2,

|B1,0
0 φ| + |B1,0

0 L1φ| + |TB1,0
0 φ| + |T Tφ| . τ γ (y0)−1/2,

|B2,0
0 φ| + |B3,1

1 φ| . τ 1+γ (y0)−1/2.

REMARK 23. Observe that in particular, the coordinate derivatives (with respect
to y) up to second order all decay uniformly as y0

↗ ∞. As will be clear from
the proof, if the initial data has higher regularity, the regularity persists for the
solution. This can be extended to show that (here we omit the details of the
proof) arbitrary order coordinate derivatives of the solution decay uniformly like
(y0)−1/2+γ . Peeling, however, does not hold to arbitrary orders, unlike the case
of the linear wave. If we denote by ∂̄ a derivative that is tangential to outgoing
Minkowski light cones, our results are only compatible with these outgoing
tangential derivatives ∂̄βφ being uniformly bounded by (y0)−3/2+γ for all orders
|β| > 2.

6. Energy quantities and bootstrap assumptions

The remainder of this paper is devoted to proving Theorem 4. In view of the
robust local existence theory for nonlinear wave equations, the strategy we will
take is that of a standard bootstrap argument. In this section, we will set the
notations for the basic energy quantities and perform some preliminary analyses
on them, having also introduced the main bootstrap assumptions.

6.1. The energy quantities defined; bootstrap assumptions. Recall from
(3.12) the energy quantity

Eτ [ψ; g]2 = 2
∫
Στ

1
√
|g(dτ, dτ)|

Q[ψ; g](T, (−dτ)g]) dvolhτ ,

which satisfies the basic energy inequality (3.14) for τ0 < τ1,

Eτ1[ψ; g]
2 6 Eτ0[ψ; g]

2
+

∫∫
τ∈[τ0,τ1]

|Q[ψ; g] :g LT g| + 2|2gψ · T (ψ)| dvolg.

(6.1)
Here ψ will stand for some higher L derivative of the solution φ. One difference
between our quasilinear setting and the semilinear model treated in Section 4 is
the presence of the first integrand in the energy inequality. In the semilinear case,
LTm = 0. The analysis of the second integrand will occupy Section 7, using
equations (5.11)–(5.13); we treat the first integrand here.
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The integrand can be expanded as

Q[ψ; g] :g LT g = (LT g−1)(dψ, dψ)− 1
2 g−1(dψ, dψ) · g :g LT g.

We primarily care about terms that are linear in φ. We expect the terms with
higher order dependence on φ to behave better, and we will estimate them very
roughly. With that, and (2.14) in mind, schematically

(LT g−1)(dψ, dψ) = (φ + Tφ)P0W2(L1ψ + Tψ)2

+G[(B1,1
1 φ)(B2,2

2 φ)+ (B1,1
1 φ)2(1+ TφP0)](B1,1

1 ψ)2.

And we also have schematically, by (2.9), that

g :g LT g = g−1(dφ, dTφ)+ g−1(du, du)(φ + Tφ)P0

= G(B1,1
1 φ)(B2,2

2 φ)+ GP0(B1,1
1 φ)2(φ + Tφ).

Therefore we can conclude that schematically

Q[ψ; g] :g LT g = (φ + Tφ)P0W2(L1ψ + Tψ)2

+G[(B1,1
1 φ)(B2,2

2 φ)+ (B1,1
1 φ)2(1+ TφP0)](B1,1

1 ψ)2. (6.2)

We will return to estimating this term in Section 6.5.
For convenience, for τ > 2 and k a nonnegative integer, we will denote

Ek(τ )
def
= sup

σ∈[2,τ ]
Eσ [L6kφ; g], (6.3)

Fk(τ )
def
= sup

σ∈[2,τ ]
Eσ [L6k L1φ; g]. (6.4)

We will make the following initial data assumption:

E4(2)+ F3(2) 6 ε (AID)

for some ε > ε0. We can make this assumption as by the standard local-existence
argument for nonlinear wave equations, with the assumptions in Theorem 4, for
sufficiently small ε0, the solution necessarily exists up to Σ2. The continuity of
the energy norms on initial data implies that as ε0 → 0, the quantity E4(2) +
F3(2)→ 0 also.

As is typical of bootstrap arguments, we will assume there is some T > 2 such
that for every τ ∈ [2, T ], the following bootstrap assumptions hold. We need
three parameters: δ0 > 0 whose size will be fixed in Section 6.3 and considered
constant afterwards; δ ∈ (0, δ0), which is a smallness parameter we will adjust to
close the bootstrap; and γ > 0 to control the rate of energy growth. Without loss
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of generality, we will assume γ ∈ (0, 1/4) is fixed throughout the argument. Our
goal, as usual, is to demonstrate that the bootstrap assumptions below lead to
improved versions of themselves, when δ and ε are taken to be sufficiently small.
This then implies by the standard continuity argument that the assumptions in
fact hold for all times τ > 2 and we obtain global existence.

Our bootstrap assumptions are as follows. First, along Στ , we have the
uniform bounds 

|φ| 6 δ0(y0)−1/2
;

|L1φ| 6 δ0(y0)−1/2
;

|L iφ| 6 δ0(y0)−1/2τ γ ;

|Tφ| 6 δ0(y0)−1/2τ γ−1.

(BA∞)

Second, we assume that 
E1(τ )+ F1(τ ) 6 δ;

E2(τ )+ F2(τ ) 6 δτ γ ;

E3(τ )+ F3(τ ) 6 δτ 1+γ
;

E4(τ ) 6 δτ 2+γ .

(BA2)

6.2. Inequalities on coordinate functions that we used frequently. In the
subsequent analysis, we will freely use the control of y0, cosh(ρ), and u afforded
by Lemma 3. As we will see, these estimates will be an important tool to
obtain coercive control (with respect to Ek, Fk) of terms that arise in the energy
estimates. They also have important consequences when used concurrently with
the bootstrap assumptions; see, for instance, Proposition 5.

LEMMA 3. The following estimates hold on I+ ∩ {suppφ} ∩ {suppP0}:

u ≈ y0 (6.5)

y0
≈ τ 2 (6.6)

cosh(ρ) ≈ τ. (6.7)

Proof. Using y0
= (u + u)/

√
2, (6.5) follows because P0 has compact support

in u. Under the assumptions of the initial data in Theorem 4, finite speed of
propagation implies that√

|y1|2 + |y2|2 + |y3|2 6 |y0
− 2| + 1 = y0

− 1

on the support of φ. Since τ 2
= 2uu − |x̂ |2 = (y0)2 − (y1)2 − (y2)2 − (y3)2, the

previous inequality reads as 2y0 6 τ 2
+ 1 and hence y0 . τ 2 because τ > 2.
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Since 2uu > τ 2 on I+ (see Section 3.1),

τ 2 6 2uu . u ≈ y0

by appealing to the support of P0. We have then proved (6.6). Finally, (6.7)
follows from the identity τ cosh(ρ) = y0 and (6.6).

6.3. Some first consequences of (BA∞). The assumptions (BA∞) are
not, strictly speaking, necessary; its presence however helps jump-start basic
geometric comparisons that simplify especially the energy comparisons to be
taken in the next subsection.

PROPOSITION 5. The assumptions (BA∞) imply

|P0φ| . δ0τ
−1
;

|B1,0
0 φ| . δ0(y0)−1/2τ γ ;

|B1,1
1 φ| . δ0(y0)−1/2τ γ−1.

Hence
|G| . 1.

Proof. The estimates on |B1,0
0 φ| and |B1,1

1 φ| are trivial using the assumptions,
together with the fact that y0 > τ by definition. The estimate on |P0φ| follows
from the bootstrap assumption and estimate (6.6) in Lemma 3. Finally, as γ <
1/2 by assumption, we see that the three B1,0

0 φ, B1,1
1 φ, and P0φ all have global

uniform bounds. Therefore we must also have global uniform bounds on the
arbitrary smooth functions G.

PROPOSITION 6 (Geometric consequences). The assumptions (BA∞) imply,
when δ0 is sufficiently small, the following.

(1) The Jacobian determinant 1
2 6 |g| 6 2.

(2) The hyperboloids Στ are space-like relative to g; in fact, g−1(dτ, dτ) =
−1+ O(δ0τ

−5/2).

(3) The volume forms dvolητ and dvolhτ are uniformly comparable.

(4) The quantity cT T from (A.3) is comparable to τ 2/(y0)2.

Proof. The first claim follows from the fact that

|g| = 1+ ◦g−1(dφ, dφ) = 1+ G(B1,1
1 φ)2.
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For the second claim, it suffices to prove bounds on g−1(dτ, dτ). From (2.14),
we have that

g−1(dτ, dτ) = m−1(dτ, dτ)︸ ︷︷ ︸
=−1

+2φΥ ′′(∂uτ)
2
−

1
|g|
(
◦g−1(dτ, dφ))2.

By definition
∂uτ =

u
τ
,

and since Υ ′′ has compact support in u, the middle term . δ0τ
−3. For the final

term, we have schematically
◦g−1(dτ, dφ) = m−1(dτ, dφ)+ φΥ ′′∂uτ∂uφ

=
τ

y0
Tφ +

∑
i

yi

y0τ
L iφ + φΥ ′′

u
τ

1
y0
(L1φ + Tφ),

and so we see | ◦g−1(dτ, dφ)| . δ0τ
γ (y0)−3/2. This implies that the final term

decays at least as fast as (δ0)
2τ 2γ (y0)−3, and hence for sufficiently small δ0, we

have the desired bounds.
For the third claim, we first examine (3.4) as the induced volume form on Στ

is given by the interior product of the space–time volume form with the unit
normal. By the explicit form of g and the pointwise bounds of Proposition 6, it
suffices that (dτ)]− (dτ)g]/

√
|g(dτ, dτ)| is bounded when measured by m. Due

to the above bound on g(dτ, dτ), it suffices to control

(dτ)g]
− (dτ)] = 2

u
τ
φΥ ′′∂u −

◦g−1(dφ, dτ)∂g]φ.

In terms of the coordinate basis ∂yµ , the coefficients of the right-hand side can be
worked out to be bounded by

δ0τ
−2
+ (δ0)

2τ 2γ−1(y0)−2.

This implies the desired conclusion.
The fourth and final claim follows immediately from the definition of (A.3).

For conducting the estimates, we will frequently need to swap between the
quantities Eτ [ψ;m]2, Eτ [ψ; g]2, and∫

Στ

1
τ 2 cosh(ρ)

∑
|L iψ |2 +

1
cosh(ρ)

|Tψ |2 dvolhτ .

These three quantities turn out to be comparable if we assume (BA∞) holds with
δ0 sufficiently small.
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PROPOSITION 7 (Energy comparison). Assuming (BA∞) holds with δ0, the three
energy-type quantities above are compatible.

Proof. By Proposition 6, it suffices to compare the term Q[ψ; g](T, (−dτ)g])

with Q[ψ;m](T, (−dτ)m]). We note first that their difference is given by

Tψ[(dτ)g]
− (dτ)m]]ψ − 1

2 T (τ )(g −m)−1(dψ, dψ).

We can expand this to be schematically

Tψ
[
φP0

u
τ
W1(L1ψ + Tψ)+ G ◦g−1(dφ, dψ) ◦g−1(dφ, dτ)

]
+

y0

τ
[φP0W2(L1ψ + Tψ)2 + G( ◦g−1(dφ, dψ))2].

Hence we can bound the expression by, using (BA∞) and Proposition 6,

.
δ0

τ 2 y0
P0|Tψ(L1ψ + Tψ)| +

δ0τ
γ

(y0)3/2
|Tψ ◦g−1(dφ, dψ)|

+
δ0 y0

τ 2
P0W2(L1ψ + Tψ)2 +

y0

τ
(
◦g−1(dφ, dψ))2. (6.8)

The first term in (6.8) can be bounded by

.
δ0

τ 2

1
cosh(ρ)

|Tψ |2 +
δ0

τ 2

1
τ 2 cosh(ρ)

|L1ψ |2

and the third term by

.
δ0

τ

1
τ 2 cosh(ρ)

|L1ψ |2 +
δ0

τ 3

1
cosh(ρ)

|Tψ |2.

Both are bounded obviously by a small multiple of Q[ψ;m](T, (−dτ)m]). We
can evaluate

◦g−1(dφ, dψ) = −
τ 2

(y0)2
TφTψ + B1,0

1 φTψ + B1,0
1 ψTφ

+B1,0
1 φB1,0

1 ψ + φP0W2(L1φ + Tφ)(L1ψ + Tψ).

This implies

|
◦g−1(dφ, dψ)| .

δ0τ
γ

(y0)3/2
|Tψ | +

δ0τ
γ

(y0)3/2τ
|B1,0

0 ψ |.
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Thus the second term in (6.8) can be bounded by

.
(δ0)

2

τ 3−2γ cosh(ρ)2

(
1

cosh(ρ)
|Tψ |2 +

1
τ 2 cosh(ρ)

∑
|L iψ |2

)
and the fourth term by

.
(δ0)

2

τ 3−2γ cosh(ρ)

(
1

cosh(ρ)
|Tψ |2 +

1
τ 2 cosh(ρ)

∑
|L iψ |2

)
.

Both terms are similarly controlled by a small multiple of Q[ψ;m](T, (−dτ)m]).
This implies our proposition.

In Section 7, where we treat the inhomogeneous terms, we frequently need to
estimate weighted L2 integrals along Στ . We can compare such integrals to the
energies by the following corollary, which follows after noting y0

= τ cosh(ρ).

COROLLARY 1. We have the following bounds for L2 integrals of derivatives
of φ:

‖(y0τ)−1/2Bk,0
0 φ‖L2(Στ ) . Ek−1(τ ),

‖(y0τ)−1/2Bk,0
0 L1φ‖L2(Στ ) . Fk(τ ),

‖(y0)
−1/2τ 1/2Bk+1,1

1 φ‖L2(Στ ) . Ek(τ ),

‖(y0)−1/2τ 1/2Bk+1,1
1 L1φ‖L2(Στ ) . Fk+1(τ ).

6.4. Improved L∞ bounds from (BA2). As a consequence of the energy
comparison, Proposition 7, we can apply Proposition 4 with d = 3 to (BA2)
and derive the following L∞ estimates of φ and its derivatives.

|φ| + |L1φ| .
δ

(y0)1/2
,

|B1,0
0 φ| + |B1,0

0 L1φ| .
δτ γ

(y0)1/2
,

|Tφ| + |T L1φ| .
δτ γ

(y0)1/2τ
,

|B2,0
0 φ| .

δτ 1+γ

(y0)1/2
,

|B2,1
1 φ| .

δτ γ

(y0)1/2
,

|B3,1
1 φ| .

δτ 1+γ

(y0)1/2
.

(6.9)
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With the aid of (A.2), we can also estimate{
|T Tφ| . δτ γ−1,

|B1,0
0 T Tφ| . δτ γ .

(6.10)

Here we also made use of Lemma 3 freely.

REMARK 24. Note that we have estimated (6.10) by directly estimating the
right-hand side of (A.2) using (6.9). In particular, these were not derived from
applying Proposition 4 to appropriate energy integrals: in fact, we have not yet
proven any L2 estimates for T Tφ and its higher derivatives. It turns out that the
necessary L2 estimates require a little bit of work, and we defer their proofs to
Lemma 4.

REMARK 25. Note that (6.9) and (6.10) control up to two derivatives of φ in all
directions, and in particular controls the first derivative of the dynamical metric
g. Thus we can apply the blowup criterion for quasilinear wave equations and
assert that the a priori estimates guaranteed by our bootstrap argument suffice to
prove global existence of the solution.

REMARK 26. In the bootstrap argument, we will be studying energies to the
top order E4 and F3, which correspond to three additional derivatives applied to
equations (5.12) and (5.11), respectively. Examining the terms that show up in
the nonlinearities, which depend only on up-to-two derivatives of φ, this means
that when performing energy estimates, the highest derivative that we will put
into L∞ would be three; and as we will only be commuting with B1,0

0 derivatives,
there will be no T T Tφ terms to worry about. Hence between (6.9) and (6.10),
all possible L∞ terms are captured.

6.5. Controlling the deformation tensor term. Now let us return to
studying the first integrand in (6.1) as promised. First, using Proposition 6, the
space–time integral with regard to dvolg can be replaced by the integral with
regard to dvolm to which we can apply the co-area formula and decompose
as dvolητ · dτ . The same proposition also implies that we can replace the
hypersurface volume element and have the integral conducted with respect to
dvolhτ · dτ .

For the integration along Στ , we will put ψ , which is automatically top
order, in the appropriate weighted L2 space; by Proposition 7, these L2 integrals
can be bounded by the quasilinear energies. We therefore obtain the following
bound:
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∫∫
τ∈[τ0,τ1]

|Q[ψ; g] :g LT g| dvolg

6
∫ τ1

τ0

∥∥∥∥ 1
cosh(ρ)

P0(φ + Tφ)
∥∥∥∥

L∞(Στ )
Eτ [ψ; g]2

+‖ cosh(ρ)G[(B1,1
1 φ)(B2,2

2 φ)+ (B1,1
1 φ)2(1+ P0Tφ)]‖L∞(Στ )Eτ [ψ; g]2 dτ.

(6.11)

The terms in L∞ can be estimated with the help of (6.9) and (6.10). First, we
have ∣∣∣∣ 1

cosh(ρ)
P0(φ + Tφ)

∣∣∣∣ . 1
τ

(
δ

τ
+
δτ γ

τ 2

)
6 δτ−2

;

we used here that 1
cosh(ρ) ≈ τ

−1 by Lemma 3. Next we have

|cosh(ρ)GB1,1
1 φB2,2

2 φ| .
y0

τ

δτ γ√
y0τ

δτ γ

τ
6 δ2τ 2γ−2

after observing Lemma 3 again. Finally, the last term

|cosh(ρ)G(B1,1
1 φ)2(1+ P0Tφ)| .

y0

τ

δ2τ 2γ

y0τ 2

(
1+

δτ γ√
y0τ

)
. δ2τ 2γ−3.

Hence, with our assumption that γ < 1/4, we have that∫∫
τ∈[τ0,τ1]

|Q[ψ; g] :g LT g| dvolg .
∫ τ1

τ0

δτ−3/2Eτ [ψ; g]2 dτ. (6.12)

Note the integrable power in τ : the deformation tensor term does not cause any
difficulty in the analysis.

7. Controlling the inhomogeneity

In this section, we focus our attention on estimating the second term in the
energy estimate (6.1), given by the integral∫∫

τ∈[τ0,τ1]

|2gψ · Tψ |dvolg.

By virtue of the geometric comparison, Proposition 6, and the energy
comparison, Proposition 7, we can bound this by∫ τ1

τ0

∥∥∥∥
√

y0

τ
2gψ

∥∥∥∥
L2(Στ )

E[ψ; g] dτ.
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Here ψ stands for one of {φ, L1φ, LαL1φ, L iφ, LαL iφ}, where α is some multi-
index with length no more than 3, and i ∈ {2, 3}.

To streamline our control for the higher derivative terms, we observe the
following principle:∥∥∥∥

√
y0

τ
(expr)

∥∥∥∥
L2(Στ )

. τ ν H⇒

∥∥∥∥
√

y0

τ
B1,0

0 (expr)
∥∥∥∥

L2(Στ )

. τ ν+1. (SP)

Here, (expr) means some polynomial expressions in G,P∗,W∗, and B∗,1
∗
φ. We

emphasize that (SP) is a principle meta to our proof, where we will bound each
term in the polynomial expression either in some weighted L2 space on Στ or
in L∞, using the bootstrap assumptions (BA2) and their consequences (6.9) and
(6.10). The symbol ‘.’ in (SP) should be understood to mean ‘can be proven
as the result of our bootstrap argument to be bounded by’, and not a factual
assertion of a possibly better bound.

Understood this way, (SP) follows simply from the following facts:

• For B∗,1
∗
φ terms, in (BA2), each higher derivative brings at most an additional

loss of τ .

• The terms W∗ are invariant under action by L-derivatives.

• As discussed after Notation 4, B1,0
0 Pm = Pm+1, which allows it to grow with

an additional factor of u1/2. By Lemma 3, this can be bounded by τ .

• Finally, observe that

B1,0
0 G = G · [B1,0

0 (φP0)+ B2,0
0 φ + B2,1

1 φ]

by the chain rule. The first and third terms are in fact decaying by (6.9), and
the middle term is bounded by δτ 1/2+γ , which, since γ < 1/4, is less than a
full order of τ increase in growth.

Occasionally, B∗,2
∗
φ terms also occur: these are the terms with two T

derivatives. Their L∞ estimates are already captured in (6.10) and they can be
seen to also obey the schematic principle (SP), where higher derivatives lose
factors of τ .

We complement the estimates with the following L2 version.

LEMMA 4. For 0 6 k 6 3, we have

‖τ 5/2(y0)−3/2Bk,0
0 T Tφ‖L2(Στ ) . δτmax(k−1,0)+γ .
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Sketch of proof. The proof of this estimate itself is an application of the principle
(SP) and the bootstrap assumptions. Observe first that by (A.2), T Tφ can be
expanded as 1/cT T times a polynomial expression in G,P∗,W∗, and B∗,1

∗
φ to

which (SP) can apply. For convenience, call this polynomial expression O. From
Corollary 1 combined with (6.9), we have that

‖(τ y0)1/2B2,1
2 φ‖L2 . E1

‖τ 1/2(y0)−1/2B1,1
1 φ‖L2 . E0

|(y0)P0φW1| . δτ−1

|(y0)P0(B1,1
1 φ)3| . δ3τ 3γ−4

|(y0)(B1,1
1 φ)2| . δ2τ 2γ−2

|(y0)(1+ P1φ)W1(B1,1
1 φ)2| . δ3τ 2γ−4.

Additionally, we pay attention to the quadratic term

‖(τ y0)1/2P0W2(L1φ + Tφ)2‖L2 . ‖P0(L1φ + Tφ)‖L∞E0 . δ2τ−1.

Together with the estimate cT T ≈ τ 2/(y0)2 implies the lemma when k = 0.
Specifically, we have that

‖(τ y0)1/2O‖L2 . E1 + E0δτ
−1.

Similar arguments show that

‖(τ y0)1/2B1,0
0 O‖L2 . E2 + δE1.

For this, we crucially need Remark 32, which shows that there is no growth
arising from first derivatives of G terms in (A.2). (Note that this step requires
explicit argument and not an appeal to the principle (SP).) For higher derivatives,
we can appeal to (SP).

For higher k, one also needs to estimate derivatives of cT T . We observe the
following schematic computation:

Bk,0
0 cT T = τ

2W2[1+ B6k,0
0 ((B1,1

1 φ)2 +
1
τ 2
(B1,0

0 φ)2

+
1
τ 2
(B0,0

0 φ)P0(1+ (B1,1
1 φ)(L1φ + Tφ)))].

The inner term, operated on by B6k,0
0 , can be bounded by

δ2τ 2γ−2(y0)−1
+ δτ−3(1+ δ2τ γ−4)
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through (6.9). By the schematic principle, we have that for k 6 2, Bk,0
0 cT T is

bounded by τ 2W2. And this shows the lemma up to k 6 2.
For k = 3, we need to consider the case where all derivatives hit cT T since all

other terms follow from the principle (SP). In this case, we need to essentially
estimate something that is schematically the same as

‖τ 5/2(y0)−3/2T Tφ · [(B1,1
1 φ)(B4,1

1 φ)

+ τ−2(B1,0
0 φ)(B4,0

0 φ)+ τ−2φP0(L1φ + B1,1
1 φ)B4,1

1 φ]‖L2 .

Here we group τ 1/2(y0)−1/2 with the B4,1
1 φ terms, and τ−1/2(y0)−1/2 with B4,0

0 φ,
to bound in L2 by E3. The remaining parts to be controlled in L∞ boil down to

τ 2(y0)−1T Tφ[B1,1
1 φ + τ−1(B1,0

0 φ)+ τ−2φP0(L1φ + B1,1
1 φ)],

which can be bounded by

δ2τ 1+γ (y0)−1
[τ γ−1(y0)−1/2

+ δτ−5
] . δ2τ 2γ−3/2

and so we see contributes to a lower order term, and the lemma holds also for
k = 3.

This previous lemma implies that we can also extend (SP) to handle B∗,2
∗
φ

terms in the expression.

REMARK 27. Note that (SP) gives the worst case scenario bound on the higher
derivatives of an expression. As one already sees in the proof of the lemma above,
sometimes this worst case bound is not realized. For example, first derivatives of
G do not lose a whole factor of τ even in the worst case, and as seen in the
proof of the lemma above, sometimes derivatives of G do not lose decay at all.
Similarly, going from φ to B1,0

0 φ in L∞ only entails a τ γ loss.
However, overall, the schematic principle (SP) cannot be generally improved.

This is due to the possible presence of the P∗ terms. Each time a B1,0
0 derivative

hits P∗, we necessarily incur a penalty of one factor of τ . This entirely agrees
with our semilinear analysis in Section 4, where the highest growth rates always
accompany the terms when `0 is largest (where most derivatives hit Υ ′′).

7.1. Higher order nonlinear terms.

PROPOSITION 8. The following bounds hold:

‖(y0)1/2τ−1/2HO1‖L2(Στ ) . δ3τ 3γ−4 (7.1)

‖(y0)1/2τ−1/2HOi‖L2(Στ ) . δ3τ 2γ−3. (7.2)
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Proof. We focus first on G(B1,1
1 φ)(B1,1

1 L1φ)(B2,2
1 φ), the sole cubic term in HO1.

Outside the T Tφ term, this can be bounded by

‖(y0)−1/2τ−1/2G(B1,1
1 φ)(B1,1

1 L1φ)(B2,1
1 φ)‖L2(Στ )

. ‖τ−1(B1,1
1 φ)(B1,1

1 L1φ)‖L∞E1(τ ) . δ3τ 2γ−4.

For the T Tφ term, we need to add a factor of (y0)

τ 2 . This is because by
Proposition 6, we have

|c−1
T TB

2,1
2 φ| .

(y0)2

τ 2

1
y0
B2,1

1 φ.

This gives the bound by

‖τ−3(y0)(B1,1
1 φ)(B1,1

1 L1φ)‖L∞δ . δ3τ 2γ−5,

where we again used Lemma 3. (The differing decay rates of the two terms stem
from the fact that B1,0

0 φ has additional decay along Στ compared to Tφ, but this
decay is not seen when taking L∞ on Στ .)

The quartic and higher order terms can be treated similarly, the details of
which we omit here, the general idea being to put the highest order derivative
terms in L2 and lower ones in L∞. This shows that the quartic and higher order
terms in HO1 can be bounded by . δ4τ 3γ−4 uniformly. (We remark here that
as all the remaining terms are multiplied by a P∗ weight, for their estimates we
can consider (y0) ≈ τ 2. This means that the anisotropy between B2,1

2 φ terms and
T Tφ terms that showed up in the cubic term estimates can be avoided.)

For HOi , the additional cubic term now is a generic B2,1
1 φ instead of B1,1

1 L1φ,
which means it decays slower by a factor of τ . The additional quartic terms can
all be bounded by . δ4τ 2γ−3, and our claims follow.

REMARK 28. To estimate B∗,1
∗
φ terms by either the energy (and then by the

bootstrap (BA2)) or a straight-up L∞ estimate using the peeling estimates in
Proposition 4, we would need any factor of the T derivative to be the outermost
one. Luckily, commutation reduces the order of derivatives and leaves the weight
unchanged (see Proposition 3), which has the advantage of guaranteeing that the
commutator terms have faster decay (by τ−1).

REMARK 29. The quartic term bounds for HO1 can be improved from δ4τ 3γ−4

to δ4τ 4γ−5, thereby upgrading the overall bound on HO1 to δ3τ 2γ−4. This
improvement comes from noting that the term GP0(B1,0

0 φ)(B1,1
1 φ)2(B2,2

2 φ) in
the definition of HO1 is actually GP0(L1φ)(B1,1

1 φ)2(B2,2
2 φ). As for our purposes

these types of improvements are not essential, and do not affect the closing of the
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bootstrap, we shall not pursue this and myriad other improvements in the higher
order terms.

One should however note that for studying the missing case d = 2, the above
indicates that careful treatment of all quadratic, cubic, and quartic nonlinearities
will be likely necessary.

7.2. Quadratic terms. Now we consider the quadratic nonlinearities. These
terms are a bit more delicate, and we will include more details of the arguments.

7.2.1. Zeroth-order case. Looking at (5.13), we need to estimate

‖(y0)−3/2τ−1/2P0(L1φ + Tφ)2‖L2(Στ ).

We observe that

‖(y0)−3/2τ−1/2P0(L1φ)2‖L2(Στ ) . ‖(y
0)−1P0 L1φ‖L∞E0(τ ) .

δ2

τ 3
.

Here we used that by (6.9), our bootstrap assumptions imply |L1φ| . δ(y0)−1/2.
Additionally, recall that y0

≈ τ 2 in the presence of P∗. Next, we have

‖(y0)−3/2τ−1/2(Tφ)2‖L2(Στ ) . ‖(y
0)−1τ−1Tφ‖L∞E0(τ ) .

δ2τ γ

τ 5
.

We note here for this term the W2 term in the nonlinearity is crucial. Without it,
the denominator would only have τ−1, which would not have enabled us to close
our estimates.

7.2.2. First order, ψ = L1φ. Let us now consider QN1 (see (A.6)). The terms
with (L1φ + Tφ)2 and φ(L1φ + Tφ) are controlled exactly as the zeroth-order
term case, by δ2τ−3. For the remaining terms, we see first that

‖(y0)−3/2τ−1/2P0Tφ(L1 L1φ + T L1φ)‖L2(Στ ) . ‖(y
0)−1Tφ‖L∞F0(τ ) .

δ2τ γ

τ 4
.

Similarly

‖(y0)−3/2τ−1/2P0(φ + L1φ)(L1 L1φ + T L1φ)‖L2(Στ ) .
δ2

τ 3
.

The final term involves T Tφ, for which we can bound

‖(y0)−3/2τ−1/2P0(φ + L1φ)T Tφ‖L2(Στ ) . ‖τ
−3(φ + L1φ)‖L∞E1(τ ) .

δ2

τ 4
.
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7.2.3. First order, ψ = L iφ. We next consider QNi (see (A.9)). There is a loss
compared to the QN1 terms, which we expect. First,

‖(y0)−1/2τ−1/2P0(φ + L1φ + Tφ)(B1,1
1 L1φ + B2,2

2 φ + B1,1
1 φ)‖L2(Στ )

. ‖τ−1P0(φ + L1φ + Tφ)‖L∞ · [F0(τ )+ E1(τ )] .
δ2

τ 2
.

Next,

‖(y0)−3/2τ−1/2(P0 L iφ + P1φ)(L1 L1φ + T L1φ + T Tφ + L1φ + Tφ)‖L2(Στ )

. ‖(y0)−1(P0B1,0
0 φ + P1φ)‖L∞ · [F0(τ )+ E1(τ )] .

δ2

τ 2
.

Finally,

‖(y0)−3/2τ−1/2P1(φ + L1φ + Tφ)(L1φ + Tφ)‖L2(Στ )

. ‖(y0)−1P1(φ + L1φ + Tφ)‖L∞ · E0(τ ) .
δ2

τ 2
.

7.2.4. Higher order cases. By Remark 22, the higher order derivatives LαL iφ,
where i = 2, 3, can be treated using (SP). It suffices to consider the higher
derivatives of L1φ. Observe that the principle (SP) can also be applied to the
commutator terms: that control of B1,0

0 [B
1,0
0 ,2g]ψ also gives control of [B1,0

0 ,

2g]B1,0
0 ψ since the terms of the latter are schematically a subset of those terms

that appear in the former. Hence it suffices to consider the estimates for [B1,0
0 ,

2g]L1φ.
We treat each of the six quadratic terms in [B1,0

0 ,2g]L1φ listed in the
schematic decomposition (5.14) below. First, we can estimate

‖(y0)−1/2τ−1/2P0(B1,1
1 φ)(L1ψ + Tψ)‖L2(Στ ) . ‖P0(B1,1

1 φ)‖L∞ · F0(τ ) .
δ2τ γ

τ 2
.

Next, we have

‖(y0)−1/2τ−1/2P0(φ + L1φ + Tφ)(B1,1
1 ψ)‖L2(Στ )

. ‖τ−1P0(φ + L1φ + Tφ)‖L∞ · F0(τ ) .
δ2

τ 2
.

The third term is estimated by

‖(y0)−1/2τ−1/2P0(B1,1
1 φ)(B2,1

1 ψ + T Tψ)‖L2(Στ )

. ‖τ−1P0(B1,1
1 φ)‖L∞ · [F1(τ )+ E2(τ )] .

δ2τ 2γ

τ 3
.
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Next, we have

‖(y0)−3/2τ−1/2P0(B1,0
0 L1φ + B1,0

0 Tφ)(L1ψ + Tψ)‖L2(Στ )

. ‖(y0)−1P0(B1,0
0 L1φ + B1,0

0 Tφ)‖L∞ · F1(τ ) .
δ2τ γ

τ 3
.

The fifth term is estimated by

‖(y0)−3/2τ−1/2P1(φ + L1φ + Tφ)(L1ψ + Tψ)‖L2(Στ )

. ‖(y0)−1P1(φ + L1φ + Tφ)‖L∞ · F1(τ ) .
δ2

τ 2
.

And the final term is estimated by

‖(y0)−3/2τ−1/2P1φ(L1 L1ψ + T L1ψ + T Tψ)‖L2(Στ )

. ‖(y0)−1P1φ‖L∞ · [F1(τ )+ E2(τ )] .
δ2τ γ

τ 2
.

8. Closing the bootstrap

We conclude our proof of Theorem 4 by putting together the estimates in the
previous sections using (6.1). By our control of the deformation tensor (6.12),
we have that

Eτ1[ψ; g]
2
− Eτ0[ψ; g]

.
∫ τ1

τ0

δ

τ 3/2
Eτ [ψ; g]2 + ‖(y0)1/2τ−1/22gψ‖L2(Στ )Eτ [ψ; g] dτ.

Now let σ ∈ (2, T ).
From our bootstrap assumptions (BA2) and the computations of Section 7.2.1,

we get

E0(σ )
2
− E0(2)2 .

∫ σ

2

δ3

τ 3/2
+
δ3

τ 3
dτ . δ3. (8.1)

From Section 7.2.2, we get

F0(σ )
2
− F0(2)2 .

∫ σ

2

δ3

τ 3/2
+
δ3

τ 3
dτ . δ3. (8.2)

From Section 7.2.3, we get

E1(σ )
2
− E1(2)2 .

∫ σ

2

δ3

τ 3/2
+
δ3

τ 2
dτ . δ3. (8.3)
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By applying the principle (SP) and factoring in Remark 22, this implies for
k > 2,

Ek(σ )
2
− Ek(2)2 .

∫ σ

2

δ3τ 2γ+2(k−2)

τ 3/2
+
δ3τ γ+k−2

τ 2
· τ k−1 dτ

. δ3σ 2γ+2(k−2)−1/2
+ δ3σ γ+2(k−2) 6 δ3σ 2γ+2(k−2). (8.4)

Finally, from Section 7.2.4 and principle (SP), we get

F1(σ )
2
− F1(2)2 .

∫ σ

2

δ3

τ 3/2
+
δ3

τ 2
+
δ3τ γ

τ 2
dτ . δ3. (8.5)

Further applications of the principle (SP) give us the higher order estimates for
k > 2:

Fk(σ )
2
− Fk(2)2 .

∫ σ

2

δ3τ 2γ+2(k−2)

τ 3/2
+
δ3τ γ+k−2

τ 2
· τ k−1

+
δ3τ 2γ+k−2

τ 2
· τ k−1 dτ

. δ3σ 2γ+2(k−2)−1/2
+ δ3σ γ+2(k−2)

+ δ3σ 2γ+2(k−2) 6 δ3σ 2γ+2(k−2). (8.6)

With these estimates, the bootstrap closes provided δ, ε are taken sufficiently
small.

We close our discussion with a couple of remarks.

REMARK 30. One interesting aspect of our argument is that the semilinear
nonlinearities seem to allow closing the bootstrap using only a log(τ ) loss instead
of τ γ . This is seemingly in contradiction to the discussion in Section 4, where τ γ

losses seem to be necessary when the dimension d = 3, 4. The explanation for
this is that in our semilinear analyses, we did not separate out the privileged
direction L1φ as having better decay properties. Had we also isolated the
direction L1φ and run the argument with separate energies for generic derivatives
and derivatives with at least one L1 vector field, we would find also that it is
possible to close the argument with merely a log(τ ) loss at energy level d − 1,
with a further τ loss with each additional derivative, analogously to the cases
where d > 5.

As discussed at the start of Section 5, one would see additional losses for the
full quasilinear problem were one not to separate out the better direction L1. This
is reflected in the fact that the part where we required the τ γ loss in place of a
mere log-loss occurs in Section 7.2.4, where we considered the effects of the
commutator term [X,2g]ψ ; note of course that the commutator term vanishes
for our semilinear model problem.

REMARK 31. One may ask whether the higher energy growth is associated
to the blowup at infinity described by Alinhac [Ali03], and which seems
generic for wave equations with weak null quasilinearities [Lin08, LR05, DP18].
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This seems not to be the case for several reasons. First among the reasons is
that we observe the same higher energy growth even for the semilinear model
considered in Section 4. Additionally, our energy growth is not very severe; when
translated back to L∞ estimates of the coordinate derivatives, we still observe
decay (though at a reduced rate compared to what is available for the linear
wave equation). Finally, the leading order correction of the quasilinear metric
is given with the coefficients φΥ ′′du ⊗ du. The localization by the Υ ′′ term
means that the slowly decaying coefficients are supported away from future time-
like infinity. This appears in contrast to the known manifestations of blowup at
infinity, where the null structure of the dynamical metric is significantly different
from the Minkowskian one near future time-like infinity.

Appendix A. Various computations

A.1. Computations supporting Section 5.1.

A.1.1. Verification of (5.1).

2gψ =
1
√
|g|
∂µ
(√
|g|gµν∂νψ

)
=

1
√
|g|
∂µ
(√
|g| ◦gµν∂νψ

)
−

1
√
|g|
∂µ

(
1
√
|g|

◦gµν∂νφ ·
◦g(dφ, dψ)

)
=

1
2|g|

◦g(d|g|, dψ)+2mψ + 2∂u(φΥ
′′∂uψ)

−
1
|g|
·
√
|g|∂µ

(
1
√
|g|

◦gµν∂νφ
)

︸ ︷︷ ︸
=Υ ′′(φu )2

·
◦g(dφ, dψ)

−
1
|g|

◦g(dφ, d( ◦g(dφ, dψ))).

A.1.2. Verification of (5.2). We start with

LX

(√
|g|∂µ

◦gµν∂νφ
√
|g|

)
= X (Υ ′′(φu)

2).

Now, the left-hand side can be written as

[X,2m]φ + 2mXφ + 2[X, ∂u](φΥ
′′∂uφ)

+ 2∂u(X (φΥ ′′)∂uφ)+ 2∂u(φΥ
′′
[X, ∂u]φ)+ 2∂u(φΥ

′′∂u Xφ)
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+
1

2|g|2
X (|g|) ◦g(dφ, d|g|)−

1
2|g|

LX (
◦g−1)(dφ, d|g|)−

1
2|g|

◦g(dXφ, d|g|)

−
1

2|g|
◦g(dφ, d(LX (

◦g−1)(dφ, dφ)))−
1
|g|

◦g(dφ, d ◦g(dφ, dXφ)) .

Throughout we have used the Leibniz rule for Lie differentiation with respect to
tensor contractions, as well as the fact that Lie derivatives commute with exterior
differentiation. The boxed terms, we note, are identical to the principal terms in
2gψ if we set ψ = Xφ. Formula (5.2) follows by rearranging the terms.

A.1.3. Control of T Tφ terms. As the null structure that we require can all be
recovered as discussed in Remark 20, for the control of the T Tφ terms in terms
of other B2,1

∗
terms, we do not need to be too precise with the weights. Starting

from the equation

2mφ + 2Υ ′′∂u(φφu)−
1

2|g|
◦g(dφ, d|g|) = Υ ′′(φu)

2,

we first observe

2mφ = −
τ 2

(y0)2
T Tφ −

d
y0

Tφ +
1

(y0)2

d∑
i=1

L i L iφ − yi L i Tφ − yi T L iφ︸ ︷︷ ︸
=B2,1

2 φ

.

Additionally, the quadratic terms

2Υ ′′∂u(φφu)− Υ
′′(φu)

2
= P0W2(L1φ + Tφ)2

+φP0W2(L1 L1φ + L1Tφ + T L1φ + T Tφ + L1φ + Tφ).

The cubic and higher order terms are captured schematically by

◦g(dφ, d|g|) =W2[τ
2(B1,1

1 φ)2 + (B1,0
0 φ)2 + φP0(B1,1

1 φ)(L1φ + Tφ)]T Tφ
+ [(B1,1

1 φ)2 + φP0(B1,1
1 φ)2]B2,1

2 φ

+W1(B1,1
1 φ)3 + P0(B1,1

1 φ)4 + φP0(B1,1
1 φ)3 + φP1W1(B1,1

1 φ)3, (A.1)

where we took care to isolate the terms with T Tφ from other second derivatives.
This means that we can rewrite

T Tφ =
1
cT T

(GB2,1
2 φ + P0W2(L1φ + Tφ)2 + P0(B1,1

1 φ)4

+φP0W1(B1,1
1 φ)+ G(B1,1

1 φ)3 + (1+ φP1)W1(B1,1
1 φ)3), (A.2)
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where

cT T
def
=

τ 2

(y0)2

[
1+ (B1,1

1 φ)2 +
1
τ 2
(B1,0

0 φ)2

+
1
τ 2
(B0,0

0 φ)P0(1+ (B1,1
1 φ)(L1φ + Tφ))

]
. (A.3)

REMARK 32. Note that none of the G factors in (A.2) include any B1,0
0 φ

dependence.

A.1.4. Verification of (5.11). We note the following very rough estimate for the
cubic terms

m−1(dψ1, dψ2) = B1,1
1 ψ1B1,1

1 ψ2

and hence
◦g(dψ1, dψ2) = B1,1

1 ψ1B1,1
1 ψ2(1+ φP0).

We also have that

LL1(
◦g−1)(dψ1, dψ2) = B1,0

0 φP0B1,1
1 ψ1B1,1

1 ψ2. (A.4)

So all the higher order, nonboxed terms in (5.2) can be captured by the sum

HO1
def
= G(B1,1

1 φ)(B1,1
1 L1φ)(B2,2

2 φ)+ GP0(B1,0
0 φ)(B1,1

1 φ)2(B2,2
2 φ)

+GP0(B1,1
1 φ)3(B2,1

1 φ)+ GP0(B1,1
1 φ)5(B2,2

2 φ)+ GP0(B1,0
0 φ)(B1,1

1 φ)4

+GφW1P1(B1,1
1 φ)2(B2,1

1 φ)+ Gφ2W2P2(B1,1
1 φ)4(B2,1

1 φ)

+GφW1P1(B1,1
1 φ)5(B2,2

2 φ)+ GW1P1(B1,0
0 φ)(B1,1

1 φ)3. (A.5)

REMARK 33. The term G(B1,1
1 φ)(B1,1

1 L1φ)(B2,2
2 φ) stands out in the expression

of HO1: it is both the only cubic term (all other terms are at least quartic in the
unknowns) and the only term that is not explicitly multiplied by a factor of P∗.
In fact, this term is the only nonlinearity that would remain when Υ ≡ 0, where
the equations reduce to the small-data scenario studied by Lindblad [Lin04], and
the nonlinearity is of the double null form m−1(dφ, d(m−1(dφ, dφ))).

We note that instead of writing B2,1
1 φ, we have chosen to write B1,1

1 L1φ. This
is deliberate in order to allow us to exploit certain improvements of decay for the
L1φ derivatives.

We concentrate on the boxed, quadratic terms in (5.2) next. For these terms,
we need the additional null structure as seen in (4.4), and we write, noting
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that [L1, ∂u] = −∂u , the following schematic decompositions for the quadratic
terms:

L1(Υ ′′(φu)
2) = P0W2(L1φ + Tφ)(L1 L1φ + T L1φ)+ P0W2(L1φ + Tφ)2,

∂u(φΥ
′′φu) = P0W2(L1φ + Tφ)2

+P0φW2(L1φ + Tφ)+ P0φW2(L1 L1φ + T L1φ + T Tφ),

∂u(L1(φΥ ′′)φu) = P0(φ + L1φ)W2(L1φ + Tφ)
+P0(φ + L1φ)W2(L1 L1φ + T L1φ + T Tφ)
+P0W2(L1φ + Tφ)2 + P0W2(L1φ + Tφ)(L1 L1φ + T L1φ).

So we can summarize the quadratic nonlinearities schematically as

QN1 = P0W2 · [(L1φ + Tφ)2 + Tφ(L1 L1φ + T L1φ)

+φ(L1φ + Tφ)+ (φ + L1φ)(L1 L1φ + T L1φ + T Tφ)]. (A.6)

A.1.5. Verification of (5.12). In the case where X = L i for i 6= 1, we have that

LL i (
◦g−1)(dψ1, dψ2) = B1,0

0 φP1B1,1
1 ψ1B1,1

1 ψ2. (A.7)

One can check that the higher order, nonboxed terms in (5.2) are now captured
by

HOi = HO1 + G(B1,1
1 φ)(B2,1

1 φ)(B2,2
2 φ)

+GφP1(B1,1
1 φ)2(B2,2

2 φ)+ GφW1P2(B1,1
1 φ)3 + GP1(B1,1

1 φ)4. (A.8)

The added terms are now the pure cubic term, which now can include L
derivatives in all directions, and additional quartic terms, which arise from X
hitting Υ ′′, which generates a P1 instead of P0.

The quadratic parts of the nonlinearity can also be expanded schematically.
The computations are as follows:

L i(Υ ′′(φu)
2) = P0W2(L1φ + Tφ)(L i L1φ + L i Tφ)+ P1W2(L1φ + Tφ)2,

1
y0
(L i
− yi T )(φΥ ′′φu) = P0B1,1

1 φW1(L1φ + Tφ)+ P1W2φ(L1φ + Tφ)

+P0φW1(B1,1
1 L1φ + B1,1

1 Tφ),

∂u(L i(φΥ ′′)φu) = P0W2(L1φ + Tφ)(L1 L iφ + T L iφ)+ P1W2(L1φ + Tφ)2

+P0W2 L iφ(L1 L1φ + T L1φ + T Tφ + L1φ + Tφ)
+P1W2φ(L1 L1φ + T L1φ + T Tφ + L1φ + Tφ),
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∂u

(
φΥ ′′

1
y0
(L i
− yi T )φ

)
= P0W1(L1φ + Tφ)B1,1

1 φ + P0W1φ(L1B1,1
1 φ + TB1,1

1 φ).

Thus we can collect the quadratic nonlinearities using the schematic expression

QNi = P0W1(φ + L1φ + Tφ)(B1,1
1 L1φ + B2,2

2 φ + B1,1
1 φ)

+W2(P0 L iφ + P1φ)(L1 L1φ + T L1φ + T Tφ + L1φ + Tφ)
+P1W2(φ + L1φ + Tφ)(L1φ + Tφ). (A.9)

A.2. Computations supporting 5.2. Observe that, expanding using the
standard formula for the Laplace–Beltrami operator and (2.14), we obtain

2gψ = 2mψ +
1
2

1
|g|

g−1(d|g|, dψ)+ 2∂u(φΥ
′′∂uψ)

−
1
√
|g|

◦g−1

(
dφ, d

(
1
√
|g|

◦g−1(dφ, dψ)
))
−

1
|g|
Υ ′′(φu)

2 ◦g−1(dφ, dψ).

This implies

[X,2g]ψ =
1
2

g−1(d(X ln |g|), dψ)+
1
2
LX g−1(d ln |g|, dψ)

+ 2[X, ∂u](φΥ
′′∂uψ) + 2∂u(X (φΥ ′′)∂uψ) + 2∂u(φΥ

′′
[X, ∂u]ψ)

+
1
2
|g|−2/3 X (|g|) ◦g−1

(
dφ, d

(
1
√
|g|

◦g−1(dφ, dψ)
))

−
1
√
|g|

LX (
◦g−1)

(
dφ, d

(
1
√
|g|

◦g−1(dφ, dψ)
))

−
1
√
|g|

◦g−1

(
d(Xφ), d

(
1
√
|g|

◦g−1(dφ, dψ)
))

+
1
2

1
√
|g|

◦g−1

(
dφ, d

(
X |g|
|g|3/2

◦g−1(dφ, dψ)
))

−
1
√
|g|

◦g−1

(
dφ, d

(
1
√
|g|

LX (
◦g−1)(dφ, dψ)

))
−

1
√
|g|

◦g−1

(
dφ, d

(
1
√
|g|

◦g−1(d(Xφ), dψ)
))
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− X
(

1
|g|
Υ ′′(φu)

2

)
◦g−1(dφ, dψ)−

1
|g|
Υ ′′(φu)

2LX (
◦g−1)(dφ, dψ)

−
1
|g|
Υ ′′(φu)

2 ◦g−1(d(Xφ), dψ).

Except for the three boxed terms, which are linear in both φ and ψ , all remaining
terms are at least quadratic in φ.

The terms that are quadratic and above in φ are generally harmless. We will
use the following rough estimate for the quadratic form g−1:

g−1(dψ1, dψ2) = B1,1
1 ψ1B1,1

1 ψ2(1+ φP0 + G(B1,1
1 φ)2).

For X = L i , where i = 1, . . . , 3, the terms quadratic and above in φ can be
schematically captured by the following collection of terms:

(XG) · [(B1,1
1 φ)(B2,2

2 φ)(B1,1
1 ψ)+ (B1,1

1 φ)2(B2,2
2 ψ)

+P0(B1,1
1 φ)3(B1,1

1 ψ)+ P1W1φ(B1,1
1 φ)2(B1,1

1 ψ)]

+G · [(B2,1
1 φ)(B2,2

2 φ)(B1,1
1 ψ)+ (B1,1

1 φ)(B3,2
2 φ)(B1,1

1 ψ)

+ (B1,1
1 φ)(B2,1

1 φ)(B2,2
2 ψ)+ P0(B1,1

1 φ)2(B2,1
1 φ)(B1,1

1 ψ)

+P1(B1,1
1 φ)3(B1,1

1 ψ)+ P1W1φ(B1,1
1 φ)(B2,1

1 φ)(B1,1
1 ψ)

+P1W1(B1,0
0 φ)(B1,1

1 φ)2(B1,1
1 ψ)+ P2W1φ(B1,1

1 φ)2(B1,1
1 φ)], (A.10)

where since X = L i we have that

XG = G · (B1,0
0 φP0 + φP1 + B2,0

0 φ + B2,1
1 φ). (A.11)

We note, as before, all terms involving P∗ weights are at least cubic in φ.
The terms that are linear in φ in the commutator can also be expanded. For

higher level commutations, we do not need to separate between L1 and L i for
i 6= 1. So we can just write [X, ∂u] = B1,1

1 , which allows us to capture the relevant
terms by

[X, ∂u](φΥ
′′ψu) = P0B1,1

1 φW1(L1ψ + Tψ)+ P1W2φ(L1ψ + Tψ)
+P0φW1B1,1

1 (L1ψ + Tψ),
∂u(X (φΥ ′′)ψu)

= (P1φ + P0B1,0
0 φ)W2(L1ψ + Tψ + L1 L1ψ + T L1ψ + T Tψ)

+P0B1,1
1 φW1(L1ψ + Tψ)+ P0W2B1,0

0 (L1φ + Tφ)(L1ψ + Tψ)
+P1W2(L1φ + Tφ)(L1ψ + Tψ)+ P1W2φ(L1ψ + Tψ),

∂u(φΥ
′′
[X, ∂u]ψ) = P0W1(L1φ + Tφ)B1,1

1 ψ + P0W1φ(L1B1,1
1 ψ + TB1,1

1 ψ).
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Using the commutation relations of Proposition 3, we can summarize these
terms by

P0W1(B1,1
1 φ)(L1ψ + Tψ)+ P0W1(φ + L1φ + Tφ)(B1,1

1 ψ)

+P0W1(B1,0
0 φ)(B1,1

1 L1ψ + B1,1
1 Tψ)

+P0W2(B1,0
0 L1φ + B1,0

0 Tφ)(L1ψ + Tψ)
+P1W2(φ + L1φ + Tφ)(L1ψ + Tψ)
+P1W2φ(L1 L1ψ + T L1ψ + T Tψ), (A.12)

which have similar structure to the terms appearing in QN1 and QNi above.

Appendix B. List of symbols and notations

m Minkowski metric with signature (−1, 1, . . . , 1).
◦g Linear part of the dynamical metric; see (2.11) in Section 2.2.

g Dynamical metric; see (2.9) in Section 2.2.

Υ Plane-wave background; see (2.1) in Section 2.1.

u, u, x̂ Null coordinates adapted to plane-wave background; see (2.2) and the
discussion after (2.5) in Section 2.1.

yi Rectangular coordinates adapted to plane-wave background; see (3.9)
in Section 3.2.

I+ Forward light cone; see start of Section 3.1.

τ, ρ,Στ Hyperboloidal foliation and related parameters; see (3.1) and
Notation 2 in Section 3.1.

T, L i Vector fields; see (3.5)–(3.7) in Section 3.1.

Q Stress–energy tensors; see (3.8) in Section 3.1.

E Background energy integrals; see (3.11) and (3.12) in Section 3.3.

W∗ Weight functions; see Definition 1 in Section 3.2.

W∗ Elements of W∗; see Notation 4 in Section 5.1.

P∗ Plane-wave-like weights; see Notation 4 in Section 5.1.

A∗ Weighted commutator algebra; see discussion surrounding
Proposition 2 in Section 3.2.

B∗,∗
∗

Weighted differential operators; see discussion surrounding (3.10) in
Section 3.2 as well as Definition 2.
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B∗,∗
∗

Elements of B∗,∗
∗

; see Notation 5 in Section 5.1.

G Smooth functions representing bounded terms; see Notation 6 in
Section 5.1.
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